Merge pull request #2522 from sr-gi/202308-set-feature
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native [`TcpStream`]s.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! [`TcpStream`] and a reference to a [`PeerManager`] and the rest is handled".
15 //!
16 //! The [`PeerManager`], due to the fire-and-forget nature of this logic, must be a reference,
17 //! (e.g. an [`Arc`]) and must use the [`SocketDescriptor`] provided here as the [`PeerManager`]'s
18 //! `SocketDescriptor` implementation.
19 //!
20 //! Three methods are exposed to register a new connection for handling in [`tokio::spawn`] calls;
21 //! see their individual docs for details.
22 //!
23 //! [`PeerManager`]: lightning::ln::peer_handler::PeerManager
24
25 // Prefix these with `rustdoc::` when we update our MSRV to be >= 1.52 to remove warnings.
26 #![deny(broken_intra_doc_links)]
27 #![deny(private_intra_doc_links)]
28
29 #![deny(missing_docs)]
30 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
31
32 use bitcoin::secp256k1::PublicKey;
33
34 use tokio::net::{tcp, TcpStream};
35 use tokio::{io, time};
36 use tokio::sync::mpsc;
37 use tokio::io::AsyncWrite;
38
39 use lightning::ln::peer_handler;
40 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
41 use lightning::ln::peer_handler::APeerManager;
42 use lightning::ln::msgs::NetAddress;
43
44 use std::ops::Deref;
45 use std::task::{self, Poll};
46 use std::future::Future;
47 use std::net::SocketAddr;
48 use std::net::TcpStream as StdTcpStream;
49 use std::sync::{Arc, Mutex};
50 use std::sync::atomic::{AtomicU64, Ordering};
51 use std::time::Duration;
52 use std::pin::Pin;
53 use std::hash::Hash;
54
55 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
56
57 // We only need to select over multiple futures in one place, and taking on the full `tokio/macros`
58 // dependency tree in order to do so (which has broken our MSRV before) is excessive. Instead, we
59 // define a trivial two- and three- select macro with the specific types we need and just use that.
60
61 pub(crate) enum SelectorOutput {
62         A(Option<()>), B(Option<()>), C(tokio::io::Result<()>),
63 }
64
65 pub(crate) struct TwoSelector<
66         A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin
67 > {
68         pub a: A,
69         pub b: B,
70 }
71
72 impl<
73         A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin
74 > Future for TwoSelector<A, B> {
75         type Output = SelectorOutput;
76         fn poll(mut self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll<SelectorOutput> {
77                 match Pin::new(&mut self.a).poll(ctx) {
78                         Poll::Ready(res) => { return Poll::Ready(SelectorOutput::A(res)); },
79                         Poll::Pending => {},
80                 }
81                 match Pin::new(&mut self.b).poll(ctx) {
82                         Poll::Ready(res) => { return Poll::Ready(SelectorOutput::B(res)); },
83                         Poll::Pending => {},
84                 }
85                 Poll::Pending
86         }
87 }
88
89 pub(crate) struct ThreeSelector<
90         A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin, C: Future<Output=tokio::io::Result<()>> + Unpin
91 > {
92         pub a: A,
93         pub b: B,
94         pub c: C,
95 }
96
97 impl<
98         A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin, C: Future<Output=tokio::io::Result<()>> + Unpin
99 > Future for ThreeSelector<A, B, C> {
100         type Output = SelectorOutput;
101         fn poll(mut self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll<SelectorOutput> {
102                 match Pin::new(&mut self.a).poll(ctx) {
103                         Poll::Ready(res) => { return Poll::Ready(SelectorOutput::A(res)); },
104                         Poll::Pending => {},
105                 }
106                 match Pin::new(&mut self.b).poll(ctx) {
107                         Poll::Ready(res) => { return Poll::Ready(SelectorOutput::B(res)); },
108                         Poll::Pending => {},
109                 }
110                 match Pin::new(&mut self.c).poll(ctx) {
111                         Poll::Ready(res) => { return Poll::Ready(SelectorOutput::C(res)); },
112                         Poll::Pending => {},
113                 }
114                 Poll::Pending
115         }
116 }
117
118 /// Connection contains all our internal state for a connection - we hold a reference to the
119 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
120 /// read future (which is returned by schedule_read).
121 struct Connection {
122         writer: Option<Arc<TcpStream>>,
123         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
124         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
125         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
126         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
127         // the schedule_read stack.
128         //
129         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
130         // runtime with functions templated by the Arc<PeerManager> type, calling
131         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
132         // more unsafe voodo than I really feel like writing.
