1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type NodeSigner = dyn lightning::chain::keysinterface::NodeSigner + Send + Sync;
36 //! type UtxoLookup = dyn lightning::routing::utxo::UtxoLookup + Send + Sync;
37 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
38 //! type DataPersister = dyn lightning::chain::chainmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
39 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
40 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
41 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, UtxoLookup, Logger>>;
43 //! // Connect to node with pubkey their_node_id at addr:
44 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
45 //! lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
47 //! let event_handler = |event: Event| {
48 //! // Handle the event!
50 //! channel_manager.await_persistable_update();
51 //! channel_manager.process_pending_events(&event_handler);
52 //! chain_monitor.process_pending_events(&event_handler);
56 //! // Begin reading from a newly accepted socket and talk to the peer:
57 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
58 //! lightning_net_tokio::setup_inbound(peer_manager, socket);
60 //! let event_handler = |event: Event| {
61 //! // Handle the event!
63 //! channel_manager.await_persistable_update();
64 //! channel_manager.process_pending_events(&event_handler);
65 //! chain_monitor.process_pending_events(&event_handler);
70 // Prefix these with `rustdoc::` when we update our MSRV to be >= 1.52 to remove warnings.
71 #![deny(broken_intra_doc_links)]
72 #![deny(private_intra_doc_links)]
74 #![deny(missing_docs)]
75 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
77 use bitcoin::secp256k1::PublicKey;
79 use tokio::net::TcpStream;
80 use tokio::{io, time};
81 use tokio::sync::mpsc;
82 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
84 use lightning::chain::keysinterface::NodeSigner;
85 use lightning::ln::peer_handler;
86 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
87 use lightning::ln::peer_handler::CustomMessageHandler;
88 use lightning::ln::msgs::{ChannelMessageHandler, NetAddress, OnionMessageHandler, RoutingMessageHandler};
89 use lightning::util::logger::Logger;
93 use std::net::SocketAddr;
94 use std::net::TcpStream as StdTcpStream;
95 use std::sync::{Arc, Mutex};
96 use std::sync::atomic::{AtomicU64, Ordering};
97 use std::time::Duration;
100 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
102 /// Connection contains all our internal state for a connection - we hold a reference to the
103 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
104 /// read future (which is returned by schedule_read).
106 writer: Option<io::WriteHalf<TcpStream>>,
107 // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
108 // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
109 // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
110 // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
111 // the schedule_read stack.
113 // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
114 // runtime with functions templated by the Arc<PeerManager> type, calling
115 // write_buffer_space_avail directly from tokio's write wake, however doing so would require
116 // more unsafe voodo than I really feel like writing.
117 write_avail: mpsc::Sender<()>,
118 // When we are told by rust-lightning to pause read (because we have writes backing up), we do
119 // so by setting read_paused. At that point, the read task will stop reading bytes from the
120 // socket. To wake it up (without otherwise changing its state, we can push a value into this
122 read_waker: mpsc::Sender<()>,
124 rl_requested_disconnect: bool,
128 async fn poll_event_process<PM, CMH, RMH, OMH, L, UMH, NS>(
130 mut event_receiver: mpsc::Receiver<()>,
132 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync,
133 CMH: Deref + 'static + Send + Sync,
134 RMH: Deref + 'static + Send + Sync,
135 OMH: Deref + 'static + Send + Sync,
136 L: Deref + 'static + Send + Sync,
137 UMH: Deref + 'static + Send + Sync,
138 NS: Deref + 'static + Send + Sync,
139 CMH::Target: ChannelMessageHandler + Send + Sync,
140 RMH::Target: RoutingMessageHandler + Send + Sync,
141 OMH::Target: OnionMessageHandler + Send + Sync,
142 L::Target: Logger + Send + Sync,
143 UMH::Target: CustomMessageHandler + Send + Sync,
144 NS::Target: NodeSigner + Send + Sync,
147 if event_receiver.recv().await.is_none() {
150 peer_manager.process_events();
154 async fn schedule_read<PM, CMH, RMH, OMH, L, UMH, NS>(
156 us: Arc<Mutex<Self>>,
157 mut reader: io::ReadHalf<TcpStream>,
158 mut read_wake_receiver: mpsc::Receiver<()>,
159 mut write_avail_receiver: mpsc::Receiver<()>,
161 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
162 CMH: Deref + 'static + Send + Sync,
163 RMH: Deref + 'static + Send + Sync,
164 OMH: Deref + 'static + Send + Sync,
165 L: Deref + 'static + Send + Sync,
166 UMH: Deref + 'static + Send + Sync,
167 NS: Deref + 'static + Send + Sync,
168 CMH::Target: ChannelMessageHandler + 'static + Send + Sync,
169 RMH::Target: RoutingMessageHandler + 'static + Send + Sync,
170 OMH::Target: OnionMessageHandler + 'static + Send + Sync,
171 L::Target: Logger + 'static + Send + Sync,
172 UMH::Target: CustomMessageHandler + 'static + Send + Sync,
173 NS::Target: NodeSigner + 'static + Send + Sync,
175 // Create a waker to wake up poll_event_process, above
176 let (event_waker, event_receiver) = mpsc::channel(1);
177 tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver));
179 // 4KiB is nice and big without handling too many messages all at once, giving other peers
180 // a chance to do some work.
