1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type NodeSigner = dyn lightning::chain::keysinterface::NodeSigner + Send + Sync;
36 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
37 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
38 //! type DataPersister = dyn lightning::chain::chainmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
39 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
40 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
41 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
43 //! // Connect to node with pubkey their_node_id at addr:
44 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
45 //! lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
47 //! let event_handler = |event: Event| {
48 //! // Handle the event!
50 //! channel_manager.await_persistable_update();
51 //! channel_manager.process_pending_events(&event_handler);
52 //! chain_monitor.process_pending_events(&event_handler);
56 //! // Begin reading from a newly accepted socket and talk to the peer:
57 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
58 //! lightning_net_tokio::setup_inbound(peer_manager, socket);
60 //! let event_handler = |event: Event| {
61 //! // Handle the event!
63 //! channel_manager.await_persistable_update();
64 //! channel_manager.process_pending_events(&event_handler);
65 //! chain_monitor.process_pending_events(&event_handler);
70 // Prefix these with `rustdoc::` when we update our MSRV to be >= 1.52 to remove warnings.
71 #![deny(broken_intra_doc_links)]
72 #![deny(private_intra_doc_links)]
74 #![deny(missing_docs)]
75 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
77 use bitcoin::secp256k1::PublicKey;
79 use tokio::net::TcpStream;
80 use tokio::{io, time};
81 use tokio::sync::mpsc;
82 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
84 use lightning::chain::keysinterface::NodeSigner;
85 use lightning::ln::peer_handler;
86 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
87 use lightning::ln::peer_handler::CustomMessageHandler;
88 use lightning::ln::msgs::{ChannelMessageHandler, NetAddress, OnionMessageHandler, RoutingMessageHandler};
89 use lightning::util::logger::Logger;
93 use std::net::SocketAddr;
94 use std::net::TcpStream as StdTcpStream;
95 use std::sync::{Arc, Mutex};
96 use std::sync::atomic::{AtomicU64, Ordering};
97 use std::time::Duration;
100 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
102 /// Connection contains all our internal state for a connection - we hold a reference to the
103 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
104 /// read future (which is returned by schedule_read).
106 writer: Option<io::WriteHalf<TcpStream>>,
107 // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
108 // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
109 // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
110 // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
111 // the schedule_read stack.
113 // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
114 // runtime with functions templated by the Arc<PeerManager> type, calling
115 // write_buffer_space_avail directly from tokio's write wake, however doing so would require
116 // more unsafe voodo than I really feel like writing.
117 write_avail: mpsc::Sender<()>,
118 // When we are told by rust-lightning to pause read (because we have writes backing up), we do
119 // so by setting read_paused. At that point, the read task will stop reading bytes from the
120 // socket. To wake it up (without otherwise changing its state, we can push a value into this
122 read_waker: mpsc::Sender<()>,
124 rl_requested_disconnect: bool,
128 async fn poll_event_process<PM, CMH, RMH, OMH, L, UMH, NS>(
130 mut event_receiver: mpsc::Receiver<()>,
132 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync,
133 CMH: Deref + 'static + Send + Sync,
134 RMH: Deref + 'static + Send + Sync,
135 OMH: Deref + 'static + Send + Sync,
136 L: Deref + 'static + Send + Sync,
137 UMH: Deref + 'static + Send + Sync,
138 NS: Deref + 'static + Send + Sync,
139 CMH::Target: ChannelMessageHandler + Send + Sync,
140 RMH::Target: RoutingMessageHandler + Send + Sync,
141 OMH::Target: OnionMessageHandler + Send + Sync,
142 L::Target: Logger + Send + Sync,
143 UMH::Target: CustomMessageHandler + Send + Sync,
144 NS::Target: NodeSigner + Send + Sync,
147 if event_receiver.recv().await.is_none() {
150 peer_manager.process_events();
154 async fn schedule_read<PM, CMH, RMH, OMH, L, UMH, NS>(
156 us: Arc<Mutex<Self>>,
157 mut reader: io::ReadHalf<TcpStream>,
158 mut read_wake_receiver: mpsc::Receiver<()>,
159 mut write_avail_receiver: mpsc::Receiver<()>,
161 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
162 CMH: Deref + 'static + Send + Sync,
163 RMH: Deref + 'static + Send + Sync,
164 OMH: Deref + 'static + Send + Sync,
165 L: Deref + 'static + Send + Sync,
166 UMH: Deref + 'static + Send + Sync,
167 NS: Deref + 'static + Send + Sync,
168 CMH::Target: ChannelMessageHandler + 'static + Send + Sync,
169 RMH::Target: RoutingMessageHandler + 'static + Send + Sync,
170 OMH::Target: OnionMessageHandler + 'static + Send + Sync,
171 L::Target: Logger + 'static + Send + Sync,
172 UMH::Target: CustomMessageHandler + 'static + Send + Sync,
173 NS::Target: NodeSigner + 'static + Send + Sync,
175 // Create a waker to wake up poll_event_process, above
176 let (event_waker, event_receiver) = mpsc::channel(1);
177 tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver));
179 // 8KB is nice and big but also should never cause any issues with stack overflowing.
