1 //! A socket handling library for those running in Tokio environments who wish to use
2 //! rust-lightning with native TcpStreams.
4 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
5 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
6 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
8 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
9 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
11 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
12 //! their individual docs for more. All three take a
13 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
14 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
15 //! The call site should, thus, look something like this:
17 //! use tokio::sync::mpsc;
18 //! use tokio::net::TcpStream;
19 //! use bitcoin::secp256k1::key::PublicKey;
20 //! use lightning::util::events::EventsProvider;
21 //! use std::net::SocketAddr;
22 //! use std::sync::Arc;
24 //! // Define concrete types for our high-level objects:
25 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
26 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
27 //! type ChannelMonitor = lightning::ln::channelmonitor::SimpleManyChannelMonitor<lightning::chain::transaction::OutPoint, lightning::chain::keysinterface::InMemoryChannelKeys, Arc<TxBroadcaster>, Arc<FeeEstimator>>;
28 //! type ChannelManager = lightning::ln::channelmanager::SimpleArcChannelManager<ChannelMonitor, TxBroadcaster, FeeEstimator>;
29 //! type PeerManager = lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChannelMonitor, TxBroadcaster, FeeEstimator>;
31 //! // Connect to node with pubkey their_node_id at addr:
32 //! async fn connect_to_node(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
33 //! let (sender, mut receiver) = mpsc::channel(2);
34 //! lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
36 //! receiver.recv().await;
37 //! for _event in channel_manager.get_and_clear_pending_events().drain(..) {
38 //! // Handle the event!
40 //! for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
41 //! // Handle the event!
46 //! // Begin reading from a newly accepted socket and talk to the peer:
47 //! async fn accept_socket(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
48 //! let (sender, mut receiver) = mpsc::channel(2);
49 //! lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
51 //! receiver.recv().await;
52 //! for _event in channel_manager.get_and_clear_pending_events().drain(..) {
53 //! // Handle the event!
55 //! for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
56 //! // Handle the event!
62 use bitcoin::secp256k1::key::PublicKey;
64 use tokio::net::TcpStream;
65 use tokio::{io, time};
66 use tokio::sync::mpsc;
67 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
69 use lightning::ln::peer_handler;
70 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
71 use lightning::ln::msgs::ChannelMessageHandler;
73 use std::{task, thread};
74 use std::net::SocketAddr;
75 use std::sync::{Arc, Mutex, MutexGuard};
76 use std::sync::atomic::{AtomicU64, Ordering};
77 use std::time::Duration;
80 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
82 /// Connection contains all our internal state for a connection - we hold a reference to the
83 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
84 /// read future (which is returned by schedule_read).
86 writer: Option<io::WriteHalf<TcpStream>>,
87 event_notify: mpsc::Sender<()>,
88 // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
89 // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
90 // between being woken up with write-ready and calling PeerManager::write_buffer_spce_avail.
91 // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
92 // the schedule_read stack.
94 // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
95 // runtime with functions templated by the Arc<PeerManager> type, calling
96 // write_buffer_space_avail directly from tokio's write wake, however doing so would require
97 // more unsafe voodo than I really feel like writing.
98 write_avail: mpsc::Sender<()>,
99 // When we are told by rust-lightning to pause read (because we have writes backing up), we do
100 // so by setting read_paused. At that point, the read task will stop reading bytes from the
101 // socket. To wake it up (without otherwise changing its state, we can push a value into this
103 read_waker: mpsc::Sender<()>,
104 // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
105 // are sure we won't call any more read/write PeerManager functions with the same connection.
106 // This is set to true if we're in such a condition (with disconnect checked before with the
107 // top-level mutex held) and false when we can return.
108 block_disconnect_socket: bool,
110 rl_requested_disconnect: bool,
114 fn event_trigger(us: &mut MutexGuard<Self>) {
115 match us.event_notify.try_send(()) {
117 Err(mpsc::error::TrySendError::Full(_)) => {
118 // Ignore full errors as we just need the user to poll after this point, so if they
119 // haven't received the last send yet, it doesn't matter.
124 async fn schedule_read<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) {
125 let peer_manager_ref = peer_manager.clone();
126 // 8KB is nice and big but also should never cause any issues with stack overflowing.
