Merge pull request #1956 from TheBlueMatt/2023-01-ser-cleanups
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
22 //!
23 //! # Example
24 //! ```
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
30 //!
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
36 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
37 //! type DataPersister = dyn lightning::chain::chainmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
38 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
39 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
40 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
41 //!
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //!     lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
45 //!     loop {
46 //!             let event_handler = |event: Event| {
47 //!                     // Handle the event!
48 //!             };
49 //!             channel_manager.await_persistable_update();
50 //!             channel_manager.process_pending_events(&event_handler);
51 //!             chain_monitor.process_pending_events(&event_handler);
52 //!     }
53 //! }
54 //!
55 //! // Begin reading from a newly accepted socket and talk to the peer:
56 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
57 //!     lightning_net_tokio::setup_inbound(peer_manager, socket);
58 //!     loop {
59 //!             let event_handler = |event: Event| {
60 //!                     // Handle the event!
61 //!             };
62 //!             channel_manager.await_persistable_update();
63 //!             channel_manager.process_pending_events(&event_handler);
64 //!             chain_monitor.process_pending_events(&event_handler);
65 //!     }
66 //! }
67 //! ```
68
69 // Prefix these with `rustdoc::` when we update our MSRV to be >= 1.52 to remove warnings.
70 #![deny(broken_intra_doc_links)]
71 #![deny(private_intra_doc_links)]
72
73 #![deny(missing_docs)]
74 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
75
76 use bitcoin::secp256k1::PublicKey;
77
78 use tokio::net::TcpStream;
79 use tokio::{io, time};
80 use tokio::sync::mpsc;
81 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
82
83 use lightning::ln::peer_handler;
84 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
85 use lightning::ln::peer_handler::CustomMessageHandler;
86 use lightning::ln::msgs::{ChannelMessageHandler, NetAddress, OnionMessageHandler, RoutingMessageHandler};
87 use lightning::util::logger::Logger;
88
89 use std::ops::Deref;
90 use std::task;
91 use std::net::SocketAddr;
92 use std::net::TcpStream as StdTcpStream;
93 use std::sync::{Arc, Mutex};
94 use std::sync::atomic::{AtomicU64, Ordering};
95 use std::time::Duration;
96 use std::hash::Hash;
97
98 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
99
100 /// Connection contains all our internal state for a connection - we hold a reference to the
101 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
102 /// read future (which is returned by schedule_read).
103 struct Connection {
104         writer: Option<io::WriteHalf<TcpStream>>,
105         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
106         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
107         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
108         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
109         // the schedule_read stack.
110         //
111         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
112         // runtime with functions templated by the Arc<PeerManager> type, calling
113         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
114         // more unsafe voodo than I really feel like writing.
115         write_avail: mpsc::Sender<()>,
116         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
117         // so by setting read_paused. At that point, the read task will stop reading bytes from the
118         // socket. To wake it up (without otherwise changing its state, we can push a value into this
119         // Sender.
120         read_waker: mpsc::Sender<()>,
121         read_paused: bool,
122         rl_requested_disconnect: bool,
123         id: u64,
124 }
125 impl Connection {
126         async fn poll_event_process<PM, CMH, RMH, OMH, L, UMH>(
127                 peer_manager: PM,
128                 mut event_receiver: mpsc::Receiver<()>,
129         ) where
130                         PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH>> + 'static + Send + Sync,
131                         CMH: Deref + 'static + Send + Sync,
132                         RMH: Deref + 'static + Send + Sync,
133                         OMH: Deref + 'static + Send + Sync,
134                         L: Deref + 'static + Send + Sync,
135                         UMH: Deref + 'static + Send + Sync,
136                         CMH::Target: ChannelMessageHandler + Send + Sync,
137                         RMH::Target: RoutingMessageHandler + Send + Sync,
138                         OMH::Target: OnionMessageHandler + Send + Sync,
139                         L::Target: Logger + Send + Sync,
140                         UMH::Target: CustomMessageHandler + Send + Sync,
141         {
142                 loop {
143                         if event_receiver.recv().await.is_none() {
144                                 return;
145                         }
146                         peer_manager.process_events();
147                 }
148         }
149
150         async fn schedule_read<PM, CMH, RMH, OMH, L, UMH>(
151                 peer_manager: PM,
152                 us: Arc<Mutex<Self>>,
153                 mut reader: io::ReadHalf<TcpStream>,
154                 mut read_wake_receiver: mpsc::Receiver<()>,
155                 mut write_avail_receiver: mpsc::Receiver<()>,
156         ) where
157                         PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH>> + 'static + Send + Sync + Clone,
158                         CMH: Deref + 'static + Send + Sync,
159                         RMH: Deref + 'static + Send + Sync,
