bf411211fdbb81b1e077c75eab92889e6bb5e54b
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
22 //!
23 //! # Example
24 //! ```
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::key::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
30 //!
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
36 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
37 //! type DataPersister = dyn lightning::chain::channelmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
38 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
39 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
40 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
41 //!
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //!     lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
45 //!     loop {
46 //!             let event_handler = |event: &Event| {
47 //!                     // Handle the event!
48 //!             };
49 //!             channel_manager.await_persistable_update();
50 //!             channel_manager.process_pending_events(&event_handler);
51 //!             chain_monitor.process_pending_events(&event_handler);
52 //!     }
53 //! }
54 //!
55 //! // Begin reading from a newly accepted socket and talk to the peer:
56 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
57 //!     lightning_net_tokio::setup_inbound(peer_manager, socket);
58 //!     loop {
59 //!             let event_handler = |event: &Event| {
60 //!                     // Handle the event!
61 //!             };
62 //!             channel_manager.await_persistable_update();
63 //!             channel_manager.process_pending_events(&event_handler);
64 //!             chain_monitor.process_pending_events(&event_handler);
65 //!     }
66 //! }
67 //! ```
68
69 #![deny(broken_intra_doc_links)]
70 #![deny(missing_docs)]
71
72 use bitcoin::secp256k1::key::PublicKey;
73
74 use tokio::net::TcpStream;
75 use tokio::{io, time};
76 use tokio::sync::mpsc;
77 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
78
79 use lightning::ln::peer_handler;
80 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
81 use lightning::ln::peer_handler::CustomMessageHandler;
82 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
83 use lightning::util::logger::Logger;
84
85 use std::task;
86 use std::net::SocketAddr;
87 use std::net::TcpStream as StdTcpStream;
88 use std::sync::{Arc, Mutex};
89 use std::sync::atomic::{AtomicU64, Ordering};
90 use std::time::Duration;
91 use std::hash::Hash;
92
93 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
94
95 /// Connection contains all our internal state for a connection - we hold a reference to the
96 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
97 /// read future (which is returned by schedule_read).
98 struct Connection {
99         writer: Option<io::WriteHalf<TcpStream>>,
100         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
101         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
102         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
103         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
104         // the schedule_read stack.
105         //
106         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
107         // runtime with functions templated by the Arc<PeerManager> type, calling
108         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
109         // more unsafe voodo than I really feel like writing.
110         write_avail: mpsc::Sender<()>,
111         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
112         // so by setting read_paused. At that point, the read task will stop reading bytes from the
113         // socket. To wake it up (without otherwise changing its state, we can push a value into this
114         // Sender.
115         read_waker: mpsc::Sender<()>,
116         read_paused: bool,
117         rl_requested_disconnect: bool,
118         id: u64,
119 }
120 impl Connection {
121         async fn schedule_read<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
122                         CMH: ChannelMessageHandler + 'static,
123                         RMH: RoutingMessageHandler + 'static,
124                         L: Logger + 'static + ?Sized,
125                         UMH: CustomMessageHandler + 'static {
126                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
127                 let mut buf = [0; 8192];
128
129                 let mut our_descriptor = SocketDescriptor::new(us.clone());
130                 // An enum describing why we did/are disconnecting:
131                 enum Disconnect {
132                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
133                         // SocketDescriptor::disconnect_socket.
134                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
135                         // already knows we're disconnected.
136                         CloseConnection,
137                         // The connection was disconnected for some other reason, ie because the socket was
138                         // closed.
139                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
140                         // Rust-Lightning that the socket is gone.
141                         PeerDisconnected
142                 }
143                 let disconnect_type = loop {
144                         let read_paused = {
145                                 let us_lock = us.lock().unwrap();
146                                 if us_lock.rl_requested_disconnect {
147                                         break Disconnect::CloseConnection;
148                                 }
149                                 us_lock.read_paused
150                         };
151                         tokio::select! {
152                                 v = write_avail_receiver.recv() => {
153                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
154                                         if let Err(_) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
155                                                 break Disconnect::CloseConnection;
156                                         }
157                                 },
158                                 _ = read_wake_receiver.recv() => {},
159                                 read = reader.read(&mut buf), if !read_paused => match read {
160                                         Ok(0) => break Disconnect::PeerDisconnected,
161                                         Ok(len) => {
162                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
163                                                 let mut us_lock = us.lock().unwrap();
164                                                 match read_res {
165                                                         Ok(pause_read) => {
166                                                                 if pause_read {
167                                                                         us_lock.read_paused = true;
168                                                                 }
169                                                         },
170                                                         Err(_) => break Disconnect::CloseConnection,
171                                                 }
172                                         },
173                                         Err(_) => break Disconnect::PeerDisconnected,
174                                 },
175                         }
176                         peer_manager.process_events();
177                 };
178                 let writer_option = us.lock().unwrap().writer.take();
179                 if let Some(mut writer) = writer_option {
180                         // If the socket is already closed, shutdown() will fail, so just ignore it.