180 let mut buf = [0; 8192];
182 let mut our_descriptor = SocketDescriptor::new(us.clone());
183 // An enum describing why we did/are disconnecting:
185 // Rust-Lightning told us to disconnect, either by returning an Err or by calling
186 // SocketDescriptor::disconnect_socket.
187 // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
188 // already knows we're disconnected.
190 // The connection was disconnected for some other reason, ie because the socket was
192 // In this case, we do need to call peer_manager.socket_disconnected() to inform
193 // Rust-Lightning that the socket is gone.
196 let disconnect_type = loop {
198 let us_lock = us.lock().unwrap();
199 if us_lock.rl_requested_disconnect {
200 break Disconnect::CloseConnection;
205 v = write_avail_receiver.recv() => {
206 assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
207 if let Err(_) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
208 break Disconnect::CloseConnection;
211 _ = read_wake_receiver.recv() => {},
212 read = reader.read(&mut buf), if !read_paused => match read {
213 Ok(0) => break Disconnect::PeerDisconnected,
215 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
216 let mut us_lock = us.lock().unwrap();
220 us_lock.read_paused = true;
223 Err(_) => break Disconnect::CloseConnection,
226 Err(_) => break Disconnect::PeerDisconnected,
229 let _ = event_waker.try_send(());
231 // At this point we've processed a message or two, and reset the ping timer for this
232 // peer, at least in the "are we still receiving messages" context, if we don't give up
233 // our timeslice to another task we may just spin on this peer, starving other peers
234 // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
236 tokio::task::yield_now().await;
238 let writer_option = us.lock().unwrap().writer.take();
239 if let Some(mut writer) = writer_option {
240 // If the socket is already closed, shutdown() will fail, so just ignore it.
241 let _ = writer.shutdown().await;
243 if let Disconnect::PeerDisconnected = disconnect_type {
244 peer_manager.socket_disconnected(&our_descriptor);
245 peer_manager.process_events();
249 fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
250 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
251 // PeerManager, we will eventually get notified that there is room in the socket to write
252 // new bytes, which will generate an event. That event will be popped off the queue before
253 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
254 // the write_buffer_space_avail() call, send_data() returns a non-full write.
255 let (write_avail, write_receiver) = mpsc::channel(1);
256 // Similarly here - our only goal is to make sure the reader wakes up at some point after
257 // we shove a value into the channel which comes after we've reset the read_paused bool to
259 let (read_waker, read_receiver) = mpsc::channel(1);
260 stream.set_nonblocking(true).unwrap();
261 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
263 (reader, write_receiver, read_receiver,
264 Arc::new(Mutex::new(Self {
265 writer: Some(writer), write_avail, read_waker, read_paused: false,
266 rl_requested_disconnect: false,
267 id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
272 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<NetAddress> {
273 match stream.peer_addr() {
274 Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 {
275 addr: sockaddr.ip().octets(),
276 port: sockaddr.port(),
278 Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 {
279 addr: sockaddr.ip().octets(),
280 port: sockaddr.port(),
286 /// Process incoming messages and feed outgoing messages on the provided socket generated by
287 /// accepting an incoming connection.
289 /// The returned future will complete when the peer is disconnected and associated handling
290 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
291 /// not need to poll the provided future in order to make progress.