181 let mut buf = [0; 4096];
183 let mut our_descriptor = SocketDescriptor::new(us.clone());
184 // An enum describing why we did/are disconnecting:
186 // Rust-Lightning told us to disconnect, either by returning an Err or by calling
187 // SocketDescriptor::disconnect_socket.
188 // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
189 // already knows we're disconnected.
191 // The connection was disconnected for some other reason, ie because the socket was
193 // In this case, we do need to call peer_manager.socket_disconnected() to inform
194 // Rust-Lightning that the socket is gone.
197 let disconnect_type = loop {
199 let us_lock = us.lock().unwrap();
200 if us_lock.rl_requested_disconnect {
201 break Disconnect::CloseConnection;
206 v = write_avail_receiver.recv() => {
207 assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
208 if let Err(_) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
209 break Disconnect::CloseConnection;
212 _ = read_wake_receiver.recv() => {},
213 read = reader.read(&mut buf), if !read_paused => match read {
214 Ok(0) => break Disconnect::PeerDisconnected,
216 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
217 let mut us_lock = us.lock().unwrap();
221 us_lock.read_paused = true;
224 Err(_) => break Disconnect::CloseConnection,
227 Err(_) => break Disconnect::PeerDisconnected,
230 let _ = event_waker.try_send(());
232 // At this point we've processed a message or two, and reset the ping timer for this
233 // peer, at least in the "are we still receiving messages" context, if we don't give up
234 // our timeslice to another task we may just spin on this peer, starving other peers
235 // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
237 tokio::task::yield_now().await;
239 let writer_option = us.lock().unwrap().writer.take();
240 if let Some(mut writer) = writer_option {
241 // If the socket is already closed, shutdown() will fail, so just ignore it.
242 let _ = writer.shutdown().await;
244 if let Disconnect::PeerDisconnected = disconnect_type {
245 peer_manager.socket_disconnected(&our_descriptor);
246 peer_manager.process_events();
250 fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
251 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
252 // PeerManager, we will eventually get notified that there is room in the socket to write
253 // new bytes, which will generate an event. That event will be popped off the queue before
254 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
255 // the write_buffer_space_avail() call, send_data() returns a non-full write.
256 let (write_avail, write_receiver) = mpsc::channel(1);
257 // Similarly here - our only goal is to make sure the reader wakes up at some point after
258 // we shove a value into the channel which comes after we've reset the read_paused bool to
260 let (read_waker, read_receiver) = mpsc::channel(1);
261 stream.set_nonblocking(true).unwrap();
262 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
264 (reader, write_receiver, read_receiver,
265 Arc::new(Mutex::new(Self {
266 writer: Some(writer), write_avail, read_waker, read_paused: false,
267 rl_requested_disconnect: false,
268 id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
273 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<NetAddress> {
274 match stream.peer_addr() {
275 Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 {
276 addr: sockaddr.ip().octets(),
277 port: sockaddr.port(),
279 Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 {
280 addr: sockaddr.ip().octets(),
281 port: sockaddr.port(),
287 /// Process incoming messages and feed outgoing messages on the provided socket generated by
288 /// accepting an incoming connection.
290 /// The returned future will complete when the peer is disconnected and associated handling
291 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
292 /// not need to poll the provided future in order to make progress.
