ac9d4bb3bd5899a08e0dfaadebd811fb779e2c04
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
22 //!
23 //! # Example
24 //! ```
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
30 //!
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
36 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
37 //! type DataPersister = dyn lightning::chain::chainmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
38 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
39 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
40 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
41 //!
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //!     lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
45 //!     loop {
46 //!             let event_handler = |event: &Event| {
47 //!                     // Handle the event!
48 //!             };
49 //!             channel_manager.await_persistable_update();
50 //!             channel_manager.process_pending_events(&event_handler);
51 //!             chain_monitor.process_pending_events(&event_handler);
52 //!     }
53 //! }
54 //!
55 //! // Begin reading from a newly accepted socket and talk to the peer:
56 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
57 //!     lightning_net_tokio::setup_inbound(peer_manager, socket);
58 //!     loop {
59 //!             let event_handler = |event: &Event| {
60 //!                     // Handle the event!
61 //!             };
62 //!             channel_manager.await_persistable_update();
63 //!             channel_manager.process_pending_events(&event_handler);
64 //!             chain_monitor.process_pending_events(&event_handler);
65 //!     }
66 //! }
67 //! ```
68
69 // Prefix these with `rustdoc::` when we update our MSRV to be >= 1.52 to remove warnings.
70 #![deny(broken_intra_doc_links)]
71 #![deny(private_intra_doc_links)]
72
73 #![deny(missing_docs)]
74 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
75
76 use bitcoin::secp256k1::PublicKey;
77
78 use tokio::net::TcpStream;
79 use tokio::{io, time};
80 use tokio::sync::mpsc;
81 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
82
83 use lightning::ln::peer_handler;
84 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
85 use lightning::ln::peer_handler::CustomMessageHandler;
86 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, NetAddress};
87 use lightning::util::logger::Logger;
88
89 use std::ops::Deref;
90 use std::task;
91 use std::net::SocketAddr;
92 use std::net::TcpStream as StdTcpStream;
93 use std::sync::{Arc, Mutex};
94 use std::sync::atomic::{AtomicU64, Ordering};
95 use std::time::Duration;
96 use std::hash::Hash;
97
98 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
99
100 /// Connection contains all our internal state for a connection - we hold a reference to the
101 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
102 /// read future (which is returned by schedule_read).
103 struct Connection {
104         writer: Option<io::WriteHalf<TcpStream>>,
105         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
106         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
107         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
108         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
109         // the schedule_read stack.
110         //
111         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
112         // runtime with functions templated by the Arc<PeerManager> type, calling
113         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
114         // more unsafe voodo than I really feel like writing.
115         write_avail: mpsc::Sender<()>,
116         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
117         // so by setting read_paused. At that point, the read task will stop reading bytes from the
118         // socket. To wake it up (without otherwise changing its state, we can push a value into this
119         // Sender.
120         read_waker: mpsc::Sender<()>,
121         read_paused: bool,
122         rl_requested_disconnect: bool,
123         id: u64,
124 }
125 impl Connection {
126         async fn poll_event_process<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, CMH, RMH, L, UMH>>, mut event_receiver: mpsc::Receiver<()>) where
127                         CMH: Deref + 'static + Send + Sync,
128                         RMH: Deref + 'static + Send + Sync,
129                         L: Deref + 'static + Send + Sync,
130                         UMH: Deref + 'static + Send + Sync,
131                         CMH::Target: ChannelMessageHandler + Send + Sync,
132                         RMH::Target: RoutingMessageHandler + Send + Sync,
133                         L::Target: Logger + Send + Sync,
134                         UMH::Target: CustomMessageHandler + Send + Sync,
135     {
136                 loop {
137                         if event_receiver.recv().await.is_none() {
138                                 return;
139                         }
140                         peer_manager.process_events();
141                 }
142         }
143
144         async fn schedule_read<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, CMH, RMH, L, UMH>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
145                         CMH: Deref + 'static + Send + Sync,
146                         RMH: Deref + 'static + Send + Sync,
147                         L: Deref + 'static + Send + Sync,
148                         UMH: Deref + 'static + Send + Sync,
149                         CMH::Target: ChannelMessageHandler + 'static + Send + Sync,
150                         RMH::Target: RoutingMessageHandler + 'static + Send + Sync,
151                         L::Target: Logger + 'static + Send + Sync,
152                         UMH::Target: CustomMessageHandler + 'static + Send + Sync,
153         {
154                 // Create a waker to wake up poll_event_process, above
155                 let (event_waker, event_receiver) = mpsc::channel(1);
156                 tokio::spawn(Self::poll_event_process(Arc::clone(&peer_manager), event_receiver));
157
158                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
159                 let mut buf = [0; 8192];
160
161                 let mut our_descriptor = SocketDescriptor::new(us.clone());
162                 // An enum describing why we did/are disconnecting:
163                 enum Disconnect {
164                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
165                         // SocketDescriptor::disconnect_socket.