160                         OMH: Deref + 'static + Send + Sync,
161                         L: Deref + 'static + Send + Sync,
162                         UMH: Deref + 'static + Send + Sync,
163                         CMH::Target: ChannelMessageHandler + 'static + Send + Sync,
164                         RMH::Target: RoutingMessageHandler + 'static + Send + Sync,
165                         OMH::Target: OnionMessageHandler + 'static + Send + Sync,
166                         L::Target: Logger + 'static + Send + Sync,
167                         UMH::Target: CustomMessageHandler + 'static + Send + Sync,
168                 {
169                 // Create a waker to wake up poll_event_process, above
170                 let (event_waker, event_receiver) = mpsc::channel(1);
171                 tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver));
172
173                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
174                 let mut buf = [0; 8192];
175
176                 let mut our_descriptor = SocketDescriptor::new(us.clone());
177                 // An enum describing why we did/are disconnecting:
178                 enum Disconnect {
179                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
180                         // SocketDescriptor::disconnect_socket.
181                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
182                         // already knows we're disconnected.
183                         CloseConnection,
184                         // The connection was disconnected for some other reason, ie because the socket was
185                         // closed.
186                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
187                         // Rust-Lightning that the socket is gone.
188                         PeerDisconnected
189                 }
190                 let disconnect_type = loop {
191                         let read_paused = {
192                                 let us_lock = us.lock().unwrap();
193                                 if us_lock.rl_requested_disconnect {
194                                         break Disconnect::CloseConnection;
195                                 }
196                                 us_lock.read_paused
197                         };
198                         tokio::select! {
199                                 v = write_avail_receiver.recv() => {
200                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
201                                         if let Err(_) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
202                                                 break Disconnect::CloseConnection;
203                                         }
204                                 },
205                                 _ = read_wake_receiver.recv() => {},
206                                 read = reader.read(&mut buf), if !read_paused => match read {
207                                         Ok(0) => break Disconnect::PeerDisconnected,
208                                         Ok(len) => {
209                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
210                                                 let mut us_lock = us.lock().unwrap();
211                                                 match read_res {
212                                                         Ok(pause_read) => {
213                                                                 if pause_read {
214                                                                         us_lock.read_paused = true;
215                                                                 }
216                                                         },
217                                                         Err(_) => break Disconnect::CloseConnection,
218                                                 }
219                                         },
220                                         Err(_) => break Disconnect::PeerDisconnected,
221                                 },
222                         }
223                         let _ = event_waker.try_send(());
224
225                         // At this point we've processed a message or two, and reset the ping timer for this
226                         // peer, at least in the "are we still receiving messages" context, if we don't give up
227                         // our timeslice to another task we may just spin on this peer, starving other peers
228                         // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
229                         // here.
230                         tokio::task::yield_now().await;
231                 };
232                 let writer_option = us.lock().unwrap().writer.take();
233                 if let Some(mut writer) = writer_option {
234                         // If the socket is already closed, shutdown() will fail, so just ignore it.
235                         let _ = writer.shutdown().await;
236                 }
237                 if let Disconnect::PeerDisconnected = disconnect_type {
238                         peer_manager.socket_disconnected(&our_descriptor);
239                         peer_manager.process_events();
240                 }
241         }
242
243         fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
244                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
245                 // PeerManager, we will eventually get notified that there is room in the socket to write
246                 // new bytes, which will generate an event. That event will be popped off the queue before
247                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
248                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
249                 let (write_avail, write_receiver) = mpsc::channel(1);
250                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
251                 // we shove a value into the channel which comes after we've reset the read_paused bool to
252                 // false.