292 pub fn setup_inbound<PM, CMH, RMH, OMH, L, UMH, NS>(
294 stream: StdTcpStream,
295 ) -> impl std::future::Future<Output=()> where
296 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
297 CMH: Deref + 'static + Send + Sync,
298 RMH: Deref + 'static + Send + Sync,
299 OMH: Deref + 'static + Send + Sync,
300 L: Deref + 'static + Send + Sync,
301 UMH: Deref + 'static + Send + Sync,
302 NS: Deref + 'static + Send + Sync,
303 CMH::Target: ChannelMessageHandler + Send + Sync,
304 RMH::Target: RoutingMessageHandler + Send + Sync,
305 OMH::Target: OnionMessageHandler + Send + Sync,
306 L::Target: Logger + Send + Sync,
307 UMH::Target: CustomMessageHandler + Send + Sync,
308 NS::Target: NodeSigner + Send + Sync,
310 let remote_addr = get_addr_from_stream(&stream);
311 let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
313 let last_us = Arc::clone(&us);
315 let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr) {
316 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
318 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
324 if let Some(handle) = handle_opt {
325 if let Err(e) = handle.await {
326 assert!(e.is_cancelled());
328 // This is certainly not guaranteed to always be true - the read loop may exit
329 // while there are still pending write wakers that need to be woken up after the
330 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
331 // keep too many wakers around, this makes sense. The race should be rare (we do
332 // some work after shutdown()) and an error would be a major memory leak.
334 debug_assert!(Arc::try_unwrap(last_us).is_ok());
340 /// Process incoming messages and feed outgoing messages on the provided socket generated by
341 /// making an outbound connection which is expected to be accepted by a peer with the given
342 /// public key. The relevant processing is set to run free (via tokio::spawn).
344 /// The returned future will complete when the peer is disconnected and associated handling
345 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
346 /// not need to poll the provided future in order to make progress.
347 pub fn setup_outbound<PM, CMH, RMH, OMH, L, UMH, NS>(
349 their_node_id: PublicKey,
350 stream: StdTcpStream,
351 ) -> impl std::future::Future<Output=()> where
352 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
353 CMH: Deref + 'static + Send + Sync,
354 RMH: Deref + 'static + Send + Sync,
355 OMH: Deref + 'static + Send + Sync,
356 L: Deref + 'static + Send + Sync,
357 UMH: Deref + 'static + Send + Sync,
358 NS: Deref + 'static + Send + Sync,
359 CMH::Target: ChannelMessageHandler + Send + Sync,
360 RMH::Target: RoutingMessageHandler + Send + Sync,
361 OMH::Target: OnionMessageHandler + Send + Sync,
362 L::Target: Logger + Send + Sync,
363 UMH::Target: CustomMessageHandler + Send + Sync,
364 NS::Target: NodeSigner + Send + Sync,
366 let remote_addr = get_addr_from_stream(&stream);
367 let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
369 let last_us = Arc::clone(&us);
370 let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
371 Some(tokio::spawn(async move {
372 // We should essentially always have enough room in a TCP socket buffer to send the
373 // initial 10s of bytes. However, tokio running in single-threaded mode will always
374 // fail writes and wake us back up later to write. Thus, we handle a single
375 // std::task::Poll::Pending but still expect to write the full set of bytes at once
376 // and use a relatively tight timeout.
377 if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
379 match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
380 v if v == initial_send.len() => break Ok(()),
382 write_receiver.recv().await;
383 // In theory we could check for if we've been instructed to disconnect
384 // the peer here, but its OK to just skip it - we'll check for it in
385 // schedule_read prior to any relevant calls into RL.
388 eprintln!("Failed to write first full message to socket!");
389 peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
395 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
399 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
405 if let Some(handle) = handle_opt {
406 if let Err(e) = handle.await {
407 assert!(e.is_cancelled());
409 // This is certainly not guaranteed to always be true - the read loop may exit
410 // while there are still pending write wakers that need to be woken up after the
411 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
412 // keep too many wakers around, this makes sense. The race should be rare (we do
413 // some work after shutdown()) and an error would be a major memory leak.
415 debug_assert!(Arc::try_unwrap(last_us).is_ok());
421 /// Process incoming messages and feed outgoing messages on a new connection made to the given
422 /// socket address which is expected to be accepted by a peer with the given public key (by
423 /// scheduling futures with tokio::spawn).
425 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
427 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
428 /// connection setup. That future then returns a future which will complete when the peer is
429 /// disconnected and associated handling futures are freed, though, because all processing in said
430 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
432 pub async fn connect_outbound<PM, CMH, RMH, OMH, L, UMH, NS>(
434 their_node_id: PublicKey,
436 ) -> Option<impl std::future::Future<Output=()>> where
437 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
438 CMH: Deref + 'static + Send + Sync,
439 RMH: Deref + 'static + Send + Sync,
440 OMH: Deref + 'static + Send + Sync,
441 L: Deref + 'static + Send + Sync,
442 UMH: Deref + 'static + Send + Sync,
443 NS: Deref + 'static + Send + Sync,
444 CMH::Target: ChannelMessageHandler + Send + Sync,
445 RMH::Target: RoutingMessageHandler + Send + Sync,
446 OMH::Target: OnionMessageHandler + Send + Sync,
447 L::Target: Logger + Send + Sync,
448 UMH::Target: CustomMessageHandler + Send + Sync,
449 NS::Target: NodeSigner + Send + Sync,
451 if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
452 Some(setup_outbound(peer_manager, their_node_id, stream))
456 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
457 task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
459 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
460 write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
462 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
463 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
464 // sending thread may have already gone away due to a socket close, in which case there's nothing
465 // to wake up anyway.