166                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
167                         // already knows we're disconnected.
168                         CloseConnection,
169                         // The connection was disconnected for some other reason, ie because the socket was
170                         // closed.
171                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
172                         // Rust-Lightning that the socket is gone.
173                         PeerDisconnected
174                 }
175                 let disconnect_type = loop {
176                         let read_paused = {
177                                 let us_lock = us.lock().unwrap();
178                                 if us_lock.rl_requested_disconnect {
179                                         break Disconnect::CloseConnection;
180                                 }
181                                 us_lock.read_paused
182                         };
183                         tokio::select! {
184                                 v = write_avail_receiver.recv() => {
185                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
186                                         if let Err(_) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
187                                                 break Disconnect::CloseConnection;
188                                         }
189                                 },
190                                 _ = read_wake_receiver.recv() => {},
191                                 read = reader.read(&mut buf), if !read_paused => match read {
192                                         Ok(0) => break Disconnect::PeerDisconnected,
193                                         Ok(len) => {
194                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
195                                                 let mut us_lock = us.lock().unwrap();
196                                                 match read_res {
197                                                         Ok(pause_read) => {
198                                                                 if pause_read {
199                                                                         us_lock.read_paused = true;
200                                                                 }
201                                                         },
202                                                         Err(_) => break Disconnect::CloseConnection,
203                                                 }
204                                         },
205                                         Err(_) => break Disconnect::PeerDisconnected,
206                                 },
207                         }
208                         let _ = event_waker.try_send(());
209
210                         // At this point we've processed a message or two, and reset the ping timer for this
211                         // peer, at least in the "are we still receiving messages" context, if we don't give up
212                         // our timeslice to another task we may just spin on this peer, starving other peers
213                         // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
214                         // here.
215                         tokio::task::yield_now().await;
216                 };
217                 let writer_option = us.lock().unwrap().writer.take();
218                 if let Some(mut writer) = writer_option {
219                         // If the socket is already closed, shutdown() will fail, so just ignore it.
220                         let _ = writer.shutdown().await;
221                 }
222                 if let Disconnect::PeerDisconnected = disconnect_type {
223                         peer_manager.socket_disconnected(&our_descriptor);
224                         peer_manager.process_events();
225                 }
226         }
227
228         fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
229                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
230                 // PeerManager, we will eventually get notified that there is room in the socket to write
231                 // new bytes, which will generate an event. That event will be popped off the queue before
232                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
233                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
234                 let (write_avail, write_receiver) = mpsc::channel(1);
235                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
236                 // we shove a value into the channel which comes after we've reset the read_paused bool to
237                 // false.
238                 let (read_waker, read_receiver) = mpsc::channel(1);
239                 stream.set_nonblocking(true).unwrap();
240                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
241
242                 (reader, write_receiver, read_receiver,
243                 Arc::new(Mutex::new(Self {
244                         writer: Some(writer), write_avail, read_waker, read_paused: false,
245                         rl_requested_disconnect: false,
246                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
247                 })))
248         }
249 }
250
251 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<NetAddress> {
252         match stream.peer_addr() {
253                 Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 {
254                         addr: sockaddr.ip().octets(),
255                         port: sockaddr.port(),
256                 }),
257                 Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 {
258                         addr: sockaddr.ip().octets(),
259                         port: sockaddr.port(),
260                 }),
261                 Err(_) => None,
262         }
263 }
264
265 /// Process incoming messages and feed outgoing messages on the provided socket generated by
266 /// accepting an incoming connection.
267 ///
268 /// The returned future will complete when the peer is disconnected and associated handling
269 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
270 /// not need to poll the provided future in order to make progress.
271 pub fn setup_inbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, CMH, RMH, L, UMH>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
272                 CMH: Deref + 'static + Send + Sync,
273                 RMH: Deref + 'static + Send + Sync,
274                 L: Deref + 'static + Send + Sync,
275                 UMH: Deref + 'static + Send + Sync,
276                 CMH::Target: ChannelMessageHandler + Send + Sync,
277                 RMH::Target: RoutingMessageHandler + Send + Sync,
278                 L::Target: Logger + Send + Sync,
279                 UMH::Target: CustomMessageHandler + Send + Sync,
280 {
281         let remote_addr = get_addr_from_stream(&stream);
282         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
283         #[cfg(debug_assertions)]
284         let last_us = Arc::clone(&us);
285
286         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr) {
287                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
288         } else {
289                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
290                 // requirements.
