1 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
4 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
5 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
6 //! be made in responding to certain messages, see ManyChannelMonitor for more.
8 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
9 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
10 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
11 //! security-domain-separated system design, you should consider having multiple paths for
12 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
14 use bitcoin::blockdata::block::BlockHeader;
15 use bitcoin::blockdata::transaction::{TxIn,TxOut,SigHashType,Transaction};
16 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
17 use bitcoin::blockdata::script::{Script, Builder};
18 use bitcoin::blockdata::opcodes;
19 use bitcoin::consensus::encode::{self, Decodable, Encodable};
20 use bitcoin::util::hash::BitcoinHash;
21 use bitcoin::util::bip143;
23 use bitcoin_hashes::Hash;
24 use bitcoin_hashes::sha256::Hash as Sha256;
25 use bitcoin_hashes::hash160::Hash as Hash160;
26 use bitcoin_hashes::sha256d::Hash as Sha256dHash;
28 use secp256k1::{Secp256k1,Signature};
29 use secp256k1::key::{SecretKey,PublicKey};
32 use ln::msgs::DecodeError;
34 use ln::chan_utils::HTLCOutputInCommitment;
35 use ln::channelmanager::{HTLCSource, PaymentPreimage, PaymentHash};
36 use ln::channel::{ACCEPTED_HTLC_SCRIPT_WEIGHT, OFFERED_HTLC_SCRIPT_WEIGHT};
37 use chain::chaininterface::{ChainListener, ChainWatchInterface, BroadcasterInterface, FeeEstimator, ConfirmationTarget};
38 use chain::transaction::OutPoint;
39 use chain::keysinterface::SpendableOutputDescriptor;
40 use util::logger::Logger;
41 use util::ser::{ReadableArgs, Readable, Writer, Writeable, WriterWriteAdaptor, U48};
42 use util::{byte_utils, events};
44 use std::collections::{HashMap, hash_map};
45 use std::sync::{Arc,Mutex};
46 use std::{hash,cmp, mem};
48 /// An error enum representing a failure to persist a channel monitor update.
50 pub enum ChannelMonitorUpdateErr {
51 /// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of
52 /// our state failed, but is expected to succeed at some point in the future).
54 /// Such a failure will "freeze" a channel, preventing us from revoking old states or
55 /// submitting new commitment transactions to the remote party.
56 /// ChannelManager::test_restore_channel_monitor can be used to retry the update(s) and restore
57 /// the channel to an operational state.
59 /// Note that continuing to operate when no copy of the updated ChannelMonitor could be
60 /// persisted is unsafe - if you failed to store the update on your own local disk you should
61 /// instead return PermanentFailure to force closure of the channel ASAP.
63 /// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur
64 /// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting
65 /// to claim it on this channel) and those updates must be applied wherever they can be. At
66 /// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should
67 /// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to
68 /// the channel which would invalidate previous ChannelMonitors are not made when a channel has
71 /// Note that even if updates made after TemporaryFailure succeed you must still call
72 /// test_restore_channel_monitor to ensure you have the latest monitor and re-enable normal
73 /// channel operation.
75 /// For deployments where a copy of ChannelMonitors and other local state are backed up in a
76 /// remote location (with local copies persisted immediately), it is anticipated that all
77 /// updates will return TemporaryFailure until the remote copies could be updated.
79 /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
80 /// different watchtower and cannot update with all watchtowers that were previously informed
81 /// of this channel). This will force-close the channel in question.
83 /// Should also be used to indicate a failure to update the local copy of the channel monitor.
87 /// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is
88 /// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::insert_combine this
89 /// means you tried to merge two monitors for different channels or for a channel which was
90 /// restored from a backup and then generated new commitment updates.
91 /// Contains a human-readable error message.
93 pub struct MonitorUpdateError(pub &'static str);
95 /// Simple structure send back by ManyChannelMonitor in case of HTLC detected onchain from a
96 /// forward channel and from which info are needed to update HTLC in a backward channel.
97 pub struct HTLCUpdate {
98 pub(super) payment_hash: PaymentHash,
99 pub(super) payment_preimage: Option<PaymentPreimage>,
100 pub(super) source: HTLCSource
103 /// Simple trait indicating ability to track a set of ChannelMonitors and multiplex events between
104 /// them. Generally should be implemented by keeping a local SimpleManyChannelMonitor and passing
105 /// events to it, while also taking any add_update_monitor events and passing them to some remote
108 /// Note that any updates to a channel's monitor *must* be applied to each instance of the
109 /// channel's monitor everywhere (including remote watchtowers) *before* this function returns. If
110 /// an update occurs and a remote watchtower is left with old state, it may broadcast transactions
111 /// which we have revoked, allowing our counterparty to claim all funds in the channel!
112 pub trait ManyChannelMonitor: Send + Sync {
113 /// Adds or updates a monitor for the given `funding_txo`.
115 /// Implementor must also ensure that the funding_txo outpoint is registered with any relevant
116 /// ChainWatchInterfaces such that the provided monitor receives block_connected callbacks with
117 /// any spends of it.
118 fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr>;
120 /// Used by ChannelManager to get list of HTLC resolved onchain and which needed to be updated
121 /// with success or failure backward
122 fn fetch_pending_htlc_updated(&self) -> Vec<HTLCUpdate>;
125 /// A simple implementation of a ManyChannelMonitor and ChainListener. Can be used to create a
126 /// watchtower or watch our own channels.
128 /// Note that you must provide your own key by which to refer to channels.
130 /// If you're accepting remote monitors (ie are implementing a watchtower), you must verify that
131 /// users cannot overwrite a given channel by providing a duplicate key. ie you should probably
132 /// index by a PublicKey which is required to sign any updates.
134 /// If you're using this for local monitoring of your own channels, you probably want to use
135 /// `OutPoint` as the key, which will give you a ManyChannelMonitor implementation.
136 pub struct SimpleManyChannelMonitor<Key> {
137 #[cfg(test)] // Used in ChannelManager tests to manipulate channels directly
138 pub monitors: Mutex<HashMap<Key, ChannelMonitor>>,
140 monitors: Mutex<HashMap<Key, ChannelMonitor>>,
141 chain_monitor: Arc<ChainWatchInterface>,
142 broadcaster: Arc<BroadcasterInterface>,
143 pending_events: Mutex<Vec<events::Event>>,
144 pending_htlc_updated: Mutex<HashMap<PaymentHash, Vec<(HTLCSource, Option<PaymentPreimage>)>>>,
146 fee_estimator: Arc<FeeEstimator>
149 impl<Key : Send + cmp::Eq + hash::Hash> ChainListener for SimpleManyChannelMonitor<Key> {
150 fn block_connected(&self, header: &BlockHeader, height: u32, txn_matched: &[&Transaction], _indexes_of_txn_matched: &[u32]) {
151 let block_hash = header.bitcoin_hash();
152 let mut new_events: Vec<events::Event> = Vec::with_capacity(0);
153 let mut htlc_updated_infos = Vec::new();
155 let mut monitors = self.monitors.lock().unwrap();
156 for monitor in monitors.values_mut() {
157 let (txn_outputs, spendable_outputs, mut htlc_updated) = monitor.block_connected(txn_matched, height, &block_hash, &*self.broadcaster, &*self.fee_estimator);
158 if spendable_outputs.len() > 0 {
159 new_events.push(events::Event::SpendableOutputs {
160 outputs: spendable_outputs,
164 for (ref txid, ref outputs) in txn_outputs {
165 for (idx, output) in outputs.iter().enumerate() {
166 self.chain_monitor.install_watch_outpoint((txid.clone(), idx as u32), &output.script_pubkey);
169 htlc_updated_infos.append(&mut htlc_updated);
173 // ChannelManager will just need to fetch pending_htlc_updated and pass state backward
174 let mut pending_htlc_updated = self.pending_htlc_updated.lock().unwrap();
175 for htlc in htlc_updated_infos.drain(..) {
176 match pending_htlc_updated.entry(htlc.2) {
177 hash_map::Entry::Occupied(mut e) => {
178 // In case of reorg we may have htlc outputs solved in a different way so
179 // we prefer to keep claims but don't store duplicate updates for a given
180 // (payment_hash, HTLCSource) pair.
181 let mut existing_claim = false;
182 e.get_mut().retain(|htlc_data| {
183 if htlc.0 == htlc_data.0 {
184 if htlc_data.1.is_some() {
185 existing_claim = true;
191 e.get_mut().push((htlc.0, htlc.1));
194 hash_map::Entry::Vacant(e) => {
195 e.insert(vec![(htlc.0, htlc.1)]);
200 let mut pending_events = self.pending_events.lock().unwrap();
201 pending_events.append(&mut new_events);
204 fn block_disconnected(&self, header: &BlockHeader, disconnected_height: u32) {
205 let block_hash = header.bitcoin_hash();
206 let mut monitors = self.monitors.lock().unwrap();
207 for monitor in monitors.values_mut() {
208 monitor.block_disconnected(disconnected_height, &block_hash);
213 impl<Key : Send + cmp::Eq + hash::Hash + 'static> SimpleManyChannelMonitor<Key> {
214 /// Creates a new object which can be used to monitor several channels given the chain
215 /// interface with which to register to receive notifications.