293 pub fn setup_inbound<PM, CMH, RMH, OMH, L, UMH, NS>(
295 stream: StdTcpStream,
296 ) -> impl std::future::Future<Output=()> where
297 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
298 CMH: Deref + 'static + Send + Sync,
299 RMH: Deref + 'static + Send + Sync,
300 OMH: Deref + 'static + Send + Sync,
301 L: Deref + 'static + Send + Sync,
302 UMH: Deref + 'static + Send + Sync,
303 NS: Deref + 'static + Send + Sync,
304 CMH::Target: ChannelMessageHandler + Send + Sync,
305 RMH::Target: RoutingMessageHandler + Send + Sync,
306 OMH::Target: OnionMessageHandler + Send + Sync,
307 L::Target: Logger + Send + Sync,
308 UMH::Target: CustomMessageHandler + Send + Sync,
309 NS::Target: NodeSigner + Send + Sync,
311 let remote_addr = get_addr_from_stream(&stream);
312 let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
314 let last_us = Arc::clone(&us);
316 let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr) {
317 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
319 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
325 if let Some(handle) = handle_opt {
326 if let Err(e) = handle.await {
327 assert!(e.is_cancelled());
329 // This is certainly not guaranteed to always be true - the read loop may exit
330 // while there are still pending write wakers that need to be woken up after the
331 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
332 // keep too many wakers around, this makes sense. The race should be rare (we do
333 // some work after shutdown()) and an error would be a major memory leak.
335 debug_assert!(Arc::try_unwrap(last_us).is_ok());
341 /// Process incoming messages and feed outgoing messages on the provided socket generated by
342 /// making an outbound connection which is expected to be accepted by a peer with the given
343 /// public key. The relevant processing is set to run free (via tokio::spawn).
345 /// The returned future will complete when the peer is disconnected and associated handling
346 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
347 /// not need to poll the provided future in order to make progress.
348 pub fn setup_outbound<PM, CMH, RMH, OMH, L, UMH, NS>(
350 their_node_id: PublicKey,
351 stream: StdTcpStream,
352 ) -> impl std::future::Future<Output=()> where
353 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
354 CMH: Deref + 'static + Send + Sync,
355 RMH: Deref + 'static + Send + Sync,
356 OMH: Deref + 'static + Send + Sync,
357 L: Deref + 'static + Send + Sync,
358 UMH: Deref + 'static + Send + Sync,
359 NS: Deref + 'static + Send + Sync,
360 CMH::Target: ChannelMessageHandler + Send + Sync,
361 RMH::Target: RoutingMessageHandler + Send + Sync,
362 OMH::Target: OnionMessageHandler + Send + Sync,
363 L::Target: Logger + Send + Sync,
364 UMH::Target: CustomMessageHandler + Send + Sync,
365 NS::Target: NodeSigner + Send + Sync,
367 let remote_addr = get_addr_from_stream(&stream);
368 let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
370 let last_us = Arc::clone(&us);
371 let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
372 Some(tokio::spawn(async move {
373 // We should essentially always have enough room in a TCP socket buffer to send the
374 // initial 10s of bytes. However, tokio running in single-threaded mode will always
375 // fail writes and wake us back up later to write. Thus, we handle a single
376 // std::task::Poll::Pending but still expect to write the full set of bytes at once
377 // and use a relatively tight timeout.
378 if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
380 match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
381 v if v == initial_send.len() => break Ok(()),
383 write_receiver.recv().await;
384 // In theory we could check for if we've been instructed to disconnect
385 // the peer here, but its OK to just skip it - we'll check for it in
386 // schedule_read prior to any relevant calls into RL.
389 eprintln!("Failed to write first full message to socket!");
390 peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
396 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
400 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
406 if let Some(handle) = handle_opt {
407 if let Err(e) = handle.await {
408 assert!(e.is_cancelled());
410 // This is certainly not guaranteed to always be true - the read loop may exit
411 // while there are still pending write wakers that need to be woken up after the
412 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
413 // keep too many wakers around, this makes sense. The race should be rare (we do
414 // some work after shutdown()) and an error would be a major memory leak.
416 debug_assert!(Arc::try_unwrap(last_us).is_ok());
422 /// Process incoming messages and feed outgoing messages on a new connection made to the given
423 /// socket address which is expected to be accepted by a peer with the given public key (by
424 /// scheduling futures with tokio::spawn).