181                         let _ = writer.shutdown().await;
182                 }
183                 if let Disconnect::PeerDisconnected = disconnect_type {
184                         peer_manager.socket_disconnected(&our_descriptor);
185                         peer_manager.process_events();
186                 }
187         }
188
189         fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
190                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
191                 // PeerManager, we will eventually get notified that there is room in the socket to write
192                 // new bytes, which will generate an event. That event will be popped off the queue before
193                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
194                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
195                 let (write_avail, write_receiver) = mpsc::channel(1);
196                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
197                 // we shove a value into the channel which comes after we've reset the read_paused bool to
198                 // false.
199                 let (read_waker, read_receiver) = mpsc::channel(1);
200                 stream.set_nonblocking(true).unwrap();
201                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
202
203                 (reader, write_receiver, read_receiver,
204                 Arc::new(Mutex::new(Self {
205                         writer: Some(writer), write_avail, read_waker, read_paused: false,
206                         rl_requested_disconnect: false,
207                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
208                 })))
209         }
210 }
211
212 /// Process incoming messages and feed outgoing messages on the provided socket generated by
213 /// accepting an incoming connection.
214 ///
215 /// The returned future will complete when the peer is disconnected and associated handling
216 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
217 /// not need to poll the provided future in order to make progress.
218 pub fn setup_inbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
219                 CMH: ChannelMessageHandler + 'static + Send + Sync,
220                 RMH: RoutingMessageHandler + 'static + Send + Sync,
221                 L: Logger + 'static + ?Sized + Send + Sync,
222                 UMH: CustomMessageHandler + 'static + Send + Sync {
223         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
224         #[cfg(debug_assertions)]
225         let last_us = Arc::clone(&us);
226
227         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
228                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
229         } else {
230                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
231                 // requirements.
232                 None
233         };
234
235         async move {
236                 if let Some(handle) = handle_opt {
237                         if let Err(e) = handle.await {
238                                 assert!(e.is_cancelled());
239                         } else {
240                                 // This is certainly not guaranteed to always be true - the read loop may exit
241                                 // while there are still pending write wakers that need to be woken up after the
242                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
243                                 // keep too many wakers around, this makes sense. The race should be rare (we do
244                                 // some work after shutdown()) and an error would be a major memory leak.
245                                 #[cfg(debug_assertions)]
246                                 assert!(Arc::try_unwrap(last_us).is_ok());
247                         }
248                 }
249         }
250 }
251
252 /// Process incoming messages and feed outgoing messages on the provided socket generated by
253 /// making an outbound connection which is expected to be accepted by a peer with the given
254 /// public key. The relevant processing is set to run free (via tokio::spawn).
255 ///
256 /// The returned future will complete when the peer is disconnected and associated handling
257 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
258 /// not need to poll the provided future in order to make progress.
259 pub fn setup_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
260                 CMH: ChannelMessageHandler + 'static + Send + Sync,
261                 RMH: RoutingMessageHandler + 'static + Send + Sync,
262                 L: Logger + 'static + ?Sized + Send + Sync,
263                 UMH: CustomMessageHandler + 'static + Send + Sync {
264         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
265         #[cfg(debug_assertions)]
266         let last_us = Arc::clone(&us);
267
268         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
269                 Some(tokio::spawn(async move {
270                         // We should essentially always have enough room in a TCP socket buffer to send the
271                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
272                         // fail writes and wake us back up later to write. Thus, we handle a single
273                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
274                         // and use a relatively tight timeout.
275                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
276                                 loop {
277                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
278                                                 v if v == initial_send.len() => break Ok(()),
279                                                 0 => {
280                                                         write_receiver.recv().await;
281                                                         // In theory we could check for if we've been instructed to disconnect
282                                                         // the peer here, but its OK to just skip it - we'll check for it in
283                                                         // schedule_read prior to any relevant calls into RL.
284                                                 },
285                                                 _ => {
286                                                         eprintln!("Failed to write first full message to socket!");
287                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
288                                                         break Err(());
289                                                 }
290                                         }
291                                 }
292                         }).await {
293                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
294                         }
295                 }))
296         } else {
297                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
298                 // requirements.