253                 let (read_waker, read_receiver) = mpsc::channel(1);
254                 stream.set_nonblocking(true).unwrap();
255                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
256
257                 (reader, write_receiver, read_receiver,
258                 Arc::new(Mutex::new(Self {
259                         writer: Some(writer), write_avail, read_waker, read_paused: false,
260                         rl_requested_disconnect: false,
261                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
262                 })))
263         }
264 }
265
266 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<NetAddress> {
267         match stream.peer_addr() {
268                 Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 {
269                         addr: sockaddr.ip().octets(),
270                         port: sockaddr.port(),
271                 }),
272                 Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 {
273                         addr: sockaddr.ip().octets(),
274                         port: sockaddr.port(),
275                 }),
276                 Err(_) => None,
277         }
278 }
279
280 /// Process incoming messages and feed outgoing messages on the provided socket generated by
281 /// accepting an incoming connection.
282 ///
283 /// The returned future will complete when the peer is disconnected and associated handling
284 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
285 /// not need to poll the provided future in order to make progress.
286 pub fn setup_inbound<PM, CMH, RMH, OMH, L, UMH>(
287         peer_manager: PM,
288         stream: StdTcpStream,
289 ) -> impl std::future::Future<Output=()> where
290                 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH>> + 'static + Send + Sync + Clone,
291                 CMH: Deref + 'static + Send + Sync,
292                 RMH: Deref + 'static + Send + Sync,
293                 OMH: Deref + 'static + Send + Sync,
294                 L: Deref + 'static + Send + Sync,
295                 UMH: Deref + 'static + Send + Sync,
296                 CMH::Target: ChannelMessageHandler + Send + Sync,
297                 RMH::Target: RoutingMessageHandler + Send + Sync,
298                 OMH::Target: OnionMessageHandler + Send + Sync,
299                 L::Target: Logger + Send + Sync,
300                 UMH::Target: CustomMessageHandler + Send + Sync,
301 {
302         let remote_addr = get_addr_from_stream(&stream);
303         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
304         #[cfg(debug_assertions)]
305         let last_us = Arc::clone(&us);
306
307         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr) {
308                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
309         } else {
310                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
311                 // requirements.
312                 None
313         };
314
315         async move {
316                 if let Some(handle) = handle_opt {
317                         if let Err(e) = handle.await {
318                                 assert!(e.is_cancelled());
319                         } else {
320                                 // This is certainly not guaranteed to always be true - the read loop may exit
321                                 // while there are still pending write wakers that need to be woken up after the
322                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
323                                 // keep too many wakers around, this makes sense. The race should be rare (we do
324                                 // some work after shutdown()) and an error would be a major memory leak.
325                                 #[cfg(debug_assertions)]
326                                 assert!(Arc::try_unwrap(last_us).is_ok());
327                         }
328                 }
329         }
330 }
331
332 /// Process incoming messages and feed outgoing messages on the provided socket generated by
333 /// making an outbound connection which is expected to be accepted by a peer with the given
334 /// public key. The relevant processing is set to run free (via tokio::spawn).
335 ///
336 /// The returned future will complete when the peer is disconnected and associated handling
337 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
338 /// not need to poll the provided future in order to make progress.
339 pub fn setup_outbound<PM, CMH, RMH, OMH, L, UMH>(
340         peer_manager: PM,
341         their_node_id: PublicKey,
342         stream: StdTcpStream,
343 ) -> impl std::future::Future<Output=()> where
344                 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH>> + 'static + Send + Sync + Clone,
345                 CMH: Deref + 'static + Send + Sync,
346                 RMH: Deref + 'static + Send + Sync,
347                 OMH: Deref + 'static + Send + Sync,
348                 L: Deref + 'static + Send + Sync,
349                 UMH: Deref + 'static + Send + Sync,
350                 CMH::Target: ChannelMessageHandler + Send + Sync,
351                 RMH::Target: RoutingMessageHandler + Send + Sync,
352                 OMH::Target: OnionMessageHandler + Send + Sync,
353                 L::Target: Logger + Send + Sync,
354                 UMH::Target: CustomMessageHandler + Send + Sync,
355 {
356         let remote_addr = get_addr_from_stream(&stream);
357         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
358         #[cfg(debug_assertions)]
359         let last_us = Arc::clone(&us);
360         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
361                 Some(tokio::spawn(async move {
362                         // We should essentially always have enough room in a TCP socket buffer to send the
363                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
364                         // fail writes and wake us back up later to write. Thus, we handle a single
365                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
366                         // and use a relatively tight timeout.
