Merge pull request #2204 from jkczyz/2023-04-custom-feature-bits
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native [`TcpStream`]s.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! [`TcpStream`] and a reference to a [`PeerManager`] and the rest is handled".
15 //!
16 //! The [`PeerManager`], due to the fire-and-forget nature of this logic, must be a reference,
17 //! (e.g. an [`Arc`]) and must use the [`SocketDescriptor`] provided here as the [`PeerManager`]'s
18 //! `SocketDescriptor` implementation.
19 //!
20 //! Three methods are exposed to register a new connection for handling in [`tokio::spawn`] calls;
21 //! see their individual docs for details.
22 //!
23 //! [`PeerManager`]: lightning::ln::peer_handler::PeerManager
24
25 // Prefix these with `rustdoc::` when we update our MSRV to be >= 1.52 to remove warnings.
26 #![deny(broken_intra_doc_links)]
27 #![deny(private_intra_doc_links)]
28
29 #![deny(missing_docs)]
30 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
31
32 use bitcoin::secp256k1::PublicKey;
33
34 use tokio::net::TcpStream;
35 use tokio::{io, time};
36 use tokio::sync::mpsc;
37 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
38
39 use lightning::ln::peer_handler;
40 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
41 use lightning::ln::peer_handler::APeerManager;
42 use lightning::ln::msgs::NetAddress;
43
44 use std::ops::Deref;
45 use std::task;
46 use std::net::SocketAddr;
47 use std::net::TcpStream as StdTcpStream;
48 use std::sync::{Arc, Mutex};
49 use std::sync::atomic::{AtomicU64, Ordering};
50 use std::time::Duration;
51 use std::hash::Hash;
52
53 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
54
55 /// Connection contains all our internal state for a connection - we hold a reference to the
56 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
57 /// read future (which is returned by schedule_read).
58 struct Connection {
59         writer: Option<io::WriteHalf<TcpStream>>,
60         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
61         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
62         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
63         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
64         // the schedule_read stack.
65         //
66         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
67         // runtime with functions templated by the Arc<PeerManager> type, calling
68         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
69         // more unsafe voodo than I really feel like writing.
70         write_avail: mpsc::Sender<()>,
71         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
72         // so by setting read_paused. At that point, the read task will stop reading bytes from the
73         // socket. To wake it up (without otherwise changing its state, we can push a value into this
74         // Sender.
75         read_waker: mpsc::Sender<()>,
76         read_paused: bool,
77         rl_requested_disconnect: bool,
78         id: u64,
79 }
80 impl Connection {
81         async fn poll_event_process<PM: Deref + 'static + Send + Sync>(
82                 peer_manager: PM,
83                 mut event_receiver: mpsc::Receiver<()>,
84         ) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
85                 loop {
86                         if event_receiver.recv().await.is_none() {
87                                 return;
88                         }
89                         peer_manager.as_ref().process_events();
90                 }
91         }
92
93         async fn schedule_read<PM: Deref + 'static + Send + Sync + Clone>(
94                 peer_manager: PM,
95                 us: Arc<Mutex<Self>>,
96                 mut reader: io::ReadHalf<TcpStream>,
97                 mut read_wake_receiver: mpsc::Receiver<()>,
98                 mut write_avail_receiver: mpsc::Receiver<()>,
99         ) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
100                 // Create a waker to wake up poll_event_process, above
101                 let (event_waker, event_receiver) = mpsc::channel(1);
102                 tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver));
103
104                 // 4KiB is nice and big without handling too many messages all at once, giving other peers
105                 // a chance to do some work.
106                 let mut buf = [0; 4096];
107
108                 let mut our_descriptor = SocketDescriptor::new(us.clone());
109                 // An enum describing why we did/are disconnecting:
110                 enum Disconnect {
111                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
112                         // SocketDescriptor::disconnect_socket.
113                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
114                         // already knows we're disconnected.
