1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::key::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
36 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
37 //! type DataPersister = dyn lightning::chain::chainmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
38 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
39 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
40 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //! lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
46 //! let event_handler = |event: &Event| {
47 //! // Handle the event!
49 //! channel_manager.await_persistable_update();
50 //! channel_manager.process_pending_events(&event_handler);
51 //! chain_monitor.process_pending_events(&event_handler);
55 //! // Begin reading from a newly accepted socket and talk to the peer:
56 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
57 //! lightning_net_tokio::setup_inbound(peer_manager, socket);
59 //! let event_handler = |event: &Event| {
60 //! // Handle the event!
62 //! channel_manager.await_persistable_update();
63 //! channel_manager.process_pending_events(&event_handler);
64 //! chain_monitor.process_pending_events(&event_handler);
69 #![deny(broken_intra_doc_links)]
70 #![deny(missing_docs)]
72 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
74 use bitcoin::secp256k1::key::PublicKey;
76 use tokio::net::TcpStream;
77 use tokio::{io, time};
78 use tokio::sync::mpsc;
79 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
81 use lightning::ln::peer_handler;
82 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
83 use lightning::ln::peer_handler::CustomMessageHandler;
84 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, NetAddress};
85 use lightning::util::logger::Logger;
89 use std::net::SocketAddr;
90 use std::net::TcpStream as StdTcpStream;
91 use std::sync::{Arc, Mutex};
92 use std::sync::atomic::{AtomicU64, Ordering};
93 use std::time::Duration;
96 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
98 /// Connection contains all our internal state for a connection - we hold a reference to the
99 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
100 /// read future (which is returned by schedule_read).
102 writer: Option<io::WriteHalf<TcpStream>>,
103 // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
104 // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
105 // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
106 // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
107 // the schedule_read stack.
109 // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
110 // runtime with functions templated by the Arc<PeerManager> type, calling
111 // write_buffer_space_avail directly from tokio's write wake, however doing so would require
112 // more unsafe voodo than I really feel like writing.
113 write_avail: mpsc::Sender<()>,
114 // When we are told by rust-lightning to pause read (because we have writes backing up), we do
115 // so by setting read_paused. At that point, the read task will stop reading bytes from the
116 // socket. To wake it up (without otherwise changing its state, we can push a value into this
118 read_waker: mpsc::Sender<()>,
120 rl_requested_disconnect: bool,
124 async fn schedule_read<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
125 CMH: ChannelMessageHandler + 'static,
126 RMH: RoutingMessageHandler + 'static,
127 L: Logger + 'static + ?Sized,
128 UMH: CustomMessageHandler + 'static {
129 // 8KB is nice and big but also should never cause any issues with stack overflowing.
130 let mut buf = [0; 8192];
132 let mut our_descriptor = SocketDescriptor::new(us.clone());
133 // An enum describing why we did/are disconnecting:
135 // Rust-Lightning told us to disconnect, either by returning an Err or by calling
136 // SocketDescriptor::disconnect_socket.
137 // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
138 // already knows we're disconnected.
140 // The connection was disconnected for some other reason, ie because the socket was
142 // In this case, we do need to call peer_manager.socket_disconnected() to inform
143 // Rust-Lightning that the socket is gone.
146 let disconnect_type = loop {
148 let us_lock = us.lock().unwrap();
149 if us_lock.rl_requested_disconnect {
150 break Disconnect::CloseConnection;
155 v = write_avail_receiver.recv() => {
156 assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
157 if let Err(_) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
158 break Disconnect::CloseConnection;
161 _ = read_wake_receiver.recv() => {},
162 read = reader.read(&mut buf), if !read_paused => match read {
163 Ok(0) => break Disconnect::PeerDisconnected,
165 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
166 let mut us_lock = us.lock().unwrap();
170 us_lock.read_paused = true;
173 Err(_) => break Disconnect::CloseConnection,
176 Err(_) => break Disconnect::PeerDisconnected,
179 peer_manager.process_events();
181 let writer_option = us.lock().unwrap().writer.take();
182 if let Some(mut writer) = writer_option {
183 // If the socket is already closed, shutdown() will fail, so just ignore it.