466 fn wake_socket_waker(orig_ptr: *const ()) {
467 let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
468 let _ = sender.try_send(());
469 drop_socket_waker(orig_ptr);
471 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
472 let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
473 let sender = unsafe { (*sender_ptr).clone() };
474 let _ = sender.try_send(());
476 fn drop_socket_waker(orig_ptr: *const ()) {
477 let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
478 // _orig_box is now dropped
480 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
481 let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
482 let new_ptr = new_box as *const mpsc::Sender<()>;
483 task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
486 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
487 /// type in the template of PeerHandler.
488 pub struct SocketDescriptor {
489 conn: Arc<Mutex<Connection>>,
492 impl SocketDescriptor {
493 fn new(conn: Arc<Mutex<Connection>>) -> Self {
494 let id = conn.lock().unwrap().id;
498 impl peer_handler::SocketDescriptor for SocketDescriptor {
499 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
500 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
501 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
502 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
503 // processing future which will call write_buffer_space_avail and we'll end up back here.
504 let mut us = self.conn.lock().unwrap();
505 if us.writer.is_none() {
506 // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
510 if resume_read && us.read_paused {
511 // The schedule_read future may go to lock up but end up getting woken up by there
512 // being more room in the write buffer, dropping the other end of this Sender
513 // before we get here, so we ignore any failures to wake it up.
514 us.read_paused = false;
515 let _ = us.read_waker.try_send(());
517 if data.is_empty() { return 0; }
518 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
519 let mut ctx = task::Context::from_waker(&waker);
520 let mut written_len = 0;
522 match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
523 task::Poll::Ready(Ok(res)) => {
524 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
525 // know how to handle it if it does (cause it should be a Poll::Pending
529 if written_len == data.len() { return written_len; }
531 task::Poll::Ready(Err(e)) => {
532 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
533 // know how to handle it if it does (cause it should be a Poll::Pending
535 assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
536 // Probably we've already been closed, just return what we have and let the
537 // read thread handle closing logic.
540 task::Poll::Pending => {
541 // We're queued up for a write event now, but we need to make sure we also
542 // pause read given we're now waiting on the remote end to ACK (and in
543 // accordance with the send_data() docs).
544 us.read_paused = true;
545 // Further, to avoid any current pending read causing a `read_event` call, wake
546 // up the read_waker and restart its loop.
547 let _ = us.read_waker.try_send(());
554 fn disconnect_socket(&mut self) {
555 let mut us = self.conn.lock().unwrap();
556 us.rl_requested_disconnect = true;
557 // Wake up the sending thread, assuming it is still alive
558 let _ = us.write_avail.try_send(());
561 impl Clone for SocketDescriptor {
562 fn clone(&self) -> Self {
564 conn: Arc::clone(&self.conn),
569 impl Eq for SocketDescriptor {}
570 impl PartialEq for SocketDescriptor {
571 fn eq(&self, o: &Self) -> bool {
575 impl Hash for SocketDescriptor {
576 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
583 use lightning::ln::features::*;
584 use lightning::ln::msgs::*;
585 use lightning::ln::peer_handler::{MessageHandler, PeerManager};
586 use lightning::ln::features::NodeFeatures;
587 use lightning::util::events::*;
588 use lightning::util::test_utils::TestNodeSigner;
589 use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
591 use tokio::sync::mpsc;
594 use std::sync::atomic::{AtomicBool, Ordering};
595 use std::sync::{Arc, Mutex};
596 use std::time::Duration;
598 pub struct TestLogger();
599 impl lightning::util::logger::Logger for TestLogger {
600 fn log(&self, record: &lightning::util::logger::Record) {
601 println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
606 expected_pubkey: PublicKey,
607 pubkey_connected: mpsc::Sender<()>,
608 pubkey_disconnected: mpsc::Sender<()>,
609 disconnected_flag: AtomicBool,
610 msg_events: Mutex<Vec<MessageSendEvent>>,
612 impl RoutingMessageHandler for MsgHandler {
613 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
614 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
615 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
616 fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
617 fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> { None }
618 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init) -> Result<(), ()> { Ok(()) }
619 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
620 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
621 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
622 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
623 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
624 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
626 impl ChannelMessageHandler for MsgHandler {
627 fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {}
628 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {}
629 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
630 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
631 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
632 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
633 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
634 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
635 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
636 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
637 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
638 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
639 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
640 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