133         write_avail: mpsc::Sender<()>,
134         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
135         // so by setting read_paused. At that point, the read task will stop reading bytes from the
136         // socket. To wake it up (without otherwise changing its state, we can push a value into this
137         // Sender.
138         read_waker: mpsc::Sender<()>,
139         read_paused: bool,
140         rl_requested_disconnect: bool,
141         id: u64,
142 }
143 impl Connection {
144         async fn poll_event_process<PM: Deref + 'static + Send + Sync>(
145                 peer_manager: PM,
146                 mut event_receiver: mpsc::Receiver<()>,
147         ) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
148                 loop {
149                         if event_receiver.recv().await.is_none() {
150                                 return;
151                         }
152                         peer_manager.as_ref().process_events();
153                 }
154         }
155
156         async fn schedule_read<PM: Deref + 'static + Send + Sync + Clone>(
157                 peer_manager: PM,
158                 us: Arc<Mutex<Self>>,
159                 reader: Arc<TcpStream>,
160                 mut read_wake_receiver: mpsc::Receiver<()>,
161                 mut write_avail_receiver: mpsc::Receiver<()>,
162         ) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
163                 // Create a waker to wake up poll_event_process, above
164                 let (event_waker, event_receiver) = mpsc::channel(1);
165                 tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver));
166
167                 // 4KiB is nice and big without handling too many messages all at once, giving other peers
168                 // a chance to do some work.
169                 let mut buf = [0; 4096];
170
171                 let mut our_descriptor = SocketDescriptor::new(us.clone());
172                 // An enum describing why we did/are disconnecting:
173                 enum Disconnect {
174                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
175                         // SocketDescriptor::disconnect_socket.
176                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
177                         // already knows we're disconnected.
178                         CloseConnection,
179                         // The connection was disconnected for some other reason, ie because the socket was
180                         // closed.
181                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
182                         // Rust-Lightning that the socket is gone.
183                         PeerDisconnected
184                 }
185                 let disconnect_type = loop {
186                         let read_paused = {
187                                 let us_lock = us.lock().unwrap();
188                                 if us_lock.rl_requested_disconnect {
189                                         break Disconnect::CloseConnection;
190                                 }
191                                 us_lock.read_paused
192                         };
193                         // TODO: Drop the Box'ing of the futures once Rust has pin-on-stack support.
194                         let select_result = if read_paused {
195                                 TwoSelector {
196                                         a: Box::pin(write_avail_receiver.recv()),
197                                         b: Box::pin(read_wake_receiver.recv()),
198                                 }.await
199                         } else {
200                                 ThreeSelector {
201                                         a: Box::pin(write_avail_receiver.recv()),
202                                         b: Box::pin(read_wake_receiver.recv()),
203                                         c: Box::pin(reader.readable()),
204                                 }.await
205                         };
206                         match select_result {
207                                 SelectorOutput::A(v) => {
208                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
209                                         if peer_manager.as_ref().write_buffer_space_avail(&mut our_descriptor).is_err() {
210                                                 break Disconnect::CloseConnection;
211                                         }
212                                 },
213                                 SelectorOutput::B(_) => {},
214                                 SelectorOutput::C(res) => {
215                                         if res.is_err() { break Disconnect::PeerDisconnected; }
216                                         match reader.try_read(&mut buf) {
217                                                 Ok(0) => break Disconnect::PeerDisconnected,
218                                                 Ok(len) => {
219                                                         let read_res = peer_manager.as_ref().read_event(&mut our_descriptor, &buf[0..len]);
220                                                         let mut us_lock = us.lock().unwrap();
221                                                         match read_res {
222                                                                 Ok(pause_read) => {
223                                                                         if pause_read {
224                                                                                 us_lock.read_paused = true;
225                                                                         }
226                                                                 },
227                                                                 Err(_) => break Disconnect::CloseConnection,
228                                                         }
229                                                 },
230                                                 Err(e) if e.kind() == std::io::ErrorKind::WouldBlock => {
231                                                         // readable() is allowed to spuriously wake, so we have to handle
232                                                         // WouldBlock here.
233                                                 },
234                                                 Err(e) => break Disconnect::PeerDisconnected,
235                                         }
236                                 },
237                         }
238                         let _ = event_waker.try_send(());
239
240                         // At this point we've processed a message or two, and reset the ping timer for this
241                         // peer, at least in the "are we still receiving messages" context, if we don't give up
242                         // our timeslice to another task we may just spin on this peer, starving other peers
243                         // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
244                         // here.