184 let _ = writer.shutdown().await;
186 if let Disconnect::PeerDisconnected = disconnect_type {
187 peer_manager.socket_disconnected(&our_descriptor);
188 peer_manager.process_events();
192 fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
193 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
194 // PeerManager, we will eventually get notified that there is room in the socket to write
195 // new bytes, which will generate an event. That event will be popped off the queue before
196 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
197 // the write_buffer_space_avail() call, send_data() returns a non-full write.
198 let (write_avail, write_receiver) = mpsc::channel(1);
199 // Similarly here - our only goal is to make sure the reader wakes up at some point after
200 // we shove a value into the channel which comes after we've reset the read_paused bool to
202 let (read_waker, read_receiver) = mpsc::channel(1);
203 stream.set_nonblocking(true).unwrap();
204 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
206 (reader, write_receiver, read_receiver,
207 Arc::new(Mutex::new(Self {
208 writer: Some(writer), write_avail, read_waker, read_paused: false,
209 rl_requested_disconnect: false,
210 id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
215 /// Process incoming messages and feed outgoing messages on the provided socket generated by
216 /// accepting an incoming connection.
218 /// The returned future will complete when the peer is disconnected and associated handling
219 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
220 /// not need to poll the provided future in order to make progress.
221 pub fn setup_inbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
222 CMH: ChannelMessageHandler + 'static + Send + Sync,
223 RMH: RoutingMessageHandler + 'static + Send + Sync,
224 L: Logger + 'static + ?Sized + Send + Sync,
225 UMH: CustomMessageHandler + 'static + Send + Sync {
226 let ip_addr = stream.peer_addr().unwrap();
227 let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
228 #[cfg(debug_assertions)]
229 let last_us = Arc::clone(&us);
231 let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone()), match ip_addr.ip() {
232 IpAddr::V4(ip) => Some(NetAddress::IPv4 {
234 port: ip_addr.port(),
236 IpAddr::V6(ip) => Some(NetAddress::IPv6 {
238 port: ip_addr.port(),
241 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
243 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
249 if let Some(handle) = handle_opt {
250 if let Err(e) = handle.await {
251 assert!(e.is_cancelled());
253 // This is certainly not guaranteed to always be true - the read loop may exit
254 // while there are still pending write wakers that need to be woken up after the
255 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
256 // keep too many wakers around, this makes sense. The race should be rare (we do
257 // some work after shutdown()) and an error would be a major memory leak.
258 #[cfg(debug_assertions)]
259 assert!(Arc::try_unwrap(last_us).is_ok());
265 /// Process incoming messages and feed outgoing messages on the provided socket generated by
266 /// making an outbound connection which is expected to be accepted by a peer with the given
267 /// public key. The relevant processing is set to run free (via tokio::spawn).
269 /// The returned future will complete when the peer is disconnected and associated handling
270 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
271 /// not need to poll the provided future in order to make progress.
272 pub fn setup_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
273 CMH: ChannelMessageHandler + 'static + Send + Sync,
274 RMH: RoutingMessageHandler + 'static + Send + Sync,
275 L: Logger + 'static + ?Sized + Send + Sync,
276 UMH: CustomMessageHandler + 'static + Send + Sync {
277 let ip_addr = stream.peer_addr().unwrap();
278 let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
279 #[cfg(debug_assertions)]
280 let last_us = Arc::clone(&us);
281 let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), match ip_addr.ip() {
282 IpAddr::V4(ip) => Some(NetAddress::IPv4 {
284 port: ip_addr.port(),
286 IpAddr::V6(ip) => Some(NetAddress::IPv6 {
288 port: ip_addr.port(),
291 Some(tokio::spawn(async move {
292 // We should essentially always have enough room in a TCP socket buffer to send the
293 // initial 10s of bytes. However, tokio running in single-threaded mode will always
294 // fail writes and wake us back up later to write. Thus, we handle a single
295 // std::task::Poll::Pending but still expect to write the full set of bytes at once
296 // and use a relatively tight timeout.