641 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
642 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
643 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
644 if *their_node_id == self.expected_pubkey {
645 self.disconnected_flag.store(true, Ordering::SeqCst);
646 self.pubkey_disconnected.clone().try_send(()).unwrap();
649 fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init) -> Result<(), ()> {
650 if *their_node_id == self.expected_pubkey {
651 self.pubkey_connected.clone().try_send(()).unwrap();
655 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
656 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
657 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
658 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
660 impl MessageSendEventsProvider for MsgHandler {
661 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
662 let mut ret = Vec::new();
663 mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
668 fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
669 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
670 (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
671 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
672 (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
673 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
674 (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
675 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
676 (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
677 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
678 (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
679 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
680 (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
681 } else { panic!("Failed to bind to v4 localhost on common ports"); }
684 async fn do_basic_connection_test() {
685 let secp_ctx = Secp256k1::new();
686 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
687 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
688 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
689 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
691 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
692 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
693 let a_handler = Arc::new(MsgHandler {
694 expected_pubkey: b_pub,
695 pubkey_connected: a_connected_sender,
696 pubkey_disconnected: a_disconnected_sender,
697 disconnected_flag: AtomicBool::new(false),
698 msg_events: Mutex::new(Vec::new()),
700 let a_manager = Arc::new(PeerManager::new(MessageHandler {
701 chan_handler: Arc::clone(&a_handler),
702 route_handler: Arc::clone(&a_handler),
703 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
704 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), Arc::new(TestNodeSigner::new(a_key))));
706 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
707 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
708 let b_handler = Arc::new(MsgHandler {
709 expected_pubkey: a_pub,
710 pubkey_connected: b_connected_sender,
711 pubkey_disconnected: b_disconnected_sender,
712 disconnected_flag: AtomicBool::new(false),
713 msg_events: Mutex::new(Vec::new()),
715 let b_manager = Arc::new(PeerManager::new(MessageHandler {
716 chan_handler: Arc::clone(&b_handler),
717 route_handler: Arc::clone(&b_handler),
718 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
719 }, 0, &[2; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), Arc::new(TestNodeSigner::new(b_key))));
721 // We bind on localhost, hoping the environment is properly configured with a local
722 // address. This may not always be the case in containers and the like, so if this test is
723 // failing for you check that you have a loopback interface and it is configured with
725 let (conn_a, conn_b) = make_tcp_connection();
727 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
728 let fut_b = super::setup_inbound(b_manager, conn_b);
730 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
731 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
733 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
734 node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
736 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
737 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
739 a_manager.process_events();
740 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
741 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
742 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
743 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
749 #[tokio::test(flavor = "multi_thread")]
750 async fn basic_threaded_connection_test() {
751 do_basic_connection_test().await;
755 async fn basic_unthreaded_connection_test() {
756 do_basic_connection_test().await;
759 async fn race_disconnect_accept() {
760 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
761 // This attempts to find other similar races by opening connections and shutting them down
762 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
763 let secp_ctx = Secp256k1::new();
764 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
765 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
766 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
768 let a_manager = Arc::new(PeerManager::new(MessageHandler {
769 chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
770 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
771 route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
772 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), Arc::new(TestNodeSigner::new(a_key))));
774 // Make two connections, one for an inbound and one for an outbound connection
776 let (conn_a, _) = make_tcp_connection();
780 let (_, conn_b) = make_tcp_connection();
784 // Call connection setup inside new tokio tasks.
785 let manager_reference = Arc::clone(&a_manager);
786 tokio::spawn(async move {
787 super::setup_inbound(manager_reference, conn_a).await
789 tokio::spawn(async move {
790 super::setup_outbound(a_manager, b_pub, conn_b).await
794 #[tokio::test(flavor = "multi_thread")]
795 async fn threaded_race_disconnect_accept() {
796 race_disconnect_accept().await;
800 async fn unthreaded_race_disconnect_accept() {
801 race_disconnect_accept().await;