216 pub fn new(chain_monitor: Arc<ChainWatchInterface>, broadcaster: Arc<BroadcasterInterface>, logger: Arc<Logger>, feeest: Arc<FeeEstimator>) -> Arc<SimpleManyChannelMonitor<Key>> {
217 let res = Arc::new(SimpleManyChannelMonitor {
218 monitors: Mutex::new(HashMap::new()),
221 pending_events: Mutex::new(Vec::new()),
222 pending_htlc_updated: Mutex::new(HashMap::new()),
224 fee_estimator: feeest,
226 let weak_res = Arc::downgrade(&res);
227 res.chain_monitor.register_listener(weak_res);
231 /// Adds or updates the monitor which monitors the channel referred to by the given key.
232 pub fn add_update_monitor_by_key(&self, key: Key, monitor: ChannelMonitor) -> Result<(), MonitorUpdateError> {
233 let mut monitors = self.monitors.lock().unwrap();
234 match monitors.get_mut(&key) {
235 Some(orig_monitor) => {
236 log_trace!(self, "Updating Channel Monitor for channel {}", log_funding_info!(monitor.key_storage));
237 return orig_monitor.insert_combine(monitor);
241 match monitor.key_storage {
242 Storage::Local { ref funding_info, .. } => {
245 return Err(MonitorUpdateError("Try to update a useless monitor without funding_txo !"));
247 &Some((ref outpoint, ref script)) => {
248 log_trace!(self, "Got new Channel Monitor for channel {}", log_bytes!(outpoint.to_channel_id()[..]));
249 self.chain_monitor.install_watch_tx(&outpoint.txid, script);
250 self.chain_monitor.install_watch_outpoint((outpoint.txid, outpoint.index as u32), script);
254 Storage::Watchtower { .. } => {
255 self.chain_monitor.watch_all_txn();
258 monitors.insert(key, monitor);
263 impl ManyChannelMonitor for SimpleManyChannelMonitor<OutPoint> {
264 fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr> {
265 match self.add_update_monitor_by_key(funding_txo, monitor) {
267 Err(_) => Err(ChannelMonitorUpdateErr::PermanentFailure),
271 fn fetch_pending_htlc_updated(&self) -> Vec<HTLCUpdate> {
272 let mut updated = self.pending_htlc_updated.lock().unwrap();
273 let mut pending_htlcs_updated = Vec::with_capacity(updated.len());
274 for (k, v) in updated.drain() {
276 pending_htlcs_updated.push(HTLCUpdate {
278 payment_preimage: htlc_data.1,
283 pending_htlcs_updated
287 impl<Key : Send + cmp::Eq + hash::Hash> events::EventsProvider for SimpleManyChannelMonitor<Key> {
288 fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
289 let mut pending_events = self.pending_events.lock().unwrap();
290 let mut ret = Vec::new();
291 mem::swap(&mut ret, &mut *pending_events);
296 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
297 /// instead claiming it in its own individual transaction.
298 const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
299 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
300 /// HTLC-Success transaction.
301 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
302 /// transaction confirmed (and we use it in a few more, equivalent, places).
303 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 6;
304 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
305 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
306 /// copies of ChannelMonitors, including watchtowers).
307 pub(crate) const HTLC_FAIL_TIMEOUT_BLOCKS: u32 = 3;
308 /// Number of blocks we wait on seeing a confirmed HTLC-Timeout or previous revoked commitment
309 /// transaction before we fail corresponding inbound HTLCs. This prevents us from failing backwards
310 /// and then getting a reorg resulting in us losing money.
311 pub(crate) const HTLC_FAIL_ANTI_REORG_DELAY: u32 = 6;
313 #[derive(Clone, PartialEq)]
316 revocation_base_key: SecretKey,
317 htlc_base_key: SecretKey,
318 delayed_payment_base_key: SecretKey,
319 payment_base_key: SecretKey,
320 shutdown_pubkey: PublicKey,
321 prev_latest_per_commitment_point: Option<PublicKey>,
322 latest_per_commitment_point: Option<PublicKey>,
323 funding_info: Option<(OutPoint, Script)>,
324 current_remote_commitment_txid: Option<Sha256dHash>,
325 prev_remote_commitment_txid: Option<Sha256dHash>,
328 revocation_base_key: PublicKey,
329 htlc_base_key: PublicKey,
333 #[derive(Clone, PartialEq)]
334 struct LocalSignedTx {
335 /// txid of the transaction in tx, just used to make comparison faster
338 revocation_key: PublicKey,
339 a_htlc_key: PublicKey,
340 b_htlc_key: PublicKey,
341 delayed_payment_key: PublicKey,
343 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<(Signature, Signature)>, Option<HTLCSource>)>,
347 enum InputDescriptors {
352 RevokedOutput, // either a revoked to_local output on commitment tx, a revoked HTLC-Timeout output or a revoked HTLC-Success output
355 const SERIALIZATION_VERSION: u8 = 1;
356 const MIN_SERIALIZATION_VERSION: u8 = 1;
358 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
359 /// on-chain transactions to ensure no loss of funds occurs.
361 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
362 /// information and are actively monitoring the chain.
364 pub struct ChannelMonitor {
365 commitment_transaction_number_obscure_factor: u64,
367 key_storage: Storage,
368 their_htlc_base_key: Option<PublicKey>,
369 their_delayed_payment_base_key: Option<PublicKey>,
370 // first is the idx of the first of the two revocation points
371 their_cur_revocation_points: Option<(u64, PublicKey, Option<PublicKey>)>,
373 our_to_self_delay: u16,
374 their_to_self_delay: Option<u16>,
376 old_secrets: [([u8; 32], u64); 49],
377 remote_claimable_outpoints: HashMap<Sha256dHash, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
378 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
379 /// Nor can we figure out their commitment numbers without the commitment transaction they are
380 /// spending. Thus, in order to claim them via revocation key, we track all the remote
381 /// commitment transactions which we find on-chain, mapping them to the commitment number which
382 /// can be used to derive the revocation key and claim the transactions.
383 remote_commitment_txn_on_chain: HashMap<Sha256dHash, (u64, Vec<Script>)>,
384 /// Cache used to make pruning of payment_preimages faster.
385 /// Maps payment_hash values to commitment numbers for remote transactions for non-revoked
386 /// remote transactions (ie should remain pretty small).
387 /// Serialized to disk but should generally not be sent to Watchtowers.
388 remote_hash_commitment_number: HashMap<PaymentHash, u64>,
390 // We store two local commitment transactions to avoid any race conditions where we may update
391 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
392 // various monitors for one channel being out of sync, and us broadcasting a local
393 // transaction for which we have deleted claim information on some watchtowers.
394 prev_local_signed_commitment_tx: Option<LocalSignedTx>,
395 current_local_signed_commitment_tx: Option<LocalSignedTx>,
397 // Used just for ChannelManager to make sure it has the latest channel data during
399 current_remote_commitment_number: u64,
401 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
403 destination_script: Script,
405 htlc_updated_waiting_threshold_conf: HashMap<u32, Vec<(HTLCSource, Option<PaymentPreimage>, PaymentHash)>>,
407 // We simply modify last_block_hash in Channel's block_connected so that serialization is
408 // consistent but hopefully the users' copy handles block_connected in a consistent way.
409 // (we do *not*, however, update them in insert_combine to ensure any local user copies keep
410 // their last_block_hash from its state and not based on updated copies that didn't run through
411 // the full block_connected).