297 if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
299 match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
300 v if v == initial_send.len() => break Ok(()),
302 write_receiver.recv().await;
303 // In theory we could check for if we've been instructed to disconnect
304 // the peer here, but its OK to just skip it - we'll check for it in
305 // schedule_read prior to any relevant calls into RL.
308 eprintln!("Failed to write first full message to socket!");
309 peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
315 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
319 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
325 if let Some(handle) = handle_opt {
326 if let Err(e) = handle.await {
327 assert!(e.is_cancelled());
329 // This is certainly not guaranteed to always be true - the read loop may exit
330 // while there are still pending write wakers that need to be woken up after the
331 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
332 // keep too many wakers around, this makes sense. The race should be rare (we do
333 // some work after shutdown()) and an error would be a major memory leak.
334 #[cfg(debug_assertions)]
335 assert!(Arc::try_unwrap(last_us).is_ok());
341 /// Process incoming messages and feed outgoing messages on a new connection made to the given
342 /// socket address which is expected to be accepted by a peer with the given public key (by
343 /// scheduling futures with tokio::spawn).
345 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
347 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
348 /// connection setup. That future then returns a future which will complete when the peer is
349 /// disconnected and associated handling futures are freed, though, because all processing in said
350 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
352 pub async fn connect_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
353 CMH: ChannelMessageHandler + 'static + Send + Sync,
354 RMH: RoutingMessageHandler + 'static + Send + Sync,
355 L: Logger + 'static + ?Sized + Send + Sync,
356 UMH: CustomMessageHandler + 'static + Send + Sync {
357 if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
358 Some(setup_outbound(peer_manager, their_node_id, stream))
362 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
363 task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
365 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
366 write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
368 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
369 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
370 // sending thread may have already gone away due to a socket close, in which case there's nothing
371 // to wake up anyway.
372 fn wake_socket_waker(orig_ptr: *const ()) {
373 let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
374 let _ = sender.try_send(());
375 drop_socket_waker(orig_ptr);
377 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
378 let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
379 let sender = unsafe { (*sender_ptr).clone() };
380 let _ = sender.try_send(());
382 fn drop_socket_waker(orig_ptr: *const ()) {
383 let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
384 // _orig_box is now dropped
386 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
387 let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
388 let new_ptr = new_box as *const mpsc::Sender<()>;
389 task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
392 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
393 /// type in the template of PeerHandler.
394 pub struct SocketDescriptor {
395 conn: Arc<Mutex<Connection>>,
398 impl SocketDescriptor {
399 fn new(conn: Arc<Mutex<Connection>>) -> Self {
400 let id = conn.lock().unwrap().id;
404 impl peer_handler::SocketDescriptor for SocketDescriptor {
405 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
406 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
407 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
408 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
409 // processing future which will call write_buffer_space_avail and we'll end up back here.
410 let mut us = self.conn.lock().unwrap();
411 if us.writer.is_none() {
412 // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
416 if resume_read && us.read_paused {
417 // The schedule_read future may go to lock up but end up getting woken up by there
418 // being more room in the write buffer, dropping the other end of this Sender
419 // before we get here, so we ignore any failures to wake it up.
420 us.read_paused = false;
421 let _ = us.read_waker.try_send(());
423 if data.is_empty() { return 0; }
424 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
425 let mut ctx = task::Context::from_waker(&waker);
426 let mut written_len = 0;
428 match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
429 task::Poll::Ready(Ok(res)) => {
430 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
431 // know how to handle it if it does (cause it should be a Poll::Pending
435 if written_len == data.len() { return written_len; }
437 task::Poll::Ready(Err(e)) => {
438 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
439 // know how to handle it if it does (cause it should be a Poll::Pending
441 assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
442 // Probably we've already been closed, just return what we have and let the
443 // read thread handle closing logic.
446 task::Poll::Pending => {
447 // We're queued up for a write event now, but we need to make sure we also
448 // pause read given we're now waiting on the remote end to ACK (and in
449 // accordance with the send_data() docs).