245                         let _ = tokio::task::yield_now().await;
246                 };
247                 us.lock().unwrap().writer.take();
248                 if let Disconnect::PeerDisconnected = disconnect_type {
249                         peer_manager.as_ref().socket_disconnected(&our_descriptor);
250                         peer_manager.as_ref().process_events();
251                 }
252         }
253
254         fn new(stream: StdTcpStream) -> (Arc<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
255                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
256                 // PeerManager, we will eventually get notified that there is room in the socket to write
257                 // new bytes, which will generate an event. That event will be popped off the queue before
258                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
259                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
260                 let (write_avail, write_receiver) = mpsc::channel(1);
261                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
262                 // we shove a value into the channel which comes after we've reset the read_paused bool to
263                 // false.
264                 let (read_waker, read_receiver) = mpsc::channel(1);
265                 stream.set_nonblocking(true).unwrap();
266                 let tokio_stream = Arc::new(TcpStream::from_std(stream).unwrap());
267
268                 (Arc::clone(&tokio_stream), write_receiver, read_receiver,
269                 Arc::new(Mutex::new(Self {
270                         writer: Some(tokio_stream), write_avail, read_waker, read_paused: false,
271                         rl_requested_disconnect: false,
272                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
273                 })))
274         }
275 }
276
277 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<NetAddress> {
278         match stream.peer_addr() {
279                 Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 {
280                         addr: sockaddr.ip().octets(),
281                         port: sockaddr.port(),
282                 }),
283                 Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 {
284                         addr: sockaddr.ip().octets(),
285                         port: sockaddr.port(),
286                 }),
287                 Err(_) => None,
288         }
289 }
290
291 /// Process incoming messages and feed outgoing messages on the provided socket generated by
292 /// accepting an incoming connection.
293 ///
294 /// The returned future will complete when the peer is disconnected and associated handling
295 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
296 /// not need to poll the provided future in order to make progress.
297 pub fn setup_inbound<PM: Deref + 'static + Send + Sync + Clone>(
298         peer_manager: PM,
299         stream: StdTcpStream,
300 ) -> impl std::future::Future<Output=()>
301 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
302         let remote_addr = get_addr_from_stream(&stream);
303         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
304         #[cfg(test)]
305         let last_us = Arc::clone(&us);
306
307         let handle_opt = if peer_manager.as_ref().new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr).is_ok() {
308                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
309         } else {
310                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
311                 // requirements.
312                 None
313         };
314
315         async move {
316                 if let Some(handle) = handle_opt {
317                         if let Err(e) = handle.await {
318                                 assert!(e.is_cancelled());
319                         } else {
320                                 // This is certainly not guaranteed to always be true - the read loop may exit
321                                 // while there are still pending write wakers that need to be woken up after the
322                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
323                                 // keep too many wakers around, this makes sense. The race should be rare (we do
324                                 // some work after shutdown()) and an error would be a major memory leak.
325                                 #[cfg(test)]
326                                 debug_assert!(Arc::try_unwrap(last_us).is_ok());
327                         }
328                 }
329         }
330 }
331
332 /// Process incoming messages and feed outgoing messages on the provided socket generated by
333 /// making an outbound connection which is expected to be accepted by a peer with the given
334 /// public key. The relevant processing is set to run free (via tokio::spawn).
335 ///
336 /// The returned future will complete when the peer is disconnected and associated handling
337 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
338 /// not need to poll the provided future in order to make progress.
339 pub fn setup_outbound<PM: Deref + 'static + Send + Sync + Clone>(
340         peer_manager: PM,
341         their_node_id: PublicKey,
342         stream: StdTcpStream,
343 ) -> impl std::future::Future<Output=()>
344 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
345         let remote_addr = get_addr_from_stream(&stream);
346         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
347         #[cfg(test)]
348         let last_us = Arc::clone(&us);
349         let handle_opt = if let Ok(initial_send) = peer_manager.as_ref().new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
350                 Some(tokio::spawn(async move {
351                         // We should essentially always have enough room in a TCP socket buffer to send the
352                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
353                         // fail writes and wake us back up later to write. Thus, we handle a single
354                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
355                         // and use a relatively tight timeout.
356                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
357                                 loop {
358                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
359                                                 v if v == initial_send.len() => break Ok(()),
360                                                 0 => {
361                                                         write_receiver.recv().await;
362                                                         // In theory we could check for if we've been instructed to disconnect
363                                                         // the peer here, but its OK to just skip it - we'll check for it in
364                                                         // schedule_read prior to any relevant calls into RL.