115                         CloseConnection,
116                         // The connection was disconnected for some other reason, ie because the socket was
117                         // closed.
118                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
119                         // Rust-Lightning that the socket is gone.
120                         PeerDisconnected
121                 }
122                 let disconnect_type = loop {
123                         let read_paused = {
124                                 let us_lock = us.lock().unwrap();
125                                 if us_lock.rl_requested_disconnect {
126                                         break Disconnect::CloseConnection;
127                                 }
128                                 us_lock.read_paused
129                         };
130                         tokio::select! {
131                                 v = write_avail_receiver.recv() => {
132                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
133                                         if peer_manager.as_ref().write_buffer_space_avail(&mut our_descriptor).is_err() {
134                                                 break Disconnect::CloseConnection;
135                                         }
136                                 },
137                                 _ = read_wake_receiver.recv() => {},
138                                 read = reader.read(&mut buf), if !read_paused => match read {
139                                         Ok(0) => break Disconnect::PeerDisconnected,
140                                         Ok(len) => {
141                                                 let read_res = peer_manager.as_ref().read_event(&mut our_descriptor, &buf[0..len]);
142                                                 let mut us_lock = us.lock().unwrap();
143                                                 match read_res {
144                                                         Ok(pause_read) => {
145                                                                 if pause_read {
146                                                                         us_lock.read_paused = true;
147                                                                 }
148                                                         },
149                                                         Err(_) => break Disconnect::CloseConnection,
150                                                 }
151                                         },
152                                         Err(_) => break Disconnect::PeerDisconnected,
153                                 },
154                         }
155                         let _ = event_waker.try_send(());
156
157                         // At this point we've processed a message or two, and reset the ping timer for this
158                         // peer, at least in the "are we still receiving messages" context, if we don't give up
159                         // our timeslice to another task we may just spin on this peer, starving other peers
160                         // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
161                         // here.
162                         let _ = tokio::task::yield_now().await;
163                 };
164                 let writer_option = us.lock().unwrap().writer.take();
165                 if let Some(mut writer) = writer_option {
166                         // If the socket is already closed, shutdown() will fail, so just ignore it.
167                         let _ = writer.shutdown().await;
168                 }
169                 if let Disconnect::PeerDisconnected = disconnect_type {
170                         peer_manager.as_ref().socket_disconnected(&our_descriptor);
171                         peer_manager.as_ref().process_events();
172                 }
173         }
174
175         fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
176                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
177                 // PeerManager, we will eventually get notified that there is room in the socket to write
178                 // new bytes, which will generate an event. That event will be popped off the queue before
179                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
180                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
181                 let (write_avail, write_receiver) = mpsc::channel(1);
182                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
183                 // we shove a value into the channel which comes after we've reset the read_paused bool to
184                 // false.
185                 let (read_waker, read_receiver) = mpsc::channel(1);
186                 stream.set_nonblocking(true).unwrap();
187                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
188
189                 (reader, write_receiver, read_receiver,
190                 Arc::new(Mutex::new(Self {
191                         writer: Some(writer), write_avail, read_waker, read_paused: false,
192                         rl_requested_disconnect: false,
193                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
194                 })))
195         }
196 }
197
198 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<NetAddress> {
199         match stream.peer_addr() {
200                 Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 {
201                         addr: sockaddr.ip().octets(),
202                         port: sockaddr.port(),
203                 }),
204                 Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 {
205                         addr: sockaddr.ip().octets(),
206                         port: sockaddr.port(),
207                 }),
208                 Err(_) => None,
209         }
210 }
211
212 /// Process incoming messages and feed outgoing messages on the provided socket generated by
213 /// accepting an incoming connection.
214 ///
215 /// The returned future will complete when the peer is disconnected and associated handling
216 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
217 /// not need to poll the provided future in order to make progress.