127 let mut buf = [0; 8192];
129 let mut our_descriptor = SocketDescriptor::new(us.clone());
130 // An enum describing why we did/are disconnecting:
132 // Rust-Lightning told us to disconnect, either by returning an Err or by calling
133 // SocketDescriptor::disconnect_socket.
134 // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
135 // already knows we're disconnected.
137 // The connection was disconnected for some other reason, ie because the socket was
139 // In this case, we do need to call peer_manager.socket_disconnected() to inform
140 // Rust-Lightning that the socket is gone.
143 let disconnect_type = loop {
144 macro_rules! shutdown_socket {
145 ($err: expr, $need_disconnect: expr) => { {
146 println!("Disconnecting peer due to {}!", $err);
147 break $need_disconnect;
151 macro_rules! prepare_read_write_call {
153 let mut us_lock = us.lock().unwrap();
154 if us_lock.rl_requested_disconnect {
155 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
157 us_lock.block_disconnect_socket = true;
161 let read_paused = us.lock().unwrap().read_paused;
163 v = write_avail_receiver.recv() => {
164 assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
165 prepare_read_write_call!();
166 if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
167 shutdown_socket!(e, Disconnect::CloseConnection);
169 us.lock().unwrap().block_disconnect_socket = false;
171 _ = read_wake_receiver.recv() => {},
172 read = reader.read(&mut buf), if !read_paused => match read {
173 Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
175 prepare_read_write_call!();
176 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
177 let mut us_lock = us.lock().unwrap();
181 us_lock.read_paused = true;
183 Self::event_trigger(&mut us_lock);
185 Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
187 us_lock.block_disconnect_socket = false;
189 Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
193 let writer_option = us.lock().unwrap().writer.take();
194 if let Some(mut writer) = writer_option {
195 // If the socket is already closed, shutdown() will fail, so just ignore it.
196 let _ = writer.shutdown().await;
198 if let Disconnect::PeerDisconnected = disconnect_type {
199 peer_manager_ref.socket_disconnected(&our_descriptor);
200 Self::event_trigger(&mut us.lock().unwrap());
204 fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
205 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
206 // PeerManager, we will eventually get notified that there is room in the socket to write
207 // new bytes, which will generate an event. That event will be popped off the queue before
208 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
209 // the write_buffer_space_avail() call, send_data() returns a non-full write.
210 let (write_avail, write_receiver) = mpsc::channel(1);
211 // Similarly here - our only goal is to make sure the reader wakes up at some point after
212 // we shove a value into the channel which comes after we've reset the read_paused bool to
214 let (read_waker, read_receiver) = mpsc::channel(1);
215 let (reader, writer) = io::split(stream);
217 (reader, write_receiver, read_receiver,
218 Arc::new(Mutex::new(Self {
219 writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
220 block_disconnect_socket: false, rl_requested_disconnect: false,
221 id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
226 /// Process incoming messages and feed outgoing messages on the provided socket generated by
227 /// accepting an incoming connection.
229 /// The returned future will complete when the peer is disconnected and associated handling
230 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
231 /// not need to poll the provided future in order to make progress.
233 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
234 pub fn setup_inbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) -> impl std::future::Future<Output=()> {
235 let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
236 #[cfg(debug_assertions)]
237 let last_us = Arc::clone(&us);
239 let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
240 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
242 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
248 if let Some(handle) = handle_opt {
249 if let Err(e) = handle.await {
250 assert!(e.is_cancelled());
252 // This is certainly not guaranteed to always be true - the read loop may exit
253 // while there are still pending write wakers that need to be woken up after the
254 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
255 // keep too many wakers around, this makes sense. The race should be rare (we do
256 // some work after shutdown()) and an error would be a major memory leak.
257 #[cfg(debug_assertions)]
258 assert!(Arc::try_unwrap(last_us).is_ok());
264 /// Process incoming messages and feed outgoing messages on the provided socket generated by
265 /// making an outbound connection which is expected to be accepted by a peer with the given
266 /// public key. The relevant processing is set to run free (via tokio::spawn).
268 /// The returned future will complete when the peer is disconnected and associated handling
269 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
270 /// not need to poll the provided future in order to make progress.