365                                                 },
366                                                 _ => {
367                                                         eprintln!("Failed to write first full message to socket!");
368                                                         peer_manager.as_ref().socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
369                                                         break Err(());
370                                                 }
371                                         }
372                                 }
373                         }).await {
374                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
375                         }
376                 }))
377         } else {
378                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
379                 // requirements.
380                 None
381         };
382
383         async move {
384                 if let Some(handle) = handle_opt {
385                         if let Err(e) = handle.await {
386                                 assert!(e.is_cancelled());
387                         } else {
388                                 // This is certainly not guaranteed to always be true - the read loop may exit
389                                 // while there are still pending write wakers that need to be woken up after the
390                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
391                                 // keep too many wakers around, this makes sense. The race should be rare (we do
392                                 // some work after shutdown()) and an error would be a major memory leak.
393                                 #[cfg(test)]
394                                 debug_assert!(Arc::try_unwrap(last_us).is_ok());
395                         }
396                 }
397         }
398 }
399
400 /// Process incoming messages and feed outgoing messages on a new connection made to the given
401 /// socket address which is expected to be accepted by a peer with the given public key (by
402 /// scheduling futures with tokio::spawn).
403 ///
404 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
405 ///
406 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
407 /// connection setup. That future then returns a future which will complete when the peer is
408 /// disconnected and associated handling futures are freed, though, because all processing in said
409 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
410 /// make progress.
411 pub async fn connect_outbound<PM: Deref + 'static + Send + Sync + Clone>(
412         peer_manager: PM,
413         their_node_id: PublicKey,
414         addr: SocketAddr,
415 ) -> Option<impl std::future::Future<Output=()>>
416 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
417         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
418                 Some(setup_outbound(peer_manager, their_node_id, stream))
419         } else { None }
420 }
421
422 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
423         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
424
425 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
426         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
427 }
428 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
429 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
430 // sending thread may have already gone away due to a socket close, in which case there's nothing
431 // to wake up anyway.
432 fn wake_socket_waker(orig_ptr: *const ()) {
433         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
434         let _ = sender.try_send(());
435         drop_socket_waker(orig_ptr);
436 }
437 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
438         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
439         let sender = unsafe { (*sender_ptr).clone() };
440         let _ = sender.try_send(());
441 }
442 fn drop_socket_waker(orig_ptr: *const ()) {
443         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
444         // _orig_box is now dropped
445 }
446 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
447         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
448         let new_ptr = new_box as *const mpsc::Sender<()>;
449         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
450 }
451
452 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
453 /// type in the template of PeerHandler.
454 pub struct SocketDescriptor {
455         conn: Arc<Mutex<Connection>>,
456         id: u64,
457 }
458 impl SocketDescriptor {
459         fn new(conn: Arc<Mutex<Connection>>) -> Self {
460                 let id = conn.lock().unwrap().id;
461                 Self { conn, id }
462         }
463 }
464 impl peer_handler::SocketDescriptor for SocketDescriptor {
465         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
466                 // To send data, we take a lock on our Connection to access the TcpStream, writing to it if
467                 // there's room in the kernel buffer, or otherwise create a new Waker with a
468                 // SocketDescriptor in it which can wake up the write_avail Sender, waking up the
469                 // processing future which will call write_buffer_space_avail and we'll end up back here.
470                 let mut us = self.conn.lock().unwrap();
471                 if us.writer.is_none() {
472                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
473                         return 0;
474                 }
475
476                 if resume_read && us.read_paused {
477                         // The schedule_read future may go to lock up but end up getting woken up by there
478                         // being more room in the write buffer, dropping the other end of this Sender
479                         // before we get here, so we ignore any failures to wake it up.
480                         us.read_paused = false;
481                         let _ = us.read_waker.try_send(());
482                 }
483                 if data.is_empty() { return 0; }
484                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
485                 let mut ctx = task::Context::from_waker(&waker);
486                 let mut written_len = 0;
487                 loop {
488                         match us.writer.as_ref().unwrap().poll_write_ready(&mut ctx) {
489                                 task::Poll::Ready(Ok(())) => {
490                                         match us.writer.as_ref().unwrap().try_write(&data[written_len..]) {
491                                                 Ok(res) => {
492                                                         debug_assert_ne!(res, 0);
493                                                         written_len += res;
494                                                         if written_len == data.len() { return written_len; }
495                                                 },
496                                                 Err(e) => return written_len,
497                                         }
498                                 },
499                                 task::Poll::Ready(Err(e)) => return written_len,
500                                 task::Poll::Pending => {
501                                         // We're queued up for a write event now, but we need to make sure we also
502                                         // pause read given we're now waiting on the remote end to ACK (and in
503                                         // accordance with the send_data() docs).