218 pub fn setup_inbound<PM: Deref + 'static + Send + Sync + Clone>(
219         peer_manager: PM,
220         stream: StdTcpStream,
221 ) -> impl std::future::Future<Output=()>
222 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
223         let remote_addr = get_addr_from_stream(&stream);
224         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
225         #[cfg(test)]
226         let last_us = Arc::clone(&us);
227
228         let handle_opt = if peer_manager.as_ref().new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr).is_ok() {
229                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
230         } else {
231                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
232                 // requirements.
233                 None
234         };
235
236         async move {
237                 if let Some(handle) = handle_opt {
238                         if let Err(e) = handle.await {
239                                 assert!(e.is_cancelled());
240                         } else {
241                                 // This is certainly not guaranteed to always be true - the read loop may exit
242                                 // while there are still pending write wakers that need to be woken up after the
243                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
244                                 // keep too many wakers around, this makes sense. The race should be rare (we do
245                                 // some work after shutdown()) and an error would be a major memory leak.
246                                 #[cfg(test)]
247                                 debug_assert!(Arc::try_unwrap(last_us).is_ok());
248                         }
249                 }
250         }
251 }
252
253 /// Process incoming messages and feed outgoing messages on the provided socket generated by
254 /// making an outbound connection which is expected to be accepted by a peer with the given
255 /// public key. The relevant processing is set to run free (via tokio::spawn).
256 ///
257 /// The returned future will complete when the peer is disconnected and associated handling
258 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
259 /// not need to poll the provided future in order to make progress.
260 pub fn setup_outbound<PM: Deref + 'static + Send + Sync + Clone>(
261         peer_manager: PM,
262         their_node_id: PublicKey,
263         stream: StdTcpStream,
264 ) -> impl std::future::Future<Output=()>
265 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
266         let remote_addr = get_addr_from_stream(&stream);
267         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
268         #[cfg(test)]
269         let last_us = Arc::clone(&us);
270         let handle_opt = if let Ok(initial_send) = peer_manager.as_ref().new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
271                 Some(tokio::spawn(async move {
272                         // We should essentially always have enough room in a TCP socket buffer to send the
273                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
274                         // fail writes and wake us back up later to write. Thus, we handle a single
275                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
276                         // and use a relatively tight timeout.
277                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
278                                 loop {
279                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
280                                                 v if v == initial_send.len() => break Ok(()),
281                                                 0 => {
282                                                         write_receiver.recv().await;
283                                                         // In theory we could check for if we've been instructed to disconnect
284                                                         // the peer here, but its OK to just skip it - we'll check for it in
285                                                         // schedule_read prior to any relevant calls into RL.
286                                                 },
287                                                 _ => {
288                                                         eprintln!("Failed to write first full message to socket!");
289                                                         peer_manager.as_ref().socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
290                                                         break Err(());
291                                                 }
292                                         }
293                                 }
294                         }).await {
295                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
296                         }
297                 }))
298         } else {
299                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
300                 // requirements.
301                 None
302         };
303
304         async move {
305                 if let Some(handle) = handle_opt {
306                         if let Err(e) = handle.await {
307                                 assert!(e.is_cancelled());
308                         } else {
309                                 // This is certainly not guaranteed to always be true - the read loop may exit
310                                 // while there are still pending write wakers that need to be woken up after the
311                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
312                                 // keep too many wakers around, this makes sense. The race should be rare (we do
313                                 // some work after shutdown()) and an error would be a major memory leak.
314                                 #[cfg(test)]
315                                 debug_assert!(Arc::try_unwrap(last_us).is_ok());
316                         }
317                 }
318         }
319 }
320
321 /// Process incoming messages and feed outgoing messages on a new connection made to the given
322 /// socket address which is expected to be accepted by a peer with the given public key (by
323 /// scheduling futures with tokio::spawn).
324 ///
325 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
326 ///
327 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
328 /// connection setup. That future then returns a future which will complete when the peer is
329 /// disconnected and associated handling futures are freed, though, because all processing in said
330 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
331 /// make progress.