272 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
273 pub fn setup_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) -> impl std::future::Future<Output=()> {
274 let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
275 #[cfg(debug_assertions)]
276 let last_us = Arc::clone(&us);
278 let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
279 Some(tokio::spawn(async move {
280 // We should essentially always have enough room in a TCP socket buffer to send the
281 // initial 10s of bytes. However, tokio running in single-threaded mode will always
282 // fail writes and wake us back up later to write. Thus, we handle a single
283 // std::task::Poll::Pending but still expect to write the full set of bytes at once
284 // and use a relatively tight timeout.
285 if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
287 match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
288 v if v == initial_send.len() => break Ok(()),
290 write_receiver.recv().await;
291 // In theory we could check for if we've been instructed to disconnect
292 // the peer here, but its OK to just skip it - we'll check for it in
293 // schedule_read prior to any relevant calls into RL.
296 eprintln!("Failed to write first full message to socket!");
297 peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
303 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
307 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
313 if let Some(handle) = handle_opt {
314 if let Err(e) = handle.await {
315 assert!(e.is_cancelled());
317 // This is certainly not guaranteed to always be true - the read loop may exit
318 // while there are still pending write wakers that need to be woken up after the
319 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
320 // keep too many wakers around, this makes sense. The race should be rare (we do
321 // some work after shutdown()) and an error would be a major memory leak.
322 #[cfg(debug_assertions)]
323 assert!(Arc::try_unwrap(last_us).is_ok());
329 /// Process incoming messages and feed outgoing messages on a new connection made to the given
330 /// socket address which is expected to be accepted by a peer with the given public key (by
331 /// scheduling futures with tokio::spawn).
333 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
335 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
336 /// connection setup. That future then returns a future which will complete when the peer is
337 /// disconnected and associated handling futures are freed, though, because all processing in said
338 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
341 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
342 pub async fn connect_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> {
343 if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), TcpStream::connect(&addr)).await {
344 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
348 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
349 task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
351 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
352 write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
354 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
355 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
356 // sending thread may have already gone away due to a socket close, in which case there's nothing
357 // to wake up anyway.
358 fn wake_socket_waker(orig_ptr: *const ()) {
359 let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
360 let _ = sender.try_send(());
361 drop_socket_waker(orig_ptr);
363 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
364 let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
365 let mut sender = unsafe { (*sender_ptr).clone() };
366 let _ = sender.try_send(());
368 fn drop_socket_waker(orig_ptr: *const ()) {
369 let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
370 // _orig_box is now dropped
372 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
373 let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
374 let new_ptr = new_box as *const mpsc::Sender<()>;
375 task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
378 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
379 /// type in the template of PeerHandler.
380 pub struct SocketDescriptor {
381 conn: Arc<Mutex<Connection>>,
384 impl SocketDescriptor {
385 fn new(conn: Arc<Mutex<Connection>>) -> Self {
386 let id = conn.lock().unwrap().id;
390 impl peer_handler::SocketDescriptor for SocketDescriptor {
391 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
392 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
393 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
394 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
395 // processing future which will call write_buffer_space_avail and we'll end up back here.
396 let mut us = self.conn.lock().unwrap();
397 if us.writer.is_none() {
398 // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
402 if resume_read && us.read_paused {
403 // The schedule_read future may go to lock up but end up getting woken up by there
404 // being more room in the write buffer, dropping the other end of this Sender
405 // before we get here, so we ignore any failures to wake it up.
406 us.read_paused = false;
407 let _ = us.read_waker.try_send(());
409 if data.is_empty() { return 0; }
410 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
411 let mut ctx = task::Context::from_waker(&waker);
412 let mut written_len = 0;
414 match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
415 task::Poll::Ready(Ok(res)) => {
416 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
417 // know how to handle it if it does (cause it should be a Poll::Pending
421 if written_len == data.len() { return written_len; }
423 task::Poll::Ready(Err(e)) => {
424 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
425 // know how to handle it if it does (cause it should be a Poll::Pending
427 assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
428 // Probably we've already been closed, just return what we have and let the
429 // read thread handle closing logic.
432 task::Poll::Pending => {
433 // We're queued up for a write event now, but we need to make sure we also
434 // pause read given we're now waiting on the remote end to ACK (and in
435 // accordance with the send_data() docs).