450 us.read_paused = true;
457 fn disconnect_socket(&mut self) {
458 let mut us = self.conn.lock().unwrap();
459 us.rl_requested_disconnect = true;
460 // Wake up the sending thread, assuming it is still alive
461 let _ = us.write_avail.try_send(());
464 impl Clone for SocketDescriptor {
465 fn clone(&self) -> Self {
467 conn: Arc::clone(&self.conn),
472 impl Eq for SocketDescriptor {}
473 impl PartialEq for SocketDescriptor {
474 fn eq(&self, o: &Self) -> bool {
478 impl Hash for SocketDescriptor {
479 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
486 use lightning::ln::features::*;
487 use lightning::ln::msgs::*;
488 use lightning::ln::peer_handler::{MessageHandler, PeerManager};
489 use lightning::util::events::*;
490 use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
492 use tokio::sync::mpsc;
495 use std::sync::atomic::{AtomicBool, Ordering};
496 use std::sync::{Arc, Mutex};
497 use std::time::Duration;
499 pub struct TestLogger();
500 impl lightning::util::logger::Logger for TestLogger {
501 fn log(&self, record: &lightning::util::logger::Record) {
502 println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
507 expected_pubkey: PublicKey,
508 pubkey_connected: mpsc::Sender<()>,
509 pubkey_disconnected: mpsc::Sender<()>,
510 disconnected_flag: AtomicBool,
511 msg_events: Mutex<Vec<MessageSendEvent>>,
513 impl RoutingMessageHandler for MsgHandler {
514 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
515 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
516 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
517 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
518 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
519 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
520 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
521 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
522 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
523 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
525 impl ChannelMessageHandler for MsgHandler {
526 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
527 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
528 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
529 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
530 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
531 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
532 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
533 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
534 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
535 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
536 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
537 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
538 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
539 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
540 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
541 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
542 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
543 if *their_node_id == self.expected_pubkey {
544 self.disconnected_flag.store(true, Ordering::SeqCst);
545 self.pubkey_disconnected.clone().try_send(()).unwrap();
548 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
549 if *their_node_id == self.expected_pubkey {
550 self.pubkey_connected.clone().try_send(()).unwrap();
553 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
554 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
556 impl MessageSendEventsProvider for MsgHandler {
557 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
558 let mut ret = Vec::new();
559 mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
564 async fn do_basic_connection_test() {
565 let secp_ctx = Secp256k1::new();
566 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
567 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
568 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
569 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
571 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
572 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
573 let a_handler = Arc::new(MsgHandler {
574 expected_pubkey: b_pub,
575 pubkey_connected: a_connected_sender,
576 pubkey_disconnected: a_disconnected_sender,
577 disconnected_flag: AtomicBool::new(false),
578 msg_events: Mutex::new(Vec::new()),
580 let a_manager = Arc::new(PeerManager::new(MessageHandler {
581 chan_handler: Arc::clone(&a_handler),
582 route_handler: Arc::clone(&a_handler),
583 }, a_key.clone(), &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
585 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
586 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
587 let b_handler = Arc::new(MsgHandler {
588 expected_pubkey: a_pub,
589 pubkey_connected: b_connected_sender,
590 pubkey_disconnected: b_disconnected_sender,
591 disconnected_flag: AtomicBool::new(false),
592 msg_events: Mutex::new(Vec::new()),
594 let b_manager = Arc::new(PeerManager::new(MessageHandler {
595 chan_handler: Arc::clone(&b_handler),
596 route_handler: Arc::clone(&b_handler),
597 }, b_key.clone(), &[2; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
599 // We bind on localhost, hoping the environment is properly configured with a local
600 // address. This may not always be the case in containers and the like, so if this test is
601 // failing for you check that you have a loopback interface and it is configured with
603 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
604 (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
605 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
606 (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
607 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
608 (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
609 } else { panic!("Failed to bind to v4 localhost on common ports"); };
611 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
612 let fut_b = super::setup_inbound(b_manager, conn_b);
614 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
615 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
617 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
618 node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
620 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
621 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
623 a_manager.process_events();
624 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
625 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
626 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
627 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
633 #[tokio::test(flavor = "multi_thread")]
634 async fn basic_threaded_connection_test() {
635 do_basic_connection_test().await;
638 async fn basic_unthreaded_connection_test() {
639 do_basic_connection_test().await;