412 pub(crate) last_block_hash: Sha256dHash,
413 secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
417 macro_rules! subtract_high_prio_fee {
418 ($self: ident, $fee_estimator: expr, $value: expr, $predicted_weight: expr, $spent_txid: expr) => {
420 let mut fee = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::HighPriority) * $predicted_weight / 1000;
422 fee = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal) * $predicted_weight / 1000;
424 fee = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Background) * $predicted_weight / 1000;
426 log_error!($self, "Failed to generate an on-chain punishment tx spending {} as even low priority fee ({} sat) was more than the entire claim balance ({} sat)",
427 $spent_txid, fee, $value);
430 log_warn!($self, "Used low priority fee for on-chain punishment tx spending {} as high priority fee was more than the entire claim balance ({} sat)",
431 $spent_txid, $value);
436 log_warn!($self, "Used medium priority fee for on-chain punishment tx spending {} as high priority fee was more than the entire claim balance ({} sat)",
437 $spent_txid, $value);
449 #[cfg(any(test, feature = "fuzztarget"))]
450 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
451 /// underlying object
452 impl PartialEq for ChannelMonitor {
453 fn eq(&self, other: &Self) -> bool {
454 if self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
455 self.key_storage != other.key_storage ||
456 self.their_htlc_base_key != other.their_htlc_base_key ||
457 self.their_delayed_payment_base_key != other.their_delayed_payment_base_key ||
458 self.their_cur_revocation_points != other.their_cur_revocation_points ||
459 self.our_to_self_delay != other.our_to_self_delay ||
460 self.their_to_self_delay != other.their_to_self_delay ||
461 self.remote_claimable_outpoints != other.remote_claimable_outpoints ||
462 self.remote_commitment_txn_on_chain != other.remote_commitment_txn_on_chain ||
463 self.remote_hash_commitment_number != other.remote_hash_commitment_number ||
464 self.prev_local_signed_commitment_tx != other.prev_local_signed_commitment_tx ||
465 self.current_remote_commitment_number != other.current_remote_commitment_number ||
466 self.current_local_signed_commitment_tx != other.current_local_signed_commitment_tx ||
467 self.payment_preimages != other.payment_preimages ||
468 self.destination_script != other.destination_script ||
469 self.htlc_updated_waiting_threshold_conf != other.htlc_updated_waiting_threshold_conf
473 for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) {
474 if secret != o_secret || idx != o_idx {
483 impl ChannelMonitor {
484 pub(super) fn new(revocation_base_key: &SecretKey, delayed_payment_base_key: &SecretKey, htlc_base_key: &SecretKey, payment_base_key: &SecretKey, shutdown_pubkey: &PublicKey, our_to_self_delay: u16, destination_script: Script, logger: Arc<Logger>) -> ChannelMonitor {
486 commitment_transaction_number_obscure_factor: 0,
488 key_storage: Storage::Local {
489 revocation_base_key: revocation_base_key.clone(),
490 htlc_base_key: htlc_base_key.clone(),
491 delayed_payment_base_key: delayed_payment_base_key.clone(),
492 payment_base_key: payment_base_key.clone(),
493 shutdown_pubkey: shutdown_pubkey.clone(),
494 prev_latest_per_commitment_point: None,
495 latest_per_commitment_point: None,
497 current_remote_commitment_txid: None,
498 prev_remote_commitment_txid: None,
500 their_htlc_base_key: None,
501 their_delayed_payment_base_key: None,
502 their_cur_revocation_points: None,
504 our_to_self_delay: our_to_self_delay,
505 their_to_self_delay: None,
507 old_secrets: [([0; 32], 1 << 48); 49],
508 remote_claimable_outpoints: HashMap::new(),
509 remote_commitment_txn_on_chain: HashMap::new(),
510 remote_hash_commitment_number: HashMap::new(),
512 prev_local_signed_commitment_tx: None,
513 current_local_signed_commitment_tx: None,
514 current_remote_commitment_number: 1 << 48,
516 payment_preimages: HashMap::new(),
517 destination_script: destination_script,
519 htlc_updated_waiting_threshold_conf: HashMap::new(),
521 last_block_hash: Default::default(),
522 secp_ctx: Secp256k1::new(),
527 fn get_witnesses_weight(inputs: &[InputDescriptors]) -> u64 {
528 let mut tx_weight = 2; // count segwit flags
530 // We use expected weight (and not actual) as signatures and time lock delays may vary
531 tx_weight += match inp {
532 // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
533 &InputDescriptors::RevokedOfferedHTLC => {
534 1 + 1 + 73 + 1 + 33 + 1 + 133
536 // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
537 &InputDescriptors::RevokedReceivedHTLC => {
538 1 + 1 + 73 + 1 + 33 + 1 + 139
540 // number_of_witness_elements + sig_length + remotehtlc_sig + preimage_length + preimage + witness_script_length + witness_script
541 &InputDescriptors::OfferedHTLC => {
542 1 + 1 + 73 + 1 + 32 + 1 + 133
544 // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
545 &InputDescriptors::ReceivedHTLC => {
546 1 + 1 + 73 + 1 + 1 + 1 + 139
548 // number_of_witness_elements + sig_length + revocation_sig + true_length + op_true + witness_script_length + witness_script
549 &InputDescriptors::RevokedOutput => {
550 1 + 1 + 73 + 1 + 1 + 1 + 77
558 fn place_secret(idx: u64) -> u8 {
560 if idx & (1 << i) == (1 << i) {
568 fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] {
569 let mut res: [u8; 32] = secret;
571 let bitpos = bits - 1 - i;
572 if idx & (1 << bitpos) == (1 << bitpos) {
573 res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7);
574 res = Sha256::hash(&res).into_inner();
580 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
581 /// needed by local commitment transactions HTCLs nor by remote ones. Unless we haven't already seen remote
582 /// commitment transaction's secret, they are de facto pruned (we can use revocation key).
583 pub(super) fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
584 let pos = ChannelMonitor::place_secret(idx);
586 let (old_secret, old_idx) = self.old_secrets[i as usize];
587 if ChannelMonitor::derive_secret(secret, pos, old_idx) != old_secret {
588 return Err(MonitorUpdateError("Previous secret did not match new one"));
591 if self.get_min_seen_secret() <= idx {
594 self.old_secrets[pos as usize] = (secret, idx);
596 // Prune HTLCs from the previous remote commitment tx so we don't generate failure/fulfill
597 // events for now-revoked/fulfilled HTLCs.
598 // TODO: We should probably consider whether we're really getting the next secret here.
599 if let Storage::Local { ref mut prev_remote_commitment_txid, .. } = self.key_storage {
600 if let Some(txid) = prev_remote_commitment_txid.take() {
601 for &mut (_, ref mut source) in self.remote_claimable_outpoints.get_mut(&txid).unwrap() {
607 if !self.payment_preimages.is_empty() {
608 let local_signed_commitment_tx = self.current_local_signed_commitment_tx.as_ref().expect("Channel needs at least an initial commitment tx !");
609 let prev_local_signed_commitment_tx = self.prev_local_signed_commitment_tx.as_ref();
610 let min_idx = self.get_min_seen_secret();
611 let remote_hash_commitment_number = &mut self.remote_hash_commitment_number;
613 self.payment_preimages.retain(|&k, _| {
614 for &(ref htlc, _, _) in &local_signed_commitment_tx.htlc_outputs {
615 if k == htlc.payment_hash {
619 if let Some(prev_local_commitment_tx) = prev_local_signed_commitment_tx {
620 for &(ref htlc, _, _) in prev_local_commitment_tx.htlc_outputs.iter() {
621 if k == htlc.payment_hash {
626 let contains = if let Some(cn) = remote_hash_commitment_number.get(&k) {
633 remote_hash_commitment_number.remove(&k);
642 /// Informs this monitor of the latest remote (ie non-broadcastable) commitment transaction.
643 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
644 /// possibly future revocation/preimage information) to claim outputs where possible.
645 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
646 pub(super) fn provide_latest_remote_commitment_tx_info(&mut self, unsigned_commitment_tx: &Transaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_revocation_point: PublicKey) {
647 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
648 // so that a remote monitor doesn't learn anything unless there is a malicious close.
649 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
651 for &(ref htlc, _) in &htlc_outputs {
652 self.remote_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
655 let new_txid = unsigned_commitment_tx.txid();
656 log_trace!(self, "Tracking new remote commitment transaction with txid {} at commitment number {} with {} HTLC outputs", new_txid, commitment_number, htlc_outputs.len());
657 log_trace!(self, "New potential remote commitment transaction: {}", encode::serialize_hex(unsigned_commitment_tx));
658 if let Storage::Local { ref mut current_remote_commitment_txid, ref mut prev_remote_commitment_txid, .. } = self.key_storage {
659 *prev_remote_commitment_txid = current_remote_commitment_txid.take();
660 *current_remote_commitment_txid = Some(new_txid);
662 self.remote_claimable_outpoints.insert(new_txid, htlc_outputs);
663 self.current_remote_commitment_number = commitment_number;
664 //TODO: Merge this into the other per-remote-transaction output storage stuff
665 match self.their_cur_revocation_points {
666 Some(old_points) => {
667 if old_points.0 == commitment_number + 1 {
668 self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point)));
669 } else if old_points.0 == commitment_number + 2 {
670 if let Some(old_second_point) = old_points.2 {
671 self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point)));
673 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
676 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
680 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
685 /// Informs this monitor of the latest local (ie broadcastable) commitment transaction. The
686 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
687 /// is important that any clones of this channel monitor (including remote clones) by kept
688 /// up-to-date as our local commitment transaction is updated.
689 /// Panics if set_their_to_self_delay has never been called.
690 /// Also update Storage with latest local per_commitment_point to derive local_delayedkey in
691 /// case of onchain HTLC tx
692 pub(super) fn provide_latest_local_commitment_tx_info(&mut self, signed_commitment_tx: Transaction, local_keys: chan_utils::TxCreationKeys, feerate_per_kw: u64, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<(Signature, Signature)>, Option<HTLCSource>)>) {
693 assert!(self.their_to_self_delay.is_some());
694 self.prev_local_signed_commitment_tx = self.current_local_signed_commitment_tx.take();
695 self.current_local_signed_commitment_tx = Some(LocalSignedTx {
696 txid: signed_commitment_tx.txid(),
697 tx: signed_commitment_tx,
698 revocation_key: local_keys.revocation_key,
699 a_htlc_key: local_keys.a_htlc_key,
700 b_htlc_key: local_keys.b_htlc_key,
701 delayed_payment_key: local_keys.a_delayed_payment_key,
706 if let Storage::Local { ref mut latest_per_commitment_point, .. } = self.key_storage {
707 *latest_per_commitment_point = Some(local_keys.per_commitment_point);
709 panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?");
713 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
714 /// commitment_tx_infos which contain the payment hash have been revoked.
715 pub(super) fn provide_payment_preimage(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage) {
716 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
719 /// Combines this ChannelMonitor with the information contained in the other ChannelMonitor.
720 /// After a successful call this ChannelMonitor is up-to-date and is safe to use to monitor the
721 /// chain for new blocks/transactions.
722 pub fn insert_combine(&mut self, mut other: ChannelMonitor) -> Result<(), MonitorUpdateError> {
723 match self.key_storage {
724 Storage::Local { ref funding_info, .. } => {
725 if funding_info.is_none() { return Err(MonitorUpdateError("Try to combine a Local monitor without funding_info")); }
726 let our_funding_info = funding_info;
727 if let Storage::Local { ref funding_info, .. } = other.key_storage {
728 if funding_info.is_none() { return Err(MonitorUpdateError("Try to combine a Local monitor without funding_info")); }
729 // We should be able to compare the entire funding_txo, but in fuzztarget it's trivially
730 // easy to collide the funding_txo hash and have a different scriptPubKey.