367                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
368                                 loop {
369                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
370                                                 v if v == initial_send.len() => break Ok(()),
371                                                 0 => {
372                                                         write_receiver.recv().await;
373                                                         // In theory we could check for if we've been instructed to disconnect
374                                                         // the peer here, but its OK to just skip it - we'll check for it in
375                                                         // schedule_read prior to any relevant calls into RL.
376                                                 },
377                                                 _ => {
378                                                         eprintln!("Failed to write first full message to socket!");
379                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
380                                                         break Err(());
381                                                 }
382                                         }
383                                 }
384                         }).await {
385                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
386                         }
387                 }))
388         } else {
389                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
390                 // requirements.
391                 None
392         };
393
394         async move {
395                 if let Some(handle) = handle_opt {
396                         if let Err(e) = handle.await {
397                                 assert!(e.is_cancelled());
398                         } else {
399                                 // This is certainly not guaranteed to always be true - the read loop may exit
400                                 // while there are still pending write wakers that need to be woken up after the
401                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
402                                 // keep too many wakers around, this makes sense. The race should be rare (we do
403                                 // some work after shutdown()) and an error would be a major memory leak.
404                                 #[cfg(debug_assertions)]
405                                 assert!(Arc::try_unwrap(last_us).is_ok());
406                         }
407                 }
408         }
409 }
410
411 /// Process incoming messages and feed outgoing messages on a new connection made to the given
412 /// socket address which is expected to be accepted by a peer with the given public key (by
413 /// scheduling futures with tokio::spawn).
414 ///
415 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
416 ///
417 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
418 /// connection setup. That future then returns a future which will complete when the peer is
419 /// disconnected and associated handling futures are freed, though, because all processing in said
420 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
421 /// make progress.
422 pub async fn connect_outbound<PM, CMH, RMH, OMH, L, UMH>(
423         peer_manager: PM,
424         their_node_id: PublicKey,
425         addr: SocketAddr,
426 ) -> Option<impl std::future::Future<Output=()>> where
427                 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH>> + 'static + Send + Sync + Clone,
428                 CMH: Deref + 'static + Send + Sync,
429                 RMH: Deref + 'static + Send + Sync,
430                 OMH: Deref + 'static + Send + Sync,
431                 L: Deref + 'static + Send + Sync,
432                 UMH: Deref + 'static + Send + Sync,
433                 CMH::Target: ChannelMessageHandler + Send + Sync,
434                 RMH::Target: RoutingMessageHandler + Send + Sync,
435                 OMH::Target: OnionMessageHandler + Send + Sync,
436                 L::Target: Logger + Send + Sync,
437                 UMH::Target: CustomMessageHandler + Send + Sync,
438 {
439         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
440                 Some(setup_outbound(peer_manager, their_node_id, stream))
441         } else { None }
442 }
443
444 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
445         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
446
447 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
448         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
449 }
450 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
451 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
452 // sending thread may have already gone away due to a socket close, in which case there's nothing
453 // to wake up anyway.
454 fn wake_socket_waker(orig_ptr: *const ()) {
455         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
456         let _ = sender.try_send(());
457         drop_socket_waker(orig_ptr);
458 }
459 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
460         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
461         let sender = unsafe { (*sender_ptr).clone() };
462         let _ = sender.try_send(());
463 }
464 fn drop_socket_waker(orig_ptr: *const ()) {
465         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
466         // _orig_box is now dropped
467 }
468 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
469         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
470         let new_ptr = new_box as *const mpsc::Sender<()>;
471         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
472 }
473
474 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
475 /// type in the template of PeerHandler.
476 pub struct SocketDescriptor {
477         conn: Arc<Mutex<Connection>>,
478         id: u64,
479 }
480 impl SocketDescriptor {
481         fn new(conn: Arc<Mutex<Connection>>) -> Self {
482                 let id = conn.lock().unwrap().id;
483                 Self { conn, id }
484         }
485 }
486 impl peer_handler::SocketDescriptor for SocketDescriptor {
487         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
488                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
489                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
490                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
491                 // processing future which will call write_buffer_space_avail and we'll end up back here.