332 pub async fn connect_outbound<PM: Deref + 'static + Send + Sync + Clone>(
333         peer_manager: PM,
334         their_node_id: PublicKey,
335         addr: SocketAddr,
336 ) -> Option<impl std::future::Future<Output=()>>
337 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
338         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
339                 Some(setup_outbound(peer_manager, their_node_id, stream))
340         } else { None }
341 }
342
343 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
344         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
345
346 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
347         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
348 }
349 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
350 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
351 // sending thread may have already gone away due to a socket close, in which case there's nothing
352 // to wake up anyway.
353 fn wake_socket_waker(orig_ptr: *const ()) {
354         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
355         let _ = sender.try_send(());
356         drop_socket_waker(orig_ptr);
357 }
358 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
359         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
360         let sender = unsafe { (*sender_ptr).clone() };
361         let _ = sender.try_send(());
362 }
363 fn drop_socket_waker(orig_ptr: *const ()) {
364         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
365         // _orig_box is now dropped
366 }
367 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
368         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
369         let new_ptr = new_box as *const mpsc::Sender<()>;
370         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
371 }
372
373 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
374 /// type in the template of PeerHandler.
375 pub struct SocketDescriptor {
376         conn: Arc<Mutex<Connection>>,
377         id: u64,
378 }
379 impl SocketDescriptor {
380         fn new(conn: Arc<Mutex<Connection>>) -> Self {
381                 let id = conn.lock().unwrap().id;
382                 Self { conn, id }
383         }
384 }
385 impl peer_handler::SocketDescriptor for SocketDescriptor {
386         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
387                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
388                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
389                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
390                 // processing future which will call write_buffer_space_avail and we'll end up back here.
391                 let mut us = self.conn.lock().unwrap();
392                 if us.writer.is_none() {
393                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
394                         return 0;
395                 }
396
397                 if resume_read && us.read_paused {
398                         // The schedule_read future may go to lock up but end up getting woken up by there
399                         // being more room in the write buffer, dropping the other end of this Sender
400                         // before we get here, so we ignore any failures to wake it up.
401                         us.read_paused = false;
402                         let _ = us.read_waker.try_send(());
403                 }
404                 if data.is_empty() { return 0; }
405                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
406                 let mut ctx = task::Context::from_waker(&waker);
407                 let mut written_len = 0;
408                 loop {
409                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
410                                 task::Poll::Ready(Ok(res)) => {
411                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
412                                         // know how to handle it if it does (cause it should be a Poll::Pending
413                                         // instead):
414                                         assert_ne!(res, 0);
415                                         written_len += res;
416                                         if written_len == data.len() { return written_len; }
417                                 },
418                                 task::Poll::Ready(Err(e)) => {
419                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
420                                         // know how to handle it if it does (cause it should be a Poll::Pending
421                                         // instead):
422                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
423                                         // Probably we've already been closed, just return what we have and let the
424                                         // read thread handle closing logic.
425                                         return written_len;
426                                 },
427                                 task::Poll::Pending => {
428                                         // We're queued up for a write event now, but we need to make sure we also
429                                         // pause read given we're now waiting on the remote end to ACK (and in
430                                         // accordance with the send_data() docs).
431                                         us.read_paused = true;
432                                         // Further, to avoid any current pending read causing a `read_event` call, wake
433                                         // up the read_waker and restart its loop.