731 if funding_info.as_ref().unwrap().0 != our_funding_info.as_ref().unwrap().0 {
732 return Err(MonitorUpdateError("Funding transaction outputs are not identical!"));
735 return Err(MonitorUpdateError("Try to combine a Local monitor with a Watchtower one !"));
738 Storage::Watchtower { .. } => {
739 if let Storage::Watchtower { .. } = other.key_storage {
742 return Err(MonitorUpdateError("Try to combine a Watchtower monitor with a Local one !"));
746 let other_min_secret = other.get_min_seen_secret();
747 let our_min_secret = self.get_min_seen_secret();
748 if our_min_secret > other_min_secret {
749 self.provide_secret(other_min_secret, other.get_secret(other_min_secret).unwrap())?;
751 if let Some(ref local_tx) = self.current_local_signed_commitment_tx {
752 if let Some(ref other_local_tx) = other.current_local_signed_commitment_tx {
753 let our_commitment_number = 0xffffffffffff - ((((local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (local_tx.tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
754 let other_commitment_number = 0xffffffffffff - ((((other_local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (other_local_tx.tx.lock_time as u64 & 0xffffff)) ^ other.commitment_transaction_number_obscure_factor);
755 if our_commitment_number >= other_commitment_number {
756 self.key_storage = other.key_storage;
760 // TODO: We should use current_remote_commitment_number and the commitment number out of
761 // local transactions to decide how to merge
762 if our_min_secret >= other_min_secret {
763 self.their_cur_revocation_points = other.their_cur_revocation_points;
764 for (txid, htlcs) in other.remote_claimable_outpoints.drain() {
765 self.remote_claimable_outpoints.insert(txid, htlcs);
767 if let Some(local_tx) = other.prev_local_signed_commitment_tx {
768 self.prev_local_signed_commitment_tx = Some(local_tx);
770 if let Some(local_tx) = other.current_local_signed_commitment_tx {
771 self.current_local_signed_commitment_tx = Some(local_tx);
773 self.payment_preimages = other.payment_preimages;
776 self.current_remote_commitment_number = cmp::min(self.current_remote_commitment_number, other.current_remote_commitment_number);
780 /// Panics if commitment_transaction_number_obscure_factor doesn't fit in 48 bits
781 pub(super) fn set_commitment_obscure_factor(&mut self, commitment_transaction_number_obscure_factor: u64) {
782 assert!(commitment_transaction_number_obscure_factor < (1 << 48));
783 self.commitment_transaction_number_obscure_factor = commitment_transaction_number_obscure_factor;
786 /// Allows this monitor to scan only for transactions which are applicable. Note that this is
787 /// optional, without it this monitor cannot be used in an SPV client, but you may wish to
788 /// avoid this (or call unset_funding_info) on a monitor you wish to send to a watchtower as it
789 /// provides slightly better privacy.
790 /// It's the responsibility of the caller to register outpoint and script with passing the former
791 /// value as key to add_update_monitor.
792 pub(super) fn set_funding_info(&mut self, new_funding_info: (OutPoint, Script)) {
793 match self.key_storage {
794 Storage::Local { ref mut funding_info, .. } => {
795 *funding_info = Some(new_funding_info);
797 Storage::Watchtower { .. } => {
798 panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?");
803 /// We log these base keys at channel opening to being able to rebuild redeemscript in case of leaked revoked commit tx
804 pub(super) fn set_their_base_keys(&mut self, their_htlc_base_key: &PublicKey, their_delayed_payment_base_key: &PublicKey) {
805 self.their_htlc_base_key = Some(their_htlc_base_key.clone());
806 self.their_delayed_payment_base_key = Some(their_delayed_payment_base_key.clone());
809 pub(super) fn set_their_to_self_delay(&mut self, their_to_self_delay: u16) {
810 self.their_to_self_delay = Some(their_to_self_delay);
813 pub(super) fn unset_funding_info(&mut self) {
814 match self.key_storage {
815 Storage::Local { ref mut funding_info, .. } => {
816 *funding_info = None;
818 Storage::Watchtower { .. } => {
819 panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?");
824 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
825 pub fn get_funding_txo(&self) -> Option<OutPoint> {
826 match self.key_storage {
827 Storage::Local { ref funding_info, .. } => {
829 &Some((outpoint, _)) => Some(outpoint),
833 Storage::Watchtower { .. } => {
839 /// Gets the sets of all outpoints which this ChannelMonitor expects to hear about spends of.
840 /// Generally useful when deserializing as during normal operation the return values of
841 /// block_connected are sufficient to ensure all relevant outpoints are being monitored (note
842 /// that the get_funding_txo outpoint and transaction must also be monitored for!).
843 pub fn get_monitored_outpoints(&self) -> Vec<(Sha256dHash, u32, &Script)> {
844 let mut res = Vec::with_capacity(self.remote_commitment_txn_on_chain.len() * 2);
845 for (ref txid, &(_, ref outputs)) in self.remote_commitment_txn_on_chain.iter() {
846 for (idx, output) in outputs.iter().enumerate() {
847 res.push(((*txid).clone(), idx as u32, output));
853 /// Serializes into a vec, with various modes for the exposed pub fns
854 fn write<W: Writer>(&self, writer: &mut W, for_local_storage: bool) -> Result<(), ::std::io::Error> {
855 //TODO: We still write out all the serialization here manually instead of using the fancy
856 //serialization framework we have, we should migrate things over to it.
857 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
858 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
860 // Set in initial Channel-object creation, so should always be set by now:
861 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
863 macro_rules! write_option {
870 &None => 0u8.write(writer)?,
875 match self.key_storage {
876 Storage::Local { ref revocation_base_key, ref htlc_base_key, ref delayed_payment_base_key, ref payment_base_key, ref shutdown_pubkey, ref prev_latest_per_commitment_point, ref latest_per_commitment_point, ref funding_info, ref current_remote_commitment_txid, ref prev_remote_commitment_txid } => {
877 writer.write_all(&[0; 1])?;
878 writer.write_all(&revocation_base_key[..])?;
879 writer.write_all(&htlc_base_key[..])?;
880 writer.write_all(&delayed_payment_base_key[..])?;
881 writer.write_all(&payment_base_key[..])?;
882 writer.write_all(&shutdown_pubkey.serialize())?;
883 prev_latest_per_commitment_point.write(writer)?;
884 latest_per_commitment_point.write(writer)?;
886 &Some((ref outpoint, ref script)) => {
887 writer.write_all(&outpoint.txid[..])?;
888 writer.write_all(&byte_utils::be16_to_array(outpoint.index))?;
889 script.write(writer)?;
892 debug_assert!(false, "Try to serialize a useless Local monitor !");
895 current_remote_commitment_txid.write(writer)?;
896 prev_remote_commitment_txid.write(writer)?;
898 Storage::Watchtower { .. } => unimplemented!(),
901 writer.write_all(&self.their_htlc_base_key.as_ref().unwrap().serialize())?;
902 writer.write_all(&self.their_delayed_payment_base_key.as_ref().unwrap().serialize())?;
904 match self.their_cur_revocation_points {
905 Some((idx, pubkey, second_option)) => {
906 writer.write_all(&byte_utils::be48_to_array(idx))?;
907 writer.write_all(&pubkey.serialize())?;
908 match second_option {
909 Some(second_pubkey) => {
910 writer.write_all(&second_pubkey.serialize())?;
913 writer.write_all(&[0; 33])?;
918 writer.write_all(&byte_utils::be48_to_array(0))?;
922 writer.write_all(&byte_utils::be16_to_array(self.our_to_self_delay))?;
923 writer.write_all(&byte_utils::be16_to_array(self.their_to_self_delay.unwrap()))?;
925 for &(ref secret, ref idx) in self.old_secrets.iter() {
926 writer.write_all(secret)?;
927 writer.write_all(&byte_utils::be64_to_array(*idx))?;
930 macro_rules! serialize_htlc_in_commitment {
931 ($htlc_output: expr) => {
932 writer.write_all(&[$htlc_output.offered as u8; 1])?;
933 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
934 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
935 writer.write_all(&$htlc_output.payment_hash.0[..])?;
936 $htlc_output.transaction_output_index.write(writer)?;
940 writer.write_all(&byte_utils::be64_to_array(self.remote_claimable_outpoints.len() as u64))?;
941 for (ref txid, ref htlc_infos) in self.remote_claimable_outpoints.iter() {
942 writer.write_all(&txid[..])?;
943 writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
944 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
945 serialize_htlc_in_commitment!(htlc_output);
946 write_option!(htlc_source);
950 writer.write_all(&byte_utils::be64_to_array(self.remote_commitment_txn_on_chain.len() as u64))?;
951 for (ref txid, &(commitment_number, ref txouts)) in self.remote_commitment_txn_on_chain.iter() {
952 writer.write_all(&txid[..])?;
953 writer.write_all(&byte_utils::be48_to_array(commitment_number))?;
954 (txouts.len() as u64).write(writer)?;
955 for script in txouts.iter() {
956 script.write(writer)?;
960 if for_local_storage {
961 writer.write_all(&byte_utils::be64_to_array(self.remote_hash_commitment_number.len() as u64))?;
962 for (ref payment_hash, commitment_number) in self.remote_hash_commitment_number.iter() {
963 writer.write_all(&payment_hash.0[..])?;
964 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
967 writer.write_all(&byte_utils::be64_to_array(0))?;
970 macro_rules! serialize_local_tx {
971 ($local_tx: expr) => {
972 if let Err(e) = $local_tx.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) {
974 encode::Error::Io(e) => return Err(e),
975 _ => panic!("local tx must have been well-formed!"),
979 writer.write_all(&$local_tx.revocation_key.serialize())?;
980 writer.write_all(&$local_tx.a_htlc_key.serialize())?;
981 writer.write_all(&$local_tx.b_htlc_key.serialize())?;
982 writer.write_all(&$local_tx.delayed_payment_key.serialize())?;
984 writer.write_all(&byte_utils::be64_to_array($local_tx.feerate_per_kw))?;
985 writer.write_all(&byte_utils::be64_to_array($local_tx.htlc_outputs.len() as u64))?;
986 for &(ref htlc_output, ref sigs, ref htlc_source) in $local_tx.htlc_outputs.iter() {
987 serialize_htlc_in_commitment!(htlc_output);
988 if let &Some((ref their_sig, ref our_sig)) = sigs {
990 writer.write_all(&their_sig.serialize_compact())?;
991 writer.write_all(&our_sig.serialize_compact())?;
995 write_option!(htlc_source);
1000 if let Some(ref prev_local_tx) = self.prev_local_signed_commitment_tx {
1001 writer.write_all(&[1; 1])?;
1002 serialize_local_tx!(prev_local_tx);
1004 writer.write_all(&[0; 1])?;
1007 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
1008 writer.write_all(&[1; 1])?;
1009 serialize_local_tx!(cur_local_tx);
1011 writer.write_all(&[0; 1])?;
1014 if for_local_storage {
1015 writer.write_all(&byte_utils::be48_to_array(self.current_remote_commitment_number))?;
1017 writer.write_all(&byte_utils::be48_to_array(0))?;
1020 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
1021 for payment_preimage in self.payment_preimages.values() {
1022 writer.write_all(&payment_preimage.0[..])?;
1025 self.last_block_hash.write(writer)?;
1026 self.destination_script.write(writer)?;
1028 writer.write_all(&byte_utils::be64_to_array(self.htlc_updated_waiting_threshold_conf.len() as u64))?;
1029 for (ref target, ref updates) in self.htlc_updated_waiting_threshold_conf.iter() {
1030 writer.write_all(&byte_utils::be32_to_array(**target))?;
1031 writer.write_all(&byte_utils::be64_to_array(updates.len() as u64))?;
1032 for ref update in updates.iter() {
1033 update.0.write(writer)?;
1034 update.1.write(writer)?;
1035 update.2.write(writer)?;
1042 /// Writes this monitor into the given writer, suitable for writing to disk.