299                 None
300         };
301
302         async move {
303                 if let Some(handle) = handle_opt {
304                         if let Err(e) = handle.await {
305                                 assert!(e.is_cancelled());
306                         } else {
307                                 // This is certainly not guaranteed to always be true - the read loop may exit
308                                 // while there are still pending write wakers that need to be woken up after the
309                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
310                                 // keep too many wakers around, this makes sense. The race should be rare (we do
311                                 // some work after shutdown()) and an error would be a major memory leak.
312                                 #[cfg(debug_assertions)]
313                                 assert!(Arc::try_unwrap(last_us).is_ok());
314                         }
315                 }
316         }
317 }
318
319 /// Process incoming messages and feed outgoing messages on a new connection made to the given
320 /// socket address which is expected to be accepted by a peer with the given public key (by
321 /// scheduling futures with tokio::spawn).
322 ///
323 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
324 ///
325 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
326 /// connection setup. That future then returns a future which will complete when the peer is
327 /// disconnected and associated handling futures are freed, though, because all processing in said
328 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
329 /// make progress.
330 pub async fn connect_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
331                 CMH: ChannelMessageHandler + 'static + Send + Sync,
332                 RMH: RoutingMessageHandler + 'static + Send + Sync,
333                 L: Logger + 'static + ?Sized + Send + Sync,
334                 UMH: CustomMessageHandler + 'static + Send + Sync {
335         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
336                 Some(setup_outbound(peer_manager, their_node_id, stream))
337         } else { None }
338 }
339
340 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
341         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
342
343 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
344         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
345 }
346 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
347 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
348 // sending thread may have already gone away due to a socket close, in which case there's nothing
349 // to wake up anyway.
350 fn wake_socket_waker(orig_ptr: *const ()) {
351         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
352         let _ = sender.try_send(());
353         drop_socket_waker(orig_ptr);
354 }
355 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
356         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
357         let sender = unsafe { (*sender_ptr).clone() };
358         let _ = sender.try_send(());
359 }
360 fn drop_socket_waker(orig_ptr: *const ()) {
361         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
362         // _orig_box is now dropped
363 }
364 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
365         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
366         let new_ptr = new_box as *const mpsc::Sender<()>;
367         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
368 }
369
370 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
371 /// type in the template of PeerHandler.
372 pub struct SocketDescriptor {
373         conn: Arc<Mutex<Connection>>,
374         id: u64,
375 }
376 impl SocketDescriptor {
377         fn new(conn: Arc<Mutex<Connection>>) -> Self {
378                 let id = conn.lock().unwrap().id;
379                 Self { conn, id }
380         }
381 }
382 impl peer_handler::SocketDescriptor for SocketDescriptor {
383         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
384                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
385                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
386                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
387                 // processing future which will call write_buffer_space_avail and we'll end up back here.
388                 let mut us = self.conn.lock().unwrap();
389                 if us.writer.is_none() {
390                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
391                         return 0;
392                 }
393
394                 if resume_read && us.read_paused {
395                         // The schedule_read future may go to lock up but end up getting woken up by there
396                         // being more room in the write buffer, dropping the other end of this Sender
397                         // before we get here, so we ignore any failures to wake it up.
398                         us.read_paused = false;
399                         let _ = us.read_waker.try_send(());
400                 }
401                 if data.is_empty() { return 0; }
402                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
403                 let mut ctx = task::Context::from_waker(&waker);
404                 let mut written_len = 0;
405                 loop {
406                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
407                                 task::Poll::Ready(Ok(res)) => {
408                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
409                                         // know how to handle it if it does (cause it should be a Poll::Pending
410                                         // instead):
411                                         assert_ne!(res, 0);
412                                         written_len += res;
413                                         if written_len == data.len() { return written_len; }
414                                 },
415                                 task::Poll::Ready(Err(e)) => {
416                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
417                                         // know how to handle it if it does (cause it should be a Poll::Pending
418                                         // instead):
419                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
420                                         // Probably we've already been closed, just return what we have and let the
421                                         // read thread handle closing logic.
422                                         return written_len;
423                                 },
424                                 task::Poll::Pending => {
425                                         // We're queued up for a write event now, but we need to make sure we also
426                                         // pause read given we're now waiting on the remote end to ACK (and in
427                                         // accordance with the send_data() docs).