492                 let mut us = self.conn.lock().unwrap();
493                 if us.writer.is_none() {
494                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
495                         return 0;
496                 }
497
498                 if resume_read && us.read_paused {
499                         // The schedule_read future may go to lock up but end up getting woken up by there
500                         // being more room in the write buffer, dropping the other end of this Sender
501                         // before we get here, so we ignore any failures to wake it up.
502                         us.read_paused = false;
503                         let _ = us.read_waker.try_send(());
504                 }
505                 if data.is_empty() { return 0; }
506                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
507                 let mut ctx = task::Context::from_waker(&waker);
508                 let mut written_len = 0;
509                 loop {
510                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
511                                 task::Poll::Ready(Ok(res)) => {
512                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
513                                         // know how to handle it if it does (cause it should be a Poll::Pending
514                                         // instead):
515                                         assert_ne!(res, 0);
516                                         written_len += res;
517                                         if written_len == data.len() { return written_len; }
518                                 },
519                                 task::Poll::Ready(Err(e)) => {
520                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
521                                         // know how to handle it if it does (cause it should be a Poll::Pending
522                                         // instead):
523                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
524                                         // Probably we've already been closed, just return what we have and let the
525                                         // read thread handle closing logic.
526                                         return written_len;
527                                 },
528                                 task::Poll::Pending => {
529                                         // We're queued up for a write event now, but we need to make sure we also
530                                         // pause read given we're now waiting on the remote end to ACK (and in
531                                         // accordance with the send_data() docs).
532                                         us.read_paused = true;
533                                         // Further, to avoid any current pending read causing a `read_event` call, wake
534                                         // up the read_waker and restart its loop.
535                                         let _ = us.read_waker.try_send(());
536                                         return written_len;
537                                 },
538                         }
539                 }
540         }
541
542         fn disconnect_socket(&mut self) {
543                 let mut us = self.conn.lock().unwrap();
544                 us.rl_requested_disconnect = true;
545                 // Wake up the sending thread, assuming it is still alive
546                 let _ = us.write_avail.try_send(());
547         }
548 }
549 impl Clone for SocketDescriptor {
550         fn clone(&self) -> Self {
551                 Self {
552                         conn: Arc::clone(&self.conn),
553                         id: self.id,
554                 }
555         }
556 }
557 impl Eq for SocketDescriptor {}
558 impl PartialEq for SocketDescriptor {
559         fn eq(&self, o: &Self) -> bool {
560                 self.id == o.id
561         }
562 }
563 impl Hash for SocketDescriptor {
564         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
565                 self.id.hash(state);
566         }
567 }
568
569 #[cfg(test)]
570 mod tests {
571         use lightning::ln::features::*;
572         use lightning::ln::msgs::*;
573         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
574         use lightning::ln::features::NodeFeatures;
575         use lightning::util::events::*;
576         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
577
578         use tokio::sync::mpsc;
579
580         use std::mem;
581         use std::sync::atomic::{AtomicBool, Ordering};
582         use std::sync::{Arc, Mutex};
583         use std::time::Duration;
584
585         pub struct TestLogger();
586         impl lightning::util::logger::Logger for TestLogger {
587                 fn log(&self, record: &lightning::util::logger::Record) {
588                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
589                 }
590         }
591
592         struct MsgHandler{
593                 expected_pubkey: PublicKey,
594                 pubkey_connected: mpsc::Sender<()>,
595                 pubkey_disconnected: mpsc::Sender<()>,
596                 disconnected_flag: AtomicBool,
597                 msg_events: Mutex<Vec<MessageSendEvent>>,
598         }
599         impl RoutingMessageHandler for MsgHandler {
600                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
601                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
602                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
603                 fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
604                 fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> { None }
605                 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init) -> Result<(), ()> { Ok(()) }
606                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
607                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
608                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
609                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
610                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
611                 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
612         }
613         impl ChannelMessageHandler for MsgHandler {
614                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {}
615                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {}
616                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
617                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
618                 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
619                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
620                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
621                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
622                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
623                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
624                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
625                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
626                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
627                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
628                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
629                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
630                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
631                         if *their_node_id == self.expected_pubkey {
632                                 self.disconnected_flag.store(true, Ordering::SeqCst);
633                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
634                         }
635                 }
636                 fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init) -> Result<(), ()> {
637                         if *their_node_id == self.expected_pubkey {