426 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
428 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
429 /// connection setup. That future then returns a future which will complete when the peer is
430 /// disconnected and associated handling futures are freed, though, because all processing in said
431 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
433 pub async fn connect_outbound<PM, CMH, RMH, OMH, L, UMH, NS>(
435 their_node_id: PublicKey,
437 ) -> Option<impl std::future::Future<Output=()>> where
438 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
439 CMH: Deref + 'static + Send + Sync,
440 RMH: Deref + 'static + Send + Sync,
441 OMH: Deref + 'static + Send + Sync,
442 L: Deref + 'static + Send + Sync,
443 UMH: Deref + 'static + Send + Sync,
444 NS: Deref + 'static + Send + Sync,
445 CMH::Target: ChannelMessageHandler + Send + Sync,
446 RMH::Target: RoutingMessageHandler + Send + Sync,
447 OMH::Target: OnionMessageHandler + Send + Sync,
448 L::Target: Logger + Send + Sync,
449 UMH::Target: CustomMessageHandler + Send + Sync,
450 NS::Target: NodeSigner + Send + Sync,
452 if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
453 Some(setup_outbound(peer_manager, their_node_id, stream))
457 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
458 task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
460 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
461 write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
463 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
464 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
465 // sending thread may have already gone away due to a socket close, in which case there's nothing
466 // to wake up anyway.
467 fn wake_socket_waker(orig_ptr: *const ()) {
468 let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
469 let _ = sender.try_send(());
470 drop_socket_waker(orig_ptr);
472 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
473 let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
474 let sender = unsafe { (*sender_ptr).clone() };
475 let _ = sender.try_send(());
477 fn drop_socket_waker(orig_ptr: *const ()) {
478 let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
479 // _orig_box is now dropped
481 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
482 let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
483 let new_ptr = new_box as *const mpsc::Sender<()>;
484 task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
487 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
488 /// type in the template of PeerHandler.
489 pub struct SocketDescriptor {
490 conn: Arc<Mutex<Connection>>,
493 impl SocketDescriptor {
494 fn new(conn: Arc<Mutex<Connection>>) -> Self {
495 let id = conn.lock().unwrap().id;
499 impl peer_handler::SocketDescriptor for SocketDescriptor {
500 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
501 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
502 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
503 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
504 // processing future which will call write_buffer_space_avail and we'll end up back here.
505 let mut us = self.conn.lock().unwrap();
506 if us.writer.is_none() {
507 // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
511 if resume_read && us.read_paused {
512 // The schedule_read future may go to lock up but end up getting woken up by there
513 // being more room in the write buffer, dropping the other end of this Sender
514 // before we get here, so we ignore any failures to wake it up.
515 us.read_paused = false;
516 let _ = us.read_waker.try_send(());
518 if data.is_empty() { return 0; }
519 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
520 let mut ctx = task::Context::from_waker(&waker);
521 let mut written_len = 0;
523 match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
524 task::Poll::Ready(Ok(res)) => {
525 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
526 // know how to handle it if it does (cause it should be a Poll::Pending
530 if written_len == data.len() { return written_len; }
532 task::Poll::Ready(Err(e)) => {
533 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
534 // know how to handle it if it does (cause it should be a Poll::Pending
536 assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
537 // Probably we've already been closed, just return what we have and let the
538 // read thread handle closing logic.
541 task::Poll::Pending => {
542 // We're queued up for a write event now, but we need to make sure we also
543 // pause read given we're now waiting on the remote end to ACK (and in
544 // accordance with the send_data() docs).
545 us.read_paused = true;
546 // Further, to avoid any current pending read causing a `read_event` call, wake
547 // up the read_waker and restart its loop.
548 let _ = us.read_waker.try_send(());
555 fn disconnect_socket(&mut self) {
556 let mut us = self.conn.lock().unwrap();
557 us.rl_requested_disconnect = true;
558 // Wake up the sending thread, assuming it is still alive
559 let _ = us.write_avail.try_send(());
562 impl Clone for SocketDescriptor {
563 fn clone(&self) -> Self {
565 conn: Arc::clone(&self.conn),
570 impl Eq for SocketDescriptor {}
571 impl PartialEq for SocketDescriptor {
572 fn eq(&self, o: &Self) -> bool {
576 impl Hash for SocketDescriptor {
577 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
584 use lightning::ln::features::*;
585 use lightning::ln::msgs::*;
586 use lightning::ln::peer_handler::{MessageHandler, PeerManager};
587 use lightning::ln::features::NodeFeatures;
588 use lightning::routing::gossip::NodeId;
589 use lightning::util::events::*;
590 use lightning::util::test_utils::TestNodeSigner;
591 use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
593 use tokio::sync::mpsc;
596 use std::sync::atomic::{AtomicBool, Ordering};
597 use std::sync::{Arc, Mutex};
598 use std::time::Duration;
600 pub struct TestLogger();
601 impl lightning::util::logger::Logger for TestLogger {
602 fn log(&self, record: &lightning::util::logger::Record) {
603 println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
608 expected_pubkey: PublicKey,
609 pubkey_connected: mpsc::Sender<()>,
610 pubkey_disconnected: mpsc::Sender<()>,
611 disconnected_flag: AtomicBool,
612 msg_events: Mutex<Vec<MessageSendEvent>>,
614 impl RoutingMessageHandler for MsgHandler {
615 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
616 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
617 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
618 fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
619 fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> { None }
620 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
621 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
622 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
623 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
624 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
625 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
626 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