504                                         us.read_paused = true;
505                                         // Further, to avoid any current pending read causing a `read_event` call, wake
506                                         // up the read_waker and restart its loop.
507                                         let _ = us.read_waker.try_send(());
508                                         return written_len;
509                                 },
510                         }
511                 }
512         }
513
514         fn disconnect_socket(&mut self) {
515                 let mut us = self.conn.lock().unwrap();
516                 us.rl_requested_disconnect = true;
517                 // Wake up the sending thread, assuming it is still alive
518                 let _ = us.write_avail.try_send(());
519         }
520 }
521 impl Clone for SocketDescriptor {
522         fn clone(&self) -> Self {
523                 Self {
524                         conn: Arc::clone(&self.conn),
525                         id: self.id,
526                 }
527         }
528 }
529 impl Eq for SocketDescriptor {}
530 impl PartialEq for SocketDescriptor {
531         fn eq(&self, o: &Self) -> bool {
532                 self.id == o.id
533         }
534 }
535 impl Hash for SocketDescriptor {
536         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
537                 self.id.hash(state);
538         }
539 }
540
541 #[cfg(test)]
542 mod tests {
543         use lightning::ln::features::*;
544         use lightning::ln::msgs::*;
545         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
546         use lightning::ln::features::NodeFeatures;
547         use lightning::routing::gossip::NodeId;
548         use lightning::events::*;
549         use lightning::util::test_utils::TestNodeSigner;
550         use bitcoin::Network;
551         use bitcoin::blockdata::constants::ChainHash;
552         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
553
554         use tokio::sync::mpsc;
555
556         use std::mem;
557         use std::sync::atomic::{AtomicBool, Ordering};
558         use std::sync::{Arc, Mutex};
559         use std::time::Duration;
560
561         pub struct TestLogger();
562         impl lightning::util::logger::Logger for TestLogger {
563                 fn log(&self, record: &lightning::util::logger::Record) {
564                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
565                 }
566         }
567
568         struct MsgHandler{
569                 expected_pubkey: PublicKey,
570                 pubkey_connected: mpsc::Sender<()>,
571                 pubkey_disconnected: mpsc::Sender<()>,
572                 disconnected_flag: AtomicBool,
573                 msg_events: Mutex<Vec<MessageSendEvent>>,
574         }
575         impl RoutingMessageHandler for MsgHandler {
576                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
577                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
578                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
579                 fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
580                 fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> { None }
581                 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
582                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
583                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
584                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
585                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
586                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
587                 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
588                 fn processing_queue_high(&self) -> bool { false }
589         }
590         impl ChannelMessageHandler for MsgHandler {
591                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {}
592                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {}
593                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
594                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
595                 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
596                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
597                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
598                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
599                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
600                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
601                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
602                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
603                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
604                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
605                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
606                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
607                 fn handle_open_channel_v2(&self, _their_node_id: &PublicKey, _msg: &OpenChannelV2) {}
608                 fn handle_accept_channel_v2(&self, _their_node_id: &PublicKey, _msg: &AcceptChannelV2) {}
609                 fn handle_tx_add_input(&self, _their_node_id: &PublicKey, _msg: &TxAddInput) {}
610                 fn handle_tx_add_output(&self, _their_node_id: &PublicKey, _msg: &TxAddOutput) {}
611                 fn handle_tx_remove_input(&self, _their_node_id: &PublicKey, _msg: &TxRemoveInput) {}
612                 fn handle_tx_remove_output(&self, _their_node_id: &PublicKey, _msg: &TxRemoveOutput) {}
613                 fn handle_tx_complete(&self, _their_node_id: &PublicKey, _msg: &TxComplete) {}
614                 fn handle_tx_signatures(&self, _their_node_id: &PublicKey, _msg: &TxSignatures) {}
615                 fn handle_tx_init_rbf(&self, _their_node_id: &PublicKey, _msg: &TxInitRbf) {}
616                 fn handle_tx_ack_rbf(&self, _their_node_id: &PublicKey, _msg: &TxAckRbf) {}
617                 fn handle_tx_abort(&self, _their_node_id: &PublicKey, _msg: &TxAbort) {}
618                 fn peer_disconnected(&self, their_node_id: &PublicKey) {
619                         if *their_node_id == self.expected_pubkey {
620                                 self.disconnected_flag.store(true, Ordering::SeqCst);
621                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
622                         }
623                 }
624                 fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> {
625                         if *their_node_id == self.expected_pubkey {
626                                 self.pubkey_connected.clone().try_send(()).unwrap();
627                         }
628                         Ok(())
629                 }
630                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
631                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
632                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
633                 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
634                 fn get_genesis_hashes(&self) -> Option<Vec<ChainHash>> {
635                         Some(vec![ChainHash::using_genesis_block(Network::Testnet)])
636                 }
637         }
638         impl MessageSendEventsProvider for MsgHandler {
639                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
640                         let mut ret = Vec::new();
641                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