291                 None
292         };
293
294         async move {
295                 if let Some(handle) = handle_opt {
296                         if let Err(e) = handle.await {
297                                 assert!(e.is_cancelled());
298                         } else {
299                                 // This is certainly not guaranteed to always be true - the read loop may exit
300                                 // while there are still pending write wakers that need to be woken up after the
301                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
302                                 // keep too many wakers around, this makes sense. The race should be rare (we do
303                                 // some work after shutdown()) and an error would be a major memory leak.
304                                 #[cfg(debug_assertions)]
305                                 assert!(Arc::try_unwrap(last_us).is_ok());
306                         }
307                 }
308         }
309 }
310
311 /// Process incoming messages and feed outgoing messages on the provided socket generated by
312 /// making an outbound connection which is expected to be accepted by a peer with the given
313 /// public key. The relevant processing is set to run free (via tokio::spawn).
314 ///
315 /// The returned future will complete when the peer is disconnected and associated handling
316 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
317 /// not need to poll the provided future in order to make progress.
318 pub fn setup_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, CMH, RMH, L, UMH>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
319                 CMH: Deref + 'static + Send + Sync,
320                 RMH: Deref + 'static + Send + Sync,
321                 L: Deref + 'static + Send + Sync,
322                 UMH: Deref + 'static + Send + Sync,
323                 CMH::Target: ChannelMessageHandler + Send + Sync,
324                 RMH::Target: RoutingMessageHandler + Send + Sync,
325                 L::Target: Logger + Send + Sync,
326                 UMH::Target: CustomMessageHandler + Send + Sync,
327 {
328         let remote_addr = get_addr_from_stream(&stream);
329         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
330         #[cfg(debug_assertions)]
331         let last_us = Arc::clone(&us);
332         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
333                 Some(tokio::spawn(async move {
334                         // We should essentially always have enough room in a TCP socket buffer to send the
335                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
336                         // fail writes and wake us back up later to write. Thus, we handle a single
337                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
338                         // and use a relatively tight timeout.
339                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
340                                 loop {
341                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
342                                                 v if v == initial_send.len() => break Ok(()),
343                                                 0 => {
344                                                         write_receiver.recv().await;
345                                                         // In theory we could check for if we've been instructed to disconnect
346                                                         // the peer here, but its OK to just skip it - we'll check for it in
347                                                         // schedule_read prior to any relevant calls into RL.
348                                                 },
349                                                 _ => {
350                                                         eprintln!("Failed to write first full message to socket!");
351                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
352                                                         break Err(());
353                                                 }
354                                         }
355                                 }
356                         }).await {
357                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
358                         }
359                 }))
360         } else {
361                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
362                 // requirements.
363                 None
364         };
365
366         async move {
367                 if let Some(handle) = handle_opt {
368                         if let Err(e) = handle.await {
369                                 assert!(e.is_cancelled());
370                         } else {
371                                 // This is certainly not guaranteed to always be true - the read loop may exit
372                                 // while there are still pending write wakers that need to be woken up after the
373                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
374                                 // keep too many wakers around, this makes sense. The race should be rare (we do
375                                 // some work after shutdown()) and an error would be a major memory leak.
376                                 #[cfg(debug_assertions)]
377                                 assert!(Arc::try_unwrap(last_us).is_ok());
378                         }
379                 }
380         }
381 }
382
383 /// Process incoming messages and feed outgoing messages on a new connection made to the given
384 /// socket address which is expected to be accepted by a peer with the given public key (by
385 /// scheduling futures with tokio::spawn).
386 ///
387 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
388 ///
389 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
390 /// connection setup. That future then returns a future which will complete when the peer is
391 /// disconnected and associated handling futures are freed, though, because all processing in said
392 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
393 /// make progress.
394 pub async fn connect_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, CMH, RMH, L, UMH>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
395                 CMH: Deref + 'static + Send + Sync,
396                 RMH: Deref + 'static + Send + Sync,
397                 L: Deref + 'static + Send + Sync,
398                 UMH: Deref + 'static + Send + Sync,
399                 CMH::Target: ChannelMessageHandler + Send + Sync,
400                 RMH::Target: RoutingMessageHandler + Send + Sync,
401                 L::Target: Logger + Send + Sync,
402                 UMH::Target: CustomMessageHandler + Send + Sync,
403 {
404         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
405                 Some(setup_outbound(peer_manager, their_node_id, stream))
406         } else { None }
407 }
408
409 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
410         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
411
412 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
413         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
414 }
415 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
416 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
417 // sending thread may have already gone away due to a socket close, in which case there's nothing
418 // to wake up anyway.