627 fn processing_queue_high(&self) -> bool { false }
629 impl ChannelMessageHandler for MsgHandler {
630 fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {}
631 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {}
632 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
633 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
634 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
635 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
636 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
637 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
638 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
639 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
640 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
641 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
642 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
643 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
644 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
645 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
646 fn peer_disconnected(&self, their_node_id: &PublicKey) {
647 if *their_node_id == self.expected_pubkey {
648 self.disconnected_flag.store(true, Ordering::SeqCst);
649 self.pubkey_disconnected.clone().try_send(()).unwrap();
652 fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> {
653 if *their_node_id == self.expected_pubkey {
654 self.pubkey_connected.clone().try_send(()).unwrap();
658 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
659 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
660 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
661 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
663 impl MessageSendEventsProvider for MsgHandler {
664 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
665 let mut ret = Vec::new();
666 mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
671 fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
672 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
673 (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
674 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
675 (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
676 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
677 (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
678 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
679 (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
680 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
681 (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
682 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
683 (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
684 } else { panic!("Failed to bind to v4 localhost on common ports"); }
687 async fn do_basic_connection_test() {
688 let secp_ctx = Secp256k1::new();
689 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
690 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
691 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
692 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
694 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
695 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
696 let a_handler = Arc::new(MsgHandler {
697 expected_pubkey: b_pub,
698 pubkey_connected: a_connected_sender,
699 pubkey_disconnected: a_disconnected_sender,
700 disconnected_flag: AtomicBool::new(false),
701 msg_events: Mutex::new(Vec::new()),
703 let a_manager = Arc::new(PeerManager::new(MessageHandler {
704 chan_handler: Arc::clone(&a_handler),
705 route_handler: Arc::clone(&a_handler),
706 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
707 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), Arc::new(TestNodeSigner::new(a_key))));
709 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
710 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
711 let b_handler = Arc::new(MsgHandler {
712 expected_pubkey: a_pub,
713 pubkey_connected: b_connected_sender,
714 pubkey_disconnected: b_disconnected_sender,
715 disconnected_flag: AtomicBool::new(false),
716 msg_events: Mutex::new(Vec::new()),
718 let b_manager = Arc::new(PeerManager::new(MessageHandler {
719 chan_handler: Arc::clone(&b_handler),
720 route_handler: Arc::clone(&b_handler),
721 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
722 }, 0, &[2; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), Arc::new(TestNodeSigner::new(b_key))));
724 // We bind on localhost, hoping the environment is properly configured with a local
725 // address. This may not always be the case in containers and the like, so if this test is
726 // failing for you check that you have a loopback interface and it is configured with
728 let (conn_a, conn_b) = make_tcp_connection();
730 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
731 let fut_b = super::setup_inbound(b_manager, conn_b);
733 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
734 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
736 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
737 node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
739 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
740 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
742 a_manager.process_events();
743 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
744 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
745 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
746 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
752 #[tokio::test(flavor = "multi_thread")]
753 async fn basic_threaded_connection_test() {
754 do_basic_connection_test().await;
758 async fn basic_unthreaded_connection_test() {
759 do_basic_connection_test().await;
762 async fn race_disconnect_accept() {
763 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
764 // This attempts to find other similar races by opening connections and shutting them down
765 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
766 let secp_ctx = Secp256k1::new();
767 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
768 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
769 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
771 let a_manager = Arc::new(PeerManager::new(MessageHandler {
772 chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
773 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
774 route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
775 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), Arc::new(TestNodeSigner::new(a_key))));
777 // Make two connections, one for an inbound and one for an outbound connection
779 let (conn_a, _) = make_tcp_connection();
783 let (_, conn_b) = make_tcp_connection();
787 // Call connection setup inside new tokio tasks.
788 let manager_reference = Arc::clone(&a_manager);
789 tokio::spawn(async move {
790 super::setup_inbound(manager_reference, conn_a).await
792 tokio::spawn(async move {
793 super::setup_outbound(a_manager, b_pub, conn_b).await
797 #[tokio::test(flavor = "multi_thread")]
798 async fn threaded_race_disconnect_accept() {
799 race_disconnect_accept().await;
803 async fn unthreaded_race_disconnect_accept() {
804 race_disconnect_accept().await;