428                                         us.read_paused = true;
429                                         return written_len;
430                                 },
431                         }
432                 }
433         }
434
435         fn disconnect_socket(&mut self) {
436                 let mut us = self.conn.lock().unwrap();
437                 us.rl_requested_disconnect = true;
438                 // Wake up the sending thread, assuming it is still alive
439                 let _ = us.write_avail.try_send(());
440         }
441 }
442 impl Clone for SocketDescriptor {
443         fn clone(&self) -> Self {
444                 Self {
445                         conn: Arc::clone(&self.conn),
446                         id: self.id,
447                 }
448         }
449 }
450 impl Eq for SocketDescriptor {}
451 impl PartialEq for SocketDescriptor {
452         fn eq(&self, o: &Self) -> bool {
453                 self.id == o.id
454         }
455 }
456 impl Hash for SocketDescriptor {
457         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
458                 self.id.hash(state);
459         }
460 }
461
462 #[cfg(test)]
463 mod tests {
464         use lightning::ln::features::*;
465         use lightning::ln::msgs::*;
466         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
467         use lightning::util::events::*;
468         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
469
470         use tokio::sync::mpsc;
471
472         use std::mem;
473         use std::sync::atomic::{AtomicBool, Ordering};
474         use std::sync::{Arc, Mutex};
475         use std::time::Duration;
476
477         pub struct TestLogger();
478         impl lightning::util::logger::Logger for TestLogger {
479                 fn log(&self, record: &lightning::util::logger::Record) {
480                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
481                 }
482         }
483
484         struct MsgHandler{
485                 expected_pubkey: PublicKey,
486                 pubkey_connected: mpsc::Sender<()>,
487                 pubkey_disconnected: mpsc::Sender<()>,
488                 disconnected_flag: AtomicBool,
489                 msg_events: Mutex<Vec<MessageSendEvent>>,
490         }
491         impl RoutingMessageHandler for MsgHandler {
492                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
493                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
494                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
495                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
496                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
497                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
498                 fn sync_routing_table(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
499                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
500                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
501                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
502                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
503         }
504         impl ChannelMessageHandler for MsgHandler {
505                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
506                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
507                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
508                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
509                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
510                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
511                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
512                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
513                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
514                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
515                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
516                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
517                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
518                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
519                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
520                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
521                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
522                         if *their_node_id == self.expected_pubkey {
523                                 self.disconnected_flag.store(true, Ordering::SeqCst);
524                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
525                         }
526                 }
527                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
528                         if *their_node_id == self.expected_pubkey {
529                                 self.pubkey_connected.clone().try_send(()).unwrap();
530                         }
531                 }
532                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
533                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
534         }
535         impl MessageSendEventsProvider for MsgHandler {
536                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
537                         let mut ret = Vec::new();
538                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
539                         ret
540                 }
541         }
542
543         async fn do_basic_connection_test() {
544                 let secp_ctx = Secp256k1::new();
545                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
546                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
547                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
548                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
549
550                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
551                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
552                 let a_handler = Arc::new(MsgHandler {
553                         expected_pubkey: b_pub,
554                         pubkey_connected: a_connected_sender,
555                         pubkey_disconnected: a_disconnected_sender,
556                         disconnected_flag: AtomicBool::new(false),
557                         msg_events: Mutex::new(Vec::new()),
558                 });
559                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
560                         chan_handler: Arc::clone(&a_handler),
561                         route_handler: Arc::clone(&a_handler),
562                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
563
564                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
565                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
566                 let b_handler = Arc::new(MsgHandler {
567                         expected_pubkey: a_pub,
568                         pubkey_connected: b_connected_sender,
569                         pubkey_disconnected: b_disconnected_sender,
570                         disconnected_flag: AtomicBool::new(false),
571                         msg_events: Mutex::new(Vec::new()),
572                 });
573                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
574                         chan_handler: Arc::clone(&b_handler),
575                         route_handler: Arc::clone(&b_handler),
576                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
577
578                 // We bind on localhost, hoping the environment is properly configured with a local
579                 // address. This may not always be the case in containers and the like, so if this test is
580                 // failing for you check that you have a loopback interface and it is configured with
581                 // 127.0.0.1.
582                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
583                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
584                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
585                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
586                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
587                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
588                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
589
590                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
591                 let fut_b = super::setup_inbound(b_manager, conn_b);
592
593                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
594                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
595
596                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
597                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
598                 });
599                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
600                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
601
602                 a_manager.process_events();
603                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
604                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
605                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
606                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
607
608                 fut_a.await;
609                 fut_b.await;
610         }
611
612         #[tokio::test(flavor = "multi_thread")]
613         async fn basic_threaded_connection_test() {
614                 do_basic_connection_test().await;
615         }
616         #[tokio::test]
617         async fn basic_unthreaded_connection_test() {
618                 do_basic_connection_test().await;
619         }
620 }