419 fn wake_socket_waker(orig_ptr: *const ()) {
420         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
421         let _ = sender.try_send(());
422         drop_socket_waker(orig_ptr);
423 }
424 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
425         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
426         let sender = unsafe { (*sender_ptr).clone() };
427         let _ = sender.try_send(());
428 }
429 fn drop_socket_waker(orig_ptr: *const ()) {
430         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
431         // _orig_box is now dropped
432 }
433 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
434         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
435         let new_ptr = new_box as *const mpsc::Sender<()>;
436         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
437 }
438
439 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
440 /// type in the template of PeerHandler.
441 pub struct SocketDescriptor {
442         conn: Arc<Mutex<Connection>>,
443         id: u64,
444 }
445 impl SocketDescriptor {
446         fn new(conn: Arc<Mutex<Connection>>) -> Self {
447                 let id = conn.lock().unwrap().id;
448                 Self { conn, id }
449         }
450 }
451 impl peer_handler::SocketDescriptor for SocketDescriptor {
452         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
453                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
454                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
455                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
456                 // processing future which will call write_buffer_space_avail and we'll end up back here.
457                 let mut us = self.conn.lock().unwrap();
458                 if us.writer.is_none() {
459                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
460                         return 0;
461                 }
462
463                 if resume_read && us.read_paused {
464                         // The schedule_read future may go to lock up but end up getting woken up by there
465                         // being more room in the write buffer, dropping the other end of this Sender
466                         // before we get here, so we ignore any failures to wake it up.
467                         us.read_paused = false;
468                         let _ = us.read_waker.try_send(());
469                 }
470                 if data.is_empty() { return 0; }
471                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
472                 let mut ctx = task::Context::from_waker(&waker);
473                 let mut written_len = 0;
474                 loop {
475                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
476                                 task::Poll::Ready(Ok(res)) => {
477                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
478                                         // know how to handle it if it does (cause it should be a Poll::Pending
479                                         // instead):
480                                         assert_ne!(res, 0);
481                                         written_len += res;
482                                         if written_len == data.len() { return written_len; }
483                                 },
484                                 task::Poll::Ready(Err(e)) => {
485                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
486                                         // know how to handle it if it does (cause it should be a Poll::Pending
487                                         // instead):
488                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
489                                         // Probably we've already been closed, just return what we have and let the
490                                         // read thread handle closing logic.
491                                         return written_len;
492                                 },
493                                 task::Poll::Pending => {
494                                         // We're queued up for a write event now, but we need to make sure we also
495                                         // pause read given we're now waiting on the remote end to ACK (and in
496                                         // accordance with the send_data() docs).
497                                         us.read_paused = true;
498                                         // Further, to avoid any current pending read causing a `read_event` call, wake
499                                         // up the read_waker and restart its loop.
500                                         let _ = us.read_waker.try_send(());
501                                         return written_len;
502                                 },
503                         }
504                 }
505         }
506
507         fn disconnect_socket(&mut self) {
508                 let mut us = self.conn.lock().unwrap();
509                 us.rl_requested_disconnect = true;
510                 // Wake up the sending thread, assuming it is still alive
511                 let _ = us.write_avail.try_send(());
512         }
513 }
514 impl Clone for SocketDescriptor {
515         fn clone(&self) -> Self {
516                 Self {
517                         conn: Arc::clone(&self.conn),
518                         id: self.id,
519                 }
520         }
521 }
522 impl Eq for SocketDescriptor {}
523 impl PartialEq for SocketDescriptor {
524         fn eq(&self, o: &Self) -> bool {
525                 self.id == o.id
526         }
527 }
528 impl Hash for SocketDescriptor {
529         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
530                 self.id.hash(state);
531         }
532 }
533
534 #[cfg(test)]
535 mod tests {
536         use lightning::ln::features::*;
537         use lightning::ln::msgs::*;
538         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
539         use lightning::util::events::*;
540         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
541
542         use tokio::sync::mpsc;
543
544         use std::mem;
545         use std::sync::atomic::{AtomicBool, Ordering};
546         use std::sync::{Arc, Mutex};
547         use std::time::Duration;
548
549         pub struct TestLogger();
550         impl lightning::util::logger::Logger for TestLogger {
551                 fn log(&self, record: &lightning::util::logger::Record) {
552                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
553                 }
554         }
555
556         struct MsgHandler{
557                 expected_pubkey: PublicKey,
558                 pubkey_connected: mpsc::Sender<()>,
559                 pubkey_disconnected: mpsc::Sender<()>,
560                 disconnected_flag: AtomicBool,
561                 msg_events: Mutex<Vec<MessageSendEvent>>,
562         }
563         impl RoutingMessageHandler for MsgHandler {
564                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
565                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
566                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
567                 fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
568                 fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> { None }
569                 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
570                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
571                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
572                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
573                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
574         }
575         impl ChannelMessageHandler for MsgHandler {
576                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
577                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
578                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
579                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
580                 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
581                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
582                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
583                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
584                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
585                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