436 us.read_paused = true;
443 fn disconnect_socket(&mut self) {
445 let mut us = self.conn.lock().unwrap();
446 us.rl_requested_disconnect = true;
447 us.read_paused = true;
448 // Wake up the sending thread, assuming it is still alive
449 let _ = us.write_avail.try_send(());
450 // Happy-path return:
451 if !us.block_disconnect_socket { return; }
453 while self.conn.lock().unwrap().block_disconnect_socket {
458 impl Clone for SocketDescriptor {
459 fn clone(&self) -> Self {
461 conn: Arc::clone(&self.conn),
466 impl Eq for SocketDescriptor {}
467 impl PartialEq for SocketDescriptor {
468 fn eq(&self, o: &Self) -> bool {
472 impl Hash for SocketDescriptor {
473 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
480 use lightning::ln::features::*;
481 use lightning::ln::msgs::*;
482 use lightning::ln::peer_handler::{MessageHandler, PeerManager};
483 use lightning::util::events::*;
484 use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
486 use tokio::sync::mpsc;
489 use std::sync::{Arc, Mutex};
490 use std::time::Duration;
492 pub struct TestLogger();
493 impl lightning::util::logger::Logger for TestLogger {
494 fn log(&self, record: &lightning::util::logger::Record) {
495 println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
500 expected_pubkey: PublicKey,
501 pubkey_connected: mpsc::Sender<()>,
502 pubkey_disconnected: mpsc::Sender<()>,
503 msg_events: Mutex<Vec<MessageSendEvent>>,
505 impl RoutingMessageHandler for MsgHandler {
506 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
507 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
508 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
509 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
510 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
511 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
512 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { false }
514 impl ChannelMessageHandler for MsgHandler {
515 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
516 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
517 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
518 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
519 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
520 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
521 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
522 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
523 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
524 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
525 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
526 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
527 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
528 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
529 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
530 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
531 if *their_node_id == self.expected_pubkey {
532 self.pubkey_disconnected.clone().try_send(()).unwrap();
535 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
536 if *their_node_id == self.expected_pubkey {
537 self.pubkey_connected.clone().try_send(()).unwrap();
540 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
541 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
543 impl MessageSendEventsProvider for MsgHandler {
544 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
545 let mut ret = Vec::new();
546 mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
551 async fn do_basic_connection_test() {
552 let secp_ctx = Secp256k1::new();
553 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
554 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
555 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
556 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
558 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
559 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
560 let a_handler = Arc::new(MsgHandler {
561 expected_pubkey: b_pub,
562 pubkey_connected: a_connected_sender,
563 pubkey_disconnected: a_disconnected_sender,
564 msg_events: Mutex::new(Vec::new()),
566 let a_manager = Arc::new(PeerManager::new(MessageHandler {
567 chan_handler: Arc::clone(&a_handler),
568 route_handler: Arc::clone(&a_handler) as Arc<dyn RoutingMessageHandler>,
569 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
571 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
572 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
573 let b_handler = Arc::new(MsgHandler {
574 expected_pubkey: a_pub,
575 pubkey_connected: b_connected_sender,
576 pubkey_disconnected: b_disconnected_sender,
577 msg_events: Mutex::new(Vec::new()),
579 let b_manager = Arc::new(PeerManager::new(MessageHandler {
580 chan_handler: Arc::clone(&b_handler),
581 route_handler: Arc::clone(&b_handler) as Arc<dyn RoutingMessageHandler>,
582 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
584 // We bind on localhost, hoping the environment is properly configured with a local
585 // address. This may not always be the case in containers and the like, so if this test is
586 // failing for you check that you have a loopback interface and it is configured with
588 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
589 (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
590 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
591 (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
592 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
593 (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
594 } else { panic!("Failed to bind to v4 localhost on common ports"); };
596 let (sender, _receiver) = mpsc::channel(2);
597 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, tokio::net::TcpStream::from_std(conn_a).unwrap());
598 let fut_b = super::setup_inbound(b_manager, sender, tokio::net::TcpStream::from_std(conn_b).unwrap());
600 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
601 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
603 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
604 node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
606 assert!(a_disconnected.try_recv().is_err());
607 assert!(b_disconnected.try_recv().is_err());
609 a_manager.process_events();
610 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
611 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
617 #[tokio::test(threaded_scheduler)]
618 async fn basic_threaded_connection_test() {
619 do_basic_connection_test().await;
622 async fn basic_unthreaded_connection_test() {
623 do_basic_connection_test().await;