1044 /// Note that the deserializer is only implemented for (Sha256dHash, ChannelMonitor), which
1045 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
1046 /// the "reorg path" (ie not just starting at the same height but starting at the highest
1047 /// common block that appears on your best chain as well as on the chain which contains the
1048 /// last block hash returned) upon deserializing the object!
1049 pub fn write_for_disk<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
1050 self.write(writer, true)
1053 /// Encodes this monitor into the given writer, suitable for sending to a remote watchtower
1055 /// Note that the deserializer is only implemented for (Sha256dHash, ChannelMonitor), which
1056 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
1057 /// the "reorg path" (ie not just starting at the same height but starting at the highest
1058 /// common block that appears on your best chain as well as on the chain which contains the
1059 /// last block hash returned) upon deserializing the object!
1060 pub fn write_for_watchtower<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
1061 self.write(writer, false)
1064 /// Can only fail if idx is < get_min_seen_secret
1065 pub(super) fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
1066 for i in 0..self.old_secrets.len() {
1067 if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 {
1068 return Some(ChannelMonitor::derive_secret(self.old_secrets[i].0, i as u8, idx))
1071 assert!(idx < self.get_min_seen_secret());
1075 pub(super) fn get_min_seen_secret(&self) -> u64 {
1076 //TODO This can be optimized?
1077 let mut min = 1 << 48;
1078 for &(_, idx) in self.old_secrets.iter() {
1086 pub(super) fn get_cur_remote_commitment_number(&self) -> u64 {
1087 self.current_remote_commitment_number
1090 pub(super) fn get_cur_local_commitment_number(&self) -> u64 {
1091 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
1092 0xffff_ffff_ffff - ((((local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (local_tx.tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor)
1093 } else { 0xffff_ffff_ffff }
1096 /// Attempts to claim a remote commitment transaction's outputs using the revocation key and
1097 /// data in remote_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
1098 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
1099 /// HTLC-Success/HTLC-Timeout transactions.
1100 /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
1101 /// revoked remote commitment tx
1102 fn check_spend_remote_transaction(&mut self, tx: &Transaction, height: u32, fee_estimator: &FeeEstimator) -> (Vec<Transaction>, (Sha256dHash, Vec<TxOut>), Vec<SpendableOutputDescriptor>) {
1103 // Most secp and related errors trying to create keys means we have no hope of constructing
1104 // a spend transaction...so we return no transactions to broadcast
1105 let mut txn_to_broadcast = Vec::new();
1106 let mut watch_outputs = Vec::new();
1107 let mut spendable_outputs = Vec::new();
1109 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1110 let per_commitment_option = self.remote_claimable_outpoints.get(&commitment_txid);
1112 macro_rules! ignore_error {
1113 ( $thing : expr ) => {
1116 Err(_) => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs)
1121 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
1122 if commitment_number >= self.get_min_seen_secret() {
1123 let secret = self.get_secret(commitment_number).unwrap();
1124 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1125 let (revocation_pubkey, b_htlc_key, local_payment_key) = match self.key_storage {
1126 Storage::Local { ref revocation_base_key, ref htlc_base_key, ref payment_base_key, .. } => {
1127 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1128 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))),
1129 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))),
1130 Some(ignore_error!(chan_utils::derive_private_key(&self.secp_ctx, &per_commitment_point, &payment_base_key))))
1132 Storage::Watchtower { ref revocation_base_key, ref htlc_base_key, .. } => {
1133 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1134 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key)),
1135 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &htlc_base_key)),
1139 let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.their_delayed_payment_base_key.unwrap()));
1140 let a_htlc_key = match self.their_htlc_base_key {
1141 None => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs),
1142 Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &their_htlc_base_key)),
1145 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.our_to_self_delay, &delayed_key);
1146 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
1148 let local_payment_p2wpkh = if let Some(payment_key) = local_payment_key {
1149 // Note that the Network here is ignored as we immediately drop the address for the
1150 // script_pubkey version.
1151 let payment_hash160 = Hash160::hash(&PublicKey::from_secret_key(&self.secp_ctx, &payment_key).serialize());
1152 Some(Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_hash160[..]).into_script())
1155 let mut total_value = 0;
1156 let mut values = Vec::new();
1157 let mut inputs = Vec::new();
1158 let mut htlc_idxs = Vec::new();
1159 let mut input_descriptors = Vec::new();
1161 for (idx, outp) in tx.output.iter().enumerate() {
1162 if outp.script_pubkey == revokeable_p2wsh {
1164 previous_output: BitcoinOutPoint {
1165 txid: commitment_txid,
1168 script_sig: Script::new(),
1169 sequence: 0xfffffffd,
1170 witness: Vec::new(),
1172 htlc_idxs.push(None);
1173 values.push(outp.value);
1174 total_value += outp.value;
1175 input_descriptors.push(InputDescriptors::RevokedOutput);
1176 } else if Some(&outp.script_pubkey) == local_payment_p2wpkh.as_ref() {
1177 spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WPKH {
1178 outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 },
1179 key: local_payment_key.unwrap(),
1180 output: outp.clone(),
1185 macro_rules! sign_input {
1186 ($sighash_parts: expr, $input: expr, $htlc_idx: expr, $amount: expr) => {
1188 let (sig, redeemscript) = match self.key_storage {
1189 Storage::Local { ref revocation_base_key, .. } => {
1190 let redeemscript = if $htlc_idx.is_none() { revokeable_redeemscript.clone() } else {
1191 let htlc = &per_commitment_option.unwrap()[$htlc_idx.unwrap()].0;
1192 chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey)
1194 let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..]);
1195 let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key));
1196 (self.secp_ctx.sign(&sighash, &revocation_key), redeemscript)
1198 Storage::Watchtower { .. } => {
1202 $input.witness.push(sig.serialize_der().to_vec());
1203 $input.witness[0].push(SigHashType::All as u8);
1204 if $htlc_idx.is_none() {
1205 $input.witness.push(vec!(1));
1207 $input.witness.push(revocation_pubkey.serialize().to_vec());
1209 $input.witness.push(redeemscript.into_bytes());
1214 if let Some(ref per_commitment_data) = per_commitment_option {
1215 inputs.reserve_exact(per_commitment_data.len());
1217 for (idx, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1218 if let Some(transaction_output_index) = htlc.transaction_output_index {
1219 let expected_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
1220 if transaction_output_index as usize >= tx.output.len() ||
1221 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 ||
1222 tx.output[transaction_output_index as usize].script_pubkey != expected_script.to_v0_p2wsh() {
1223 return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); // Corrupted per_commitment_data, fuck this user
1226 previous_output: BitcoinOutPoint {
1227 txid: commitment_txid,
1228 vout: transaction_output_index,
1230 script_sig: Script::new(),
1231 sequence: 0xfffffffd,
1232 witness: Vec::new(),
1234 if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER {
1236 htlc_idxs.push(Some(idx));
1237 values.push(tx.output[transaction_output_index as usize].value);
1238 total_value += htlc.amount_msat / 1000;
1239 input_descriptors.push(if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC });
1241 let mut single_htlc_tx = Transaction {
1245 output: vec!(TxOut {
1246 script_pubkey: self.destination_script.clone(),
1247 value: htlc.amount_msat / 1000,
1250 let predicted_weight = single_htlc_tx.get_weight() + Self::get_witnesses_weight(&[if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC }]);
1251 if subtract_high_prio_fee!(self, fee_estimator, single_htlc_tx.output[0].value, predicted_weight, tx.txid()) {
1252 let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx);
1253 sign_input!(sighash_parts, single_htlc_tx.input[0], Some(idx), htlc.amount_msat / 1000);
1254 assert!(predicted_weight >= single_htlc_tx.get_weight());
1255 txn_to_broadcast.push(single_htlc_tx);
1262 if !inputs.is_empty() || !txn_to_broadcast.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
1263 // We're definitely a remote commitment transaction!