586                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
587                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
588                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
589                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
590                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
591                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
592                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
593                         if *their_node_id == self.expected_pubkey {
594                                 self.disconnected_flag.store(true, Ordering::SeqCst);
595                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
596                         }
597                 }
598                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
599                         if *their_node_id == self.expected_pubkey {
600                                 self.pubkey_connected.clone().try_send(()).unwrap();
601                         }
602                 }
603                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
604                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
605         }
606         impl MessageSendEventsProvider for MsgHandler {
607                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
608                         let mut ret = Vec::new();
609                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
610                         ret
611                 }
612         }
613
614         fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
615                 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
616                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
617                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
618                         (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
619                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
620                         (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
621                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
622                         (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
623                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
624                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
625                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
626                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
627                 } else { panic!("Failed to bind to v4 localhost on common ports"); }
628         }
629
630         async fn do_basic_connection_test() {
631                 let secp_ctx = Secp256k1::new();
632                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
633                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
634                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
635                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
636
637                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
638                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
639                 let a_handler = Arc::new(MsgHandler {
640                         expected_pubkey: b_pub,
641                         pubkey_connected: a_connected_sender,
642                         pubkey_disconnected: a_disconnected_sender,
643                         disconnected_flag: AtomicBool::new(false),
644                         msg_events: Mutex::new(Vec::new()),
645                 });
646                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
647                         chan_handler: Arc::clone(&a_handler),
648                         route_handler: Arc::clone(&a_handler),
649                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
650
651                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
652                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
653                 let b_handler = Arc::new(MsgHandler {
654                         expected_pubkey: a_pub,
655                         pubkey_connected: b_connected_sender,
656                         pubkey_disconnected: b_disconnected_sender,
657                         disconnected_flag: AtomicBool::new(false),
658                         msg_events: Mutex::new(Vec::new()),
659                 });
660                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
661                         chan_handler: Arc::clone(&b_handler),
662                         route_handler: Arc::clone(&b_handler),
663                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
664
665                 // We bind on localhost, hoping the environment is properly configured with a local
666                 // address. This may not always be the case in containers and the like, so if this test is
667                 // failing for you check that you have a loopback interface and it is configured with
668                 // 127.0.0.1.
669                 let (conn_a, conn_b) = make_tcp_connection();
670
671                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
672                 let fut_b = super::setup_inbound(b_manager, conn_b);
673
674                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
675                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
676
677                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
678                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
679                 });
680                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
681                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
682
683                 a_manager.process_events();
684                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
685                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
686                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
687                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
688
689                 fut_a.await;
690                 fut_b.await;
691         }
692
693         #[tokio::test(flavor = "multi_thread")]
694         async fn basic_threaded_connection_test() {
695                 do_basic_connection_test().await;
696         }
697
698         #[tokio::test]
699         async fn basic_unthreaded_connection_test() {
700                 do_basic_connection_test().await;
701         }
702
703         async fn race_disconnect_accept() {
704                 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
705                 // This attempts to find other similar races by opening connections and shutting them down
706                 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
707                 let secp_ctx = Secp256k1::new();
708                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
709                 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
710                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
711
712                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
713                         chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
714                         route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
715                 }, a_key, &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
716
717                 // Make two connections, one for an inbound and one for an outbound connection
718                 let conn_a = {
719                         let (conn_a, _) = make_tcp_connection();
720                         conn_a
721                 };
722                 let conn_b = {
723                         let (_, conn_b) = make_tcp_connection();
724                         conn_b
725                 };
726
727                 // Call connection setup inside new tokio tasks.
728                 let manager_reference = Arc::clone(&a_manager);
729                 tokio::spawn(async move {
730                         super::setup_inbound(manager_reference, conn_a).await
731                 });
732                 tokio::spawn(async move {
733                         super::setup_outbound(a_manager, b_pub, conn_b).await
734                 });
735         }
736
737         #[tokio::test(flavor = "multi_thread")]
738         async fn threaded_race_disconnect_accept() {
739                 race_disconnect_accept().await;
740         }
741
742         #[tokio::test]
743         async fn unthreaded_race_disconnect_accept() {
744                 race_disconnect_accept().await;
745         }
746 }