638                                 self.pubkey_connected.clone().try_send(()).unwrap();
639                         }
640                         Ok(())
641                 }
642                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
643                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
644                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
645                 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
646         }
647         impl MessageSendEventsProvider for MsgHandler {
648                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
649                         let mut ret = Vec::new();
650                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
651                         ret
652                 }
653         }
654
655         fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
656                 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
657                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
658                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
659                         (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
660                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
661                         (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
662                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
663                         (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
664                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
665                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
666                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
667                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
668                 } else { panic!("Failed to bind to v4 localhost on common ports"); }
669         }
670
671         async fn do_basic_connection_test() {
672                 let secp_ctx = Secp256k1::new();
673                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
674                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
675                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
676                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
677
678                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
679                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
680                 let a_handler = Arc::new(MsgHandler {
681                         expected_pubkey: b_pub,
682                         pubkey_connected: a_connected_sender,
683                         pubkey_disconnected: a_disconnected_sender,
684                         disconnected_flag: AtomicBool::new(false),
685                         msg_events: Mutex::new(Vec::new()),
686                 });
687                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
688                         chan_handler: Arc::clone(&a_handler),
689                         route_handler: Arc::clone(&a_handler),
690                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
691                 }, a_key.clone(), 0, &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
692
693                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
694                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
695                 let b_handler = Arc::new(MsgHandler {
696                         expected_pubkey: a_pub,
697                         pubkey_connected: b_connected_sender,
698                         pubkey_disconnected: b_disconnected_sender,
699                         disconnected_flag: AtomicBool::new(false),
700                         msg_events: Mutex::new(Vec::new()),
701                 });
702                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
703                         chan_handler: Arc::clone(&b_handler),
704                         route_handler: Arc::clone(&b_handler),
705                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
706                 }, b_key.clone(), 0, &[2; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
707
708                 // We bind on localhost, hoping the environment is properly configured with a local
709                 // address. This may not always be the case in containers and the like, so if this test is
710                 // failing for you check that you have a loopback interface and it is configured with
711                 // 127.0.0.1.
712                 let (conn_a, conn_b) = make_tcp_connection();
713
714                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
715                 let fut_b = super::setup_inbound(b_manager, conn_b);
716
717                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
718                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
719
720                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
721                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
722                 });
723                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
724                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
725
726                 a_manager.process_events();
727                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
728                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
729                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
730                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
731
732                 fut_a.await;
733                 fut_b.await;
734         }
735
736         #[tokio::test(flavor = "multi_thread")]
737         async fn basic_threaded_connection_test() {
738                 do_basic_connection_test().await;
739         }
740
741         #[tokio::test]
742         async fn basic_unthreaded_connection_test() {
743                 do_basic_connection_test().await;
744         }
745
746         async fn race_disconnect_accept() {
747                 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
748                 // This attempts to find other similar races by opening connections and shutting them down
749                 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
750                 let secp_ctx = Secp256k1::new();
751                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
752                 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
753                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
754
755                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
756                         chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
757                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
758                         route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
759                 }, a_key, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
760
761                 // Make two connections, one for an inbound and one for an outbound connection
762                 let conn_a = {
763                         let (conn_a, _) = make_tcp_connection();
764                         conn_a
765                 };
766                 let conn_b = {
767                         let (_, conn_b) = make_tcp_connection();
768                         conn_b
769                 };
770
771                 // Call connection setup inside new tokio tasks.
772                 let manager_reference = Arc::clone(&a_manager);
773                 tokio::spawn(async move {
774                         super::setup_inbound(manager_reference, conn_a).await
775                 });
776                 tokio::spawn(async move {
777                         super::setup_outbound(a_manager, b_pub, conn_b).await
778                 });
779         }
780
781         #[tokio::test(flavor = "multi_thread")]
782         async fn threaded_race_disconnect_accept() {
783                 race_disconnect_accept().await;
784         }
785
786         #[tokio::test]
787         async fn unthreaded_race_disconnect_accept() {
788                 race_disconnect_accept().await;
789         }
790 }