1264 log_trace!(self, "Got broadcast of revoked remote commitment transaction, generating general spend tx with {} inputs and {} other txn to broadcast", inputs.len(), txn_to_broadcast.len());
1265 watch_outputs.append(&mut tx.output.clone());
1266 self.remote_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect()));
1268 macro_rules! check_htlc_fails {
1269 ($txid: expr, $commitment_tx: expr) => {
1270 if let Some(ref outpoints) = self.remote_claimable_outpoints.get($txid) {
1271 for &(ref htlc, ref source_option) in outpoints.iter() {
1272 if let &Some(ref source) = source_option {
1273 log_info!(self, "Failing HTLC with payment_hash {} from {} remote commitment tx due to broadcast of revoked remote commitment transaction, waiting for confirmation (at height {})", log_bytes!(htlc.payment_hash.0), $commitment_tx, height + HTLC_FAIL_ANTI_REORG_DELAY - 1);
1274 match self.htlc_updated_waiting_threshold_conf.entry(height + HTLC_FAIL_ANTI_REORG_DELAY - 1) {
1275 hash_map::Entry::Occupied(mut entry) => {
1276 let e = entry.get_mut();
1277 e.retain(|ref update| update.0 != **source);
1278 e.push(((**source).clone(), None, htlc.payment_hash.clone()));
1280 hash_map::Entry::Vacant(entry) => {
1281 entry.insert(vec![((**source).clone(), None, htlc.payment_hash.clone())]);
1289 if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage {
1290 if let &Some(ref txid) = current_remote_commitment_txid {
1291 check_htlc_fails!(txid, "current");
1293 if let &Some(ref txid) = prev_remote_commitment_txid {
1294 check_htlc_fails!(txid, "remote");
1297 // No need to check local commitment txn, symmetric HTLCSource must be present as per-htlc data on remote commitment tx
1299 if inputs.is_empty() { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); } // Nothing to be done...probably a false positive/local tx
1301 let outputs = vec!(TxOut {
1302 script_pubkey: self.destination_script.clone(),
1305 let mut spend_tx = Transaction {
1311 let predicted_weight = spend_tx.get_weight() + Self::get_witnesses_weight(&input_descriptors[..]);
1313 if !subtract_high_prio_fee!(self, fee_estimator, spend_tx.output[0].value, predicted_weight, tx.txid()) {
1314 return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs);
1317 let mut values_drain = values.drain(..);
1318 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
1320 for (input, htlc_idx) in spend_tx.input.iter_mut().zip(htlc_idxs.iter()) {
1321 let value = values_drain.next().unwrap();
1322 sign_input!(sighash_parts, input, htlc_idx, value);
1324 assert!(predicted_weight >= spend_tx.get_weight());
1326 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
1327 outpoint: BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 },
1328 output: spend_tx.output[0].clone(),
1330 txn_to_broadcast.push(spend_tx);
1331 } else if let Some(per_commitment_data) = per_commitment_option {
1332 // While this isn't useful yet, there is a potential race where if a counterparty
1333 // revokes a state at the same time as the commitment transaction for that state is
1334 // confirmed, and the watchtower receives the block before the user, the user could
1335 // upload a new ChannelMonitor with the revocation secret but the watchtower has
1336 // already processed the block, resulting in the remote_commitment_txn_on_chain entry
1337 // not being generated by the above conditional. Thus, to be safe, we go ahead and
1339 watch_outputs.append(&mut tx.output.clone());
1340 self.remote_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect()));
1342 log_trace!(self, "Got broadcast of non-revoked remote commitment transaction {}", commitment_txid);
1344 macro_rules! check_htlc_fails {
1345 ($txid: expr, $commitment_tx: expr, $id: tt) => {
1346 if let Some(ref latest_outpoints) = self.remote_claimable_outpoints.get($txid) {
1347 $id: for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1348 if let &Some(ref source) = source_option {
1349 // Check if the HTLC is present in the commitment transaction that was
1350 // broadcast, but not if it was below the dust limit, which we should
1351 // fail backwards immediately as there is no way for us to learn the
1352 // payment_preimage.
1353 // Note that if the dust limit were allowed to change between
1354 // commitment transactions we'd want to be check whether *any*
1355 // broadcastable commitment transaction has the HTLC in it, but it
1356 // cannot currently change after channel initialization, so we don't
1358 for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() {
1359 if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() {
1363 log_trace!(self, "Failing HTLC with payment_hash {} from {} remote commitment tx due to broadcast of remote commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx);
1364 match self.htlc_updated_waiting_threshold_conf.entry(height + HTLC_FAIL_ANTI_REORG_DELAY - 1) {
1365 hash_map::Entry::Occupied(mut entry) => {
1366 let e = entry.get_mut();
1367 e.retain(|ref update| update.0 != **source);
1368 e.push(((**source).clone(), None, htlc.payment_hash.clone()));
1370 hash_map::Entry::Vacant(entry) => {
1371 entry.insert(vec![((**source).clone(), None, htlc.payment_hash.clone())]);
1379 if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage {
1380 if let &Some(ref txid) = current_remote_commitment_txid {
1381 check_htlc_fails!(txid, "current", 'current_loop);
1383 if let &Some(ref txid) = prev_remote_commitment_txid {
1384 check_htlc_fails!(txid, "previous", 'prev_loop);
1388 if let Some(revocation_points) = self.their_cur_revocation_points {
1389 let revocation_point_option =
1390 if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
1391 else if let Some(point) = revocation_points.2.as_ref() {
1392 if revocation_points.0 == commitment_number + 1 { Some(point) } else { None }
1394 if let Some(revocation_point) = revocation_point_option {
1395 let (revocation_pubkey, b_htlc_key) = match self.key_storage {
1396 Storage::Local { ref revocation_base_key, ref htlc_base_key, .. } => {
1397 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))),
1398 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))))
1400 Storage::Watchtower { ref revocation_base_key, ref htlc_base_key, .. } => {
1401 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &revocation_base_key)),
1402 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &htlc_base_key)))
1405 let a_htlc_key = match self.their_htlc_base_key {
1406 None => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs),
1407 Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &their_htlc_base_key)),
1410 for (idx, outp) in tx.output.iter().enumerate() {
1411 if outp.script_pubkey.is_v0_p2wpkh() {
1412 match self.key_storage {
1413 Storage::Local { ref payment_base_key, .. } => {
1414 if let Ok(local_key) = chan_utils::derive_private_key(&self.secp_ctx, &revocation_point, &payment_base_key) {
1415 spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WPKH {
1416 outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 },
1418 output: outp.clone(),
1422 Storage::Watchtower { .. } => {}
1424 break; // Only to_remote ouput is claimable
1428 let mut total_value = 0;
1429 let mut values = Vec::new();
1430 let mut inputs = Vec::new();
1431 let mut input_descriptors = Vec::new();
1433 macro_rules! sign_input {
1434 ($sighash_parts: expr, $input: expr, $amount: expr, $preimage: expr) => {
1436 let (sig, redeemscript) = match self.key_storage {
1437 Storage::Local { ref htlc_base_key, .. } => {
1438 let htlc = &per_commitment_option.unwrap()[$input.sequence as usize].0;
1439 let redeemscript = chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
1440 let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..]);
1441 let htlc_key = ignore_error!(chan_utils::derive_private_key(&self.secp_ctx, revocation_point, &htlc_base_key));
1442 (self.secp_ctx.sign(&sighash, &htlc_key), redeemscript)
1444 Storage::Watchtower { .. } => {
1448 $input.witness.push(sig.serialize_der().to_vec());
1449 $input.witness[0].push(SigHashType::All as u8);
1450 $input.witness.push($preimage);
1451 $input.witness.push(redeemscript.into_bytes());
1456 for (idx, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1457 if let Some(transaction_output_index) = htlc.transaction_output_index {
1458 let expected_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
1459 if transaction_output_index as usize >= tx.output.len() ||
1460 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 ||
1461 tx.output[transaction_output_index as usize].script_pubkey != expected_script.to_v0_p2wsh() {
1462 return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); // Corrupted per_commitment_data, fuck this user
1464 if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1466 previous_output: BitcoinOutPoint {
1467 txid: commitment_txid,
1468 vout: transaction_output_index,
1470 script_sig: Script::new(),
1471 sequence: idx as u32, // reset to 0xfffffffd in sign_input
1472 witness: Vec::new(),
1474 if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER {
1476 values.push((tx.output[transaction_output_index as usize].value, payment_preimage));
1477 total_value += htlc.amount_msat / 1000;
1478 input_descriptors.push(if htlc.offered { InputDescriptors::OfferedHTLC } else { InputDescriptors::ReceivedHTLC });
1480 let mut single_htlc_tx = Transaction {
1484 output: vec!(TxOut {
1485 script_pubkey: self.destination_script.clone(),
1486 value: htlc.amount_msat / 1000,
1489 let predicted_weight = single_htlc_tx.get_weight() + Self::get_witnesses_weight(&[if htlc.offered { InputDescriptors::OfferedHTLC } else { InputDescriptors::ReceivedHTLC }]);
1490 if subtract_high_prio_fee!(self, fee_estimator, single_htlc_tx.output[0].value, predicted_weight, tx.txid()) {
1491 let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx);
1492 sign_input!(sighash_parts, single_htlc_tx.input[0], htlc.amount_msat / 1000, payment_preimage.0.to_vec());
1493 assert!(predicted_weight >= single_htlc_tx.get_weight());
1494 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
1495 outpoint: BitcoinOutPoint { txid: single_htlc_tx.txid(), vout: 0 },
1496 output: single_htlc_tx.output[0].clone(),
1498 txn_to_broadcast.push(single_htlc_tx);
1503 // TODO: If the HTLC has already expired, potentially merge it with the
1504 // rest of the claim transaction, as above.