642                         ret
643                 }
644         }
645
646         fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
647                 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
648                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
649                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
650                         (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
651                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
652                         (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
653                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
654                         (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
655                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
656                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
657                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
658                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
659                 } else { panic!("Failed to bind to v4 localhost on common ports"); }
660         }
661
662         async fn do_basic_connection_test() {
663                 let secp_ctx = Secp256k1::new();
664                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
665                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
666                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
667                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
668
669                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
670                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
671                 let a_handler = Arc::new(MsgHandler {
672                         expected_pubkey: b_pub,
673                         pubkey_connected: a_connected_sender,
674                         pubkey_disconnected: a_disconnected_sender,
675                         disconnected_flag: AtomicBool::new(false),
676                         msg_events: Mutex::new(Vec::new()),
677                 });
678                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
679                         chan_handler: Arc::clone(&a_handler),
680                         route_handler: Arc::clone(&a_handler),
681                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
682                         custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
683                 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
684
685                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
686                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
687                 let b_handler = Arc::new(MsgHandler {
688                         expected_pubkey: a_pub,
689                         pubkey_connected: b_connected_sender,
690                         pubkey_disconnected: b_disconnected_sender,
691                         disconnected_flag: AtomicBool::new(false),
692                         msg_events: Mutex::new(Vec::new()),
693                 });
694                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
695                         chan_handler: Arc::clone(&b_handler),
696                         route_handler: Arc::clone(&b_handler),
697                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
698                         custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
699                 }, 0, &[2; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(b_key))));
700
701                 // We bind on localhost, hoping the environment is properly configured with a local
702                 // address. This may not always be the case in containers and the like, so if this test is
703                 // failing for you check that you have a loopback interface and it is configured with
704                 // 127.0.0.1.
705                 let (conn_a, conn_b) = make_tcp_connection();
706
707                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
708                 let fut_b = super::setup_inbound(b_manager, conn_b);
709
710                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
711                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
712
713                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
714                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
715                 });
716                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
717                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
718
719                 a_manager.process_events();
720                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
721                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
722                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
723                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
724
725                 fut_a.await;
726                 fut_b.await;
727         }
728
729         #[tokio::test(flavor = "multi_thread")]
730         async fn basic_threaded_connection_test() {
731                 do_basic_connection_test().await;
732         }
733
734         #[tokio::test]
735         async fn basic_unthreaded_connection_test() {
736                 do_basic_connection_test().await;
737         }
738
739         async fn race_disconnect_accept() {
740                 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
741                 // This attempts to find other similar races by opening connections and shutting them down
742                 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
743                 let secp_ctx = Secp256k1::new();
744                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
745                 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
746                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
747
748                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
749                         chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
750                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
751                         route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
752                         custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
753                 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
754
755                 // Make two connections, one for an inbound and one for an outbound connection
756                 let conn_a = {
757                         let (conn_a, _) = make_tcp_connection();
758                         conn_a
759                 };
760                 let conn_b = {
761                         let (_, conn_b) = make_tcp_connection();
762                         conn_b
763                 };
764
765                 // Call connection setup inside new tokio tasks.
766                 let manager_reference = Arc::clone(&a_manager);
767                 tokio::spawn(async move {
768                         super::setup_inbound(manager_reference, conn_a).await
769                 });
770                 tokio::spawn(async move {
771                         super::setup_outbound(a_manager, b_pub, conn_b).await
772                 });
773         }
774
775         #[tokio::test(flavor = "multi_thread")]
776         async fn threaded_race_disconnect_accept() {
777                 race_disconnect_accept().await;
778         }
779
780         #[tokio::test]
781         async fn unthreaded_race_disconnect_accept() {
782                 race_disconnect_accept().await;
783         }
784 }