434                                         let _ = us.read_waker.try_send(());
435                                         return written_len;
436                                 },
437                         }
438                 }
439         }
440
441         fn disconnect_socket(&mut self) {
442                 let mut us = self.conn.lock().unwrap();
443                 us.rl_requested_disconnect = true;
444                 // Wake up the sending thread, assuming it is still alive
445                 let _ = us.write_avail.try_send(());
446         }
447 }
448 impl Clone for SocketDescriptor {
449         fn clone(&self) -> Self {
450                 Self {
451                         conn: Arc::clone(&self.conn),
452                         id: self.id,
453                 }
454         }
455 }
456 impl Eq for SocketDescriptor {}
457 impl PartialEq for SocketDescriptor {
458         fn eq(&self, o: &Self) -> bool {
459                 self.id == o.id
460         }
461 }
462 impl Hash for SocketDescriptor {
463         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
464                 self.id.hash(state);
465         }
466 }
467
468 #[cfg(test)]
469 mod tests {
470         use lightning::ln::features::*;
471         use lightning::ln::msgs::*;
472         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
473         use lightning::ln::features::NodeFeatures;
474         use lightning::routing::gossip::NodeId;
475         use lightning::events::*;
476         use lightning::util::test_utils::TestNodeSigner;
477         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
478
479         use tokio::sync::mpsc;
480
481         use std::mem;
482         use std::sync::atomic::{AtomicBool, Ordering};
483         use std::sync::{Arc, Mutex};
484         use std::time::Duration;
485
486         pub struct TestLogger();
487         impl lightning::util::logger::Logger for TestLogger {
488                 fn log(&self, record: &lightning::util::logger::Record) {
489                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
490                 }
491         }
492
493         struct MsgHandler{
494                 expected_pubkey: PublicKey,
495                 pubkey_connected: mpsc::Sender<()>,
496                 pubkey_disconnected: mpsc::Sender<()>,
497                 disconnected_flag: AtomicBool,
498                 msg_events: Mutex<Vec<MessageSendEvent>>,
499         }
500         impl RoutingMessageHandler for MsgHandler {
501                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
502                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
503                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
504                 fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
505                 fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> { None }
506                 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
507                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
508                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
509                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
510                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
511                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
512                 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
513                 fn processing_queue_high(&self) -> bool { false }
514         }
515         impl ChannelMessageHandler for MsgHandler {
516                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {}
517                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {}
518                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
519                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
520                 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
521                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
522                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
523                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
524                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
525                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
526                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
527                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
528                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
529                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
530                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
531                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
532                 fn handle_open_channel_v2(&self, _their_node_id: &PublicKey, _msg: &OpenChannelV2) {}
533                 fn handle_accept_channel_v2(&self, _their_node_id: &PublicKey, _msg: &AcceptChannelV2) {}
534                 fn handle_tx_add_input(&self, _their_node_id: &PublicKey, _msg: &TxAddInput) {}
535                 fn handle_tx_add_output(&self, _their_node_id: &PublicKey, _msg: &TxAddOutput) {}
536                 fn handle_tx_remove_input(&self, _their_node_id: &PublicKey, _msg: &TxRemoveInput) {}
537                 fn handle_tx_remove_output(&self, _their_node_id: &PublicKey, _msg: &TxRemoveOutput) {}
538                 fn handle_tx_complete(&self, _their_node_id: &PublicKey, _msg: &TxComplete) {}
539                 fn handle_tx_signatures(&self, _their_node_id: &PublicKey, _msg: &TxSignatures) {}
540                 fn handle_tx_init_rbf(&self, _their_node_id: &PublicKey, _msg: &TxInitRbf) {}
541                 fn handle_tx_ack_rbf(&self, _their_node_id: &PublicKey, _msg: &TxAckRbf) {}
542                 fn handle_tx_abort(&self, _their_node_id: &PublicKey, _msg: &TxAbort) {}
543                 fn peer_disconnected(&self, their_node_id: &PublicKey) {
544                         if *their_node_id == self.expected_pubkey {
545                                 self.disconnected_flag.store(true, Ordering::SeqCst);
546                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
547                         }
548                 }
549                 fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> {
550                         if *their_node_id == self.expected_pubkey {
551                                 self.pubkey_connected.clone().try_send(()).unwrap();
552                         }
553                         Ok(())
554                 }
555                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
556                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
557                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
558                 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
559         }
560         impl MessageSendEventsProvider for MsgHandler {
561                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
562                         let mut ret = Vec::new();
563                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
564                         ret
565                 }
566         }
567
568         fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
569                 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
570                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