1506 previous_output: BitcoinOutPoint {
1507 txid: commitment_txid,
1508 vout: transaction_output_index,
1510 script_sig: Script::new(),
1511 sequence: idx as u32,
1512 witness: Vec::new(),
1514 let mut timeout_tx = Transaction {
1516 lock_time: htlc.cltv_expiry,
1518 output: vec!(TxOut {
1519 script_pubkey: self.destination_script.clone(),
1520 value: htlc.amount_msat / 1000,
1523 let sighash_parts = bip143::SighashComponents::new(&timeout_tx);
1524 sign_input!(sighash_parts, timeout_tx.input[0], htlc.amount_msat / 1000, vec![0]);
1525 txn_to_broadcast.push(timeout_tx);
1530 if inputs.is_empty() { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); } // Nothing to be done...probably a false positive/local tx
1532 let outputs = vec!(TxOut {
1533 script_pubkey: self.destination_script.clone(),
1536 let mut spend_tx = Transaction {
1542 let predicted_weight = spend_tx.get_weight() + Self::get_witnesses_weight(&input_descriptors[..]);
1543 if !subtract_high_prio_fee!(self, fee_estimator, spend_tx.output[0].value, predicted_weight, tx.txid()) {
1544 return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs);
1547 let mut values_drain = values.drain(..);
1548 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
1550 for input in spend_tx.input.iter_mut() {
1551 let value = values_drain.next().unwrap();
1552 sign_input!(sighash_parts, input, value.0, (value.1).0.to_vec());
1555 assert!(predicted_weight >= spend_tx.get_weight());
1556 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
1557 outpoint: BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 },
1558 output: spend_tx.output[0].clone(),
1560 txn_to_broadcast.push(spend_tx);
1565 (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs)
1568 /// Attempts to claim a remote HTLC-Success/HTLC-Timeout's outputs using the revocation key
1569 fn check_spend_remote_htlc(&self, tx: &Transaction, commitment_number: u64, fee_estimator: &FeeEstimator) -> (Option<Transaction>, Option<SpendableOutputDescriptor>) {
1570 if tx.input.len() != 1 || tx.output.len() != 1 {
1574 macro_rules! ignore_error {
1575 ( $thing : expr ) => {
1578 Err(_) => return (None, None)
1583 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (None, None); };
1584 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1585 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1586 let revocation_pubkey = match self.key_storage {
1587 Storage::Local { ref revocation_base_key, .. } => {
1588 ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key)))
1590 Storage::Watchtower { ref revocation_base_key, .. } => {
1591 ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key))
1594 let delayed_key = match self.their_delayed_payment_base_key {
1595 None => return (None, None),
1596 Some(their_delayed_payment_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &their_delayed_payment_base_key)),
1598 let redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.their_to_self_delay.unwrap(), &delayed_key);
1599 let revokeable_p2wsh = redeemscript.to_v0_p2wsh();
1600 let htlc_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1602 let mut inputs = Vec::new();
1605 if tx.output[0].script_pubkey == revokeable_p2wsh { //HTLC transactions have one txin, one txout
1607 previous_output: BitcoinOutPoint {
1611 script_sig: Script::new(),
1612 sequence: 0xfffffffd,
1613 witness: Vec::new(),
1615 amount = tx.output[0].value;
1618 if !inputs.is_empty() {
1619 let outputs = vec!(TxOut {
1620 script_pubkey: self.destination_script.clone(),
1624 let mut spend_tx = Transaction {
1630 let predicted_weight = spend_tx.get_weight() + Self::get_witnesses_weight(&[InputDescriptors::RevokedOutput]);
1631 if !subtract_high_prio_fee!(self, fee_estimator, spend_tx.output[0].value, predicted_weight, tx.txid()) {
1632 return (None, None);
1635 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
1637 let sig = match self.key_storage {
1638 Storage::Local { ref revocation_base_key, .. } => {
1639 let sighash = hash_to_message!(&sighash_parts.sighash_all(&spend_tx.input[0], &redeemscript, amount)[..]);
1640 let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key));
1641 self.secp_ctx.sign(&sighash, &revocation_key)
1643 Storage::Watchtower { .. } => {
1647 spend_tx.input[0].witness.push(sig.serialize_der().to_vec());
1648 spend_tx.input[0].witness[0].push(SigHashType::All as u8);
1649 spend_tx.input[0].witness.push(vec!(1));
1650 spend_tx.input[0].witness.push(redeemscript.into_bytes());
1652 assert!(predicted_weight >= spend_tx.get_weight());
1653 let outpoint = BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 };
1654 let output = spend_tx.output[0].clone();
1655 (Some(spend_tx), Some(SpendableOutputDescriptor::StaticOutput { outpoint, output }))
1656 } else { (None, None) }
1659 fn broadcast_by_local_state(&self, local_tx: &LocalSignedTx, per_commitment_point: &Option<PublicKey>, delayed_payment_base_key: &Option<SecretKey>) -> (Vec<Transaction>, Vec<SpendableOutputDescriptor>, Vec<TxOut>) {
1660 let mut res = Vec::with_capacity(local_tx.htlc_outputs.len());
1661 let mut spendable_outputs = Vec::with_capacity(local_tx.htlc_outputs.len());
1662 let mut watch_outputs = Vec::with_capacity(local_tx.htlc_outputs.len());
1664 macro_rules! add_dynamic_output {
1665 ($father_tx: expr, $vout: expr) => {
1666 if let Some(ref per_commitment_point) = *per_commitment_point {
1667 if let Some(ref delayed_payment_base_key) = *delayed_payment_base_key {
1668 if let Ok(local_delayedkey) = chan_utils::derive_private_key(&self.secp_ctx, per_commitment_point, delayed_payment_base_key) {
1669 spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WSH {
1670 outpoint: BitcoinOutPoint { txid: $father_tx.txid(), vout: $vout },
1671 key: local_delayedkey,
1672 witness_script: chan_utils::get_revokeable_redeemscript(&local_tx.revocation_key, self.our_to_self_delay, &local_tx.delayed_payment_key),
1673 to_self_delay: self.our_to_self_delay,
1674 output: $father_tx.output[$vout as usize].clone(),
1683 let redeemscript = chan_utils::get_revokeable_redeemscript(&local_tx.revocation_key, self.their_to_self_delay.unwrap(), &local_tx.delayed_payment_key);
1684 let revokeable_p2wsh = redeemscript.to_v0_p2wsh();
1685 for (idx, output) in local_tx.tx.output.iter().enumerate() {
1686 if output.script_pubkey == revokeable_p2wsh {
1687 add_dynamic_output!(local_tx.tx, idx as u32);
1692 for &(ref htlc, ref sigs, _) in local_tx.htlc_outputs.iter() {
1693 if let Some(transaction_output_index) = htlc.transaction_output_index {
1694 if let &Some((ref their_sig, ref our_sig)) = sigs {
1696 log_trace!(self, "Broadcasting HTLC-Timeout transaction against local commitment transactions");
1697 let mut htlc_timeout_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key);
1699 htlc_timeout_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
1701 htlc_timeout_tx.input[0].witness.push(their_sig.serialize_der().to_vec());
1702 htlc_timeout_tx.input[0].witness[1].push(SigHashType::All as u8);
1703 htlc_timeout_tx.input[0].witness.push(our_sig.serialize_der().to_vec());
1704 htlc_timeout_tx.input[0].witness[2].push(SigHashType::All as u8);
1706 htlc_timeout_tx.input[0].witness.push(Vec::new());
1707 htlc_timeout_tx.input[0].witness.push(chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key).into_bytes());
1709 add_dynamic_output!(htlc_timeout_tx, 0);
1710 res.push(htlc_timeout_tx);
1712 if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1713 log_trace!(self, "Broadcasting HTLC-Success transaction against local commitment transactions");
1714 let mut htlc_success_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key);
1716 htlc_success_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
1718 htlc_success_tx.input[0].witness.push(their_sig.serialize_der().to_vec());
1719 htlc_success_tx.input[0].witness[1].push(SigHashType::All as u8);
1720 htlc_success_tx.input[0].witness.push(our_sig.serialize_der().to_vec());
1721 htlc_success_tx.input[0].witness[2].push(SigHashType::All as u8);
1723 htlc_success_tx.input[0].witness.push(payment_preimage.0.to_vec());
1724 htlc_success_tx.input[0].witness.push(chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key).into_bytes());
1726 add_dynamic_output!(htlc_success_tx, 0);
1727 res.push(htlc_success_tx);
1730 watch_outputs.push(local_tx.tx.output[transaction_output_index as usize].clone());
1731 } else { panic!("Should have sigs for non-dust local tx outputs!") }
1735 (res, spendable_outputs, watch_outputs)
1738 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
1739 /// revoked using data in local_claimable_outpoints.