571                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
572                         (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
573                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
574                         (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
575                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
576                         (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
577                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
578                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
579                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
580                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
581                 } else { panic!("Failed to bind to v4 localhost on common ports"); }
582         }
583
584         async fn do_basic_connection_test() {
585                 let secp_ctx = Secp256k1::new();
586                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
587                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
588                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
589                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
590
591                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
592                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
593                 let a_handler = Arc::new(MsgHandler {
594                         expected_pubkey: b_pub,
595                         pubkey_connected: a_connected_sender,
596                         pubkey_disconnected: a_disconnected_sender,
597                         disconnected_flag: AtomicBool::new(false),
598                         msg_events: Mutex::new(Vec::new()),
599                 });
600                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
601                         chan_handler: Arc::clone(&a_handler),
602                         route_handler: Arc::clone(&a_handler),
603                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
604                         custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
605                 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
606
607                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
608                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
609                 let b_handler = Arc::new(MsgHandler {
610                         expected_pubkey: a_pub,
611                         pubkey_connected: b_connected_sender,
612                         pubkey_disconnected: b_disconnected_sender,
613                         disconnected_flag: AtomicBool::new(false),
614                         msg_events: Mutex::new(Vec::new()),
615                 });
616                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
617                         chan_handler: Arc::clone(&b_handler),
618                         route_handler: Arc::clone(&b_handler),
619                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
620                         custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
621                 }, 0, &[2; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(b_key))));
622
623                 // We bind on localhost, hoping the environment is properly configured with a local
624                 // address. This may not always be the case in containers and the like, so if this test is
625                 // failing for you check that you have a loopback interface and it is configured with
626                 // 127.0.0.1.
627                 let (conn_a, conn_b) = make_tcp_connection();
628
629                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
630                 let fut_b = super::setup_inbound(b_manager, conn_b);
631
632                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
633                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
634
635                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
636                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
637                 });
638                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
639                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
640
641                 a_manager.process_events();
642                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
643                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
644                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
645                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
646
647                 fut_a.await;
648                 fut_b.await;
649         }
650
651         #[tokio::test(flavor = "multi_thread")]
652         async fn basic_threaded_connection_test() {
653                 do_basic_connection_test().await;
654         }
655
656         #[tokio::test]
657         async fn basic_unthreaded_connection_test() {
658                 do_basic_connection_test().await;
659         }
660
661         async fn race_disconnect_accept() {
662                 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
663                 // This attempts to find other similar races by opening connections and shutting them down
664                 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
665                 let secp_ctx = Secp256k1::new();
666                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
667                 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
668                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
669
670                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
671                         chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
672                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
673                         route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
674                         custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
675                 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
676
677                 // Make two connections, one for an inbound and one for an outbound connection
678                 let conn_a = {
679                         let (conn_a, _) = make_tcp_connection();
680                         conn_a
681                 };
682                 let conn_b = {
683                         let (_, conn_b) = make_tcp_connection();
684                         conn_b
685                 };
686
687                 // Call connection setup inside new tokio tasks.
688                 let manager_reference = Arc::clone(&a_manager);
689                 tokio::spawn(async move {
690                         super::setup_inbound(manager_reference, conn_a).await
691                 });
692                 tokio::spawn(async move {
693                         super::setup_outbound(a_manager, b_pub, conn_b).await
694                 });
695         }
696
697         #[tokio::test(flavor = "multi_thread")]
698         async fn threaded_race_disconnect_accept() {
699                 race_disconnect_accept().await;
700         }
701
702         #[tokio::test]
703         async fn unthreaded_race_disconnect_accept() {
704                 race_disconnect_accept().await;
705         }
706 }