1740 /// Should not be used if check_spend_revoked_transaction succeeds.
1741 fn check_spend_local_transaction(&self, tx: &Transaction, _height: u32) -> (Vec<Transaction>, Vec<SpendableOutputDescriptor>, (Sha256dHash, Vec<TxOut>)) {
1742 let commitment_txid = tx.txid();
1743 // TODO: If we find a match here we need to fail back HTLCs that weren't included in the
1744 // broadcast commitment transaction, either because they didn't meet dust or because they
1745 // weren't yet included in our commitment transaction(s).
1746 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
1747 if local_tx.txid == commitment_txid {
1748 log_trace!(self, "Got latest local commitment tx broadcast, searching for available HTLCs to claim");
1749 match self.key_storage {
1750 Storage::Local { ref delayed_payment_base_key, ref latest_per_commitment_point, .. } => {
1751 let (local_txn, spendable_outputs, watch_outputs) = self.broadcast_by_local_state(local_tx, latest_per_commitment_point, &Some(*delayed_payment_base_key));
1752 return (local_txn, spendable_outputs, (commitment_txid, watch_outputs));
1754 Storage::Watchtower { .. } => {
1755 let (local_txn, spendable_outputs, watch_outputs) = self.broadcast_by_local_state(local_tx, &None, &None);
1756 return (local_txn, spendable_outputs, (commitment_txid, watch_outputs));
1761 if let &Some(ref local_tx) = &self.prev_local_signed_commitment_tx {
1762 if local_tx.txid == commitment_txid {
1763 log_trace!(self, "Got previous local commitment tx broadcast, searching for available HTLCs to claim");
1764 match self.key_storage {
1765 Storage::Local { ref delayed_payment_base_key, ref prev_latest_per_commitment_point, .. } => {
1766 let (local_txn, spendable_outputs, watch_outputs) = self.broadcast_by_local_state(local_tx, prev_latest_per_commitment_point, &Some(*delayed_payment_base_key));
1767 return (local_txn, spendable_outputs, (commitment_txid, watch_outputs));
1769 Storage::Watchtower { .. } => {
1770 let (local_txn, spendable_outputs, watch_outputs) = self.broadcast_by_local_state(local_tx, &None, &None);
1771 return (local_txn, spendable_outputs, (commitment_txid, watch_outputs));
1776 (Vec::new(), Vec::new(), (commitment_txid, Vec::new()))
1779 /// Generate a spendable output event when closing_transaction get registered onchain.
1780 fn check_spend_closing_transaction(&self, tx: &Transaction) -> Option<SpendableOutputDescriptor> {
1781 if tx.input[0].sequence == 0xFFFFFFFF && !tx.input[0].witness.is_empty() && tx.input[0].witness.last().unwrap().len() == 71 {
1782 match self.key_storage {
1783 Storage::Local { ref shutdown_pubkey, .. } => {
1784 let our_channel_close_key_hash = Hash160::hash(&shutdown_pubkey.serialize());
1785 let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script();
1786 for (idx, output) in tx.output.iter().enumerate() {
1787 if shutdown_script == output.script_pubkey {
1788 return Some(SpendableOutputDescriptor::StaticOutput {
1789 outpoint: BitcoinOutPoint { txid: tx.txid(), vout: idx as u32 },
1790 output: output.clone(),
1795 Storage::Watchtower { .. } => {
1796 //TODO: we need to ensure an offline client will generate the event when it
1797 // comes back online after only the watchtower saw the transaction
1804 /// Used by ChannelManager deserialization to broadcast the latest local state if it's copy of
1805 /// the Channel was out-of-date.
1806 pub(super) fn get_latest_local_commitment_txn(&self) -> Vec<Transaction> {
1807 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
1808 let mut res = vec![local_tx.tx.clone()];
1809 match self.key_storage {
1810 Storage::Local { ref delayed_payment_base_key, ref prev_latest_per_commitment_point, .. } => {
1811 res.append(&mut self.broadcast_by_local_state(local_tx, prev_latest_per_commitment_point, &Some(*delayed_payment_base_key)).0);
1813 _ => panic!("Can only broadcast by local channelmonitor"),
1821 fn block_connected(&mut self, txn_matched: &[&Transaction], height: u32, block_hash: &Sha256dHash, broadcaster: &BroadcasterInterface, fee_estimator: &FeeEstimator)-> (Vec<(Sha256dHash, Vec<TxOut>)>, Vec<SpendableOutputDescriptor>, Vec<(HTLCSource, Option<PaymentPreimage>, PaymentHash)>) {
1822 let mut watch_outputs = Vec::new();
1823 let mut spendable_outputs = Vec::new();
1824 let mut htlc_updated = Vec::new();
1825 for tx in txn_matched {
1826 if tx.input.len() == 1 {
1827 // Assuming our keys were not leaked (in which case we're screwed no matter what),
1828 // commitment transactions and HTLC transactions will all only ever have one input,
1829 // which is an easy way to filter out any potential non-matching txn for lazy
1831 let prevout = &tx.input[0].previous_output;
1832 let mut txn: Vec<Transaction> = Vec::new();
1833 let funding_txo = match self.key_storage {
1834 Storage::Local { ref funding_info, .. } => {
1835 funding_info.clone()
1837 Storage::Watchtower { .. } => {
1841 if funding_txo.is_none() || (prevout.txid == funding_txo.as_ref().unwrap().0.txid && prevout.vout == funding_txo.as_ref().unwrap().0.index as u32) {
1842 let (remote_txn, new_outputs, mut spendable_output) = self.check_spend_remote_transaction(tx, height, fee_estimator);
1844 spendable_outputs.append(&mut spendable_output);
1845 if !new_outputs.1.is_empty() {
1846 watch_outputs.push(new_outputs);
1849 let (local_txn, mut spendable_output, new_outputs) = self.check_spend_local_transaction(tx, height);
1850 spendable_outputs.append(&mut spendable_output);
1852 if !new_outputs.1.is_empty() {
1853 watch_outputs.push(new_outputs);
1856 if !funding_txo.is_none() && txn.is_empty() {
1857 if let Some(spendable_output) = self.check_spend_closing_transaction(tx) {
1858 spendable_outputs.push(spendable_output);
1862 if let Some(&(commitment_number, _)) = self.remote_commitment_txn_on_chain.get(&prevout.txid) {
1863 let (tx, spendable_output) = self.check_spend_remote_htlc(tx, commitment_number, fee_estimator);
1864 if let Some(tx) = tx {
1867 if let Some(spendable_output) = spendable_output {
1868 spendable_outputs.push(spendable_output);
1872 for tx in txn.iter() {
1873 broadcaster.broadcast_transaction(tx);
1876 // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
1877 // can also be resolved in a few other ways which can have more than one output. Thus,
1878 // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
1879 let mut updated = self.is_resolving_htlc_output(tx);
1880 if updated.len() > 0 {
1881 htlc_updated.append(&mut updated);
1884 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
1885 if self.would_broadcast_at_height(height) {
1886 broadcaster.broadcast_transaction(&cur_local_tx.tx);
1887 match self.key_storage {
1888 Storage::Local { ref delayed_payment_base_key, ref latest_per_commitment_point, .. } => {
1889 let (txs, mut spendable_output, new_outputs) = self.broadcast_by_local_state(&cur_local_tx, latest_per_commitment_point, &Some(*delayed_payment_base_key));
1890 spendable_outputs.append(&mut spendable_output);
1891 if !new_outputs.is_empty() {
1892 watch_outputs.push((cur_local_tx.txid.clone(), new_outputs));
1895 broadcaster.broadcast_transaction(&tx);
1898 Storage::Watchtower { .. } => {
1899 let (txs, mut spendable_output, new_outputs) = self.broadcast_by_local_state(&cur_local_tx, &None, &None);
1900 spendable_outputs.append(&mut spendable_output);
1901 if !new_outputs.is_empty() {
1902 watch_outputs.push((cur_local_tx.txid.clone(), new_outputs));
1905 broadcaster.broadcast_transaction(&tx);
1911 if let Some(updates) = self.htlc_updated_waiting_threshold_conf.remove(&height) {
1912 for update in updates {
1913 log_trace!(self, "HTLC {} failure update has get enough confirmation to be pass upstream", log_bytes!((update.2).0));
1914 htlc_updated.push(update);
1917 self.last_block_hash = block_hash.clone();
1918 (watch_outputs, spendable_outputs, htlc_updated)
1921 fn block_disconnected(&mut self, height: u32, block_hash: &Sha256dHash) {
1922 if let Some(_) = self.htlc_updated_waiting_threshold_conf.remove(&(height + HTLC_FAIL_ANTI_REORG_DELAY - 1)) {
1923 //We discard htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
1925 self.last_block_hash = block_hash.clone();
1928 pub(super) fn would_broadcast_at_height(&self, height: u32) -> bool {
1929 // We need to consider all HTLCs which are:
1930 // * in any unrevoked remote commitment transaction, as they could broadcast said
1931 // transactions and we'd end up in a race, or
1932 // * are in our latest local commitment transaction, as this is the thing we will
1933 // broadcast if we go on-chain.
1934 // Note that we consider HTLCs which were below dust threshold here - while they don't
1935 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
1936 // to the source, and if we don't fail the channel we will have to ensure that the next
1937 // updates that peer sends us are update_fails, failing the channel if not. It's probably
1938 // easier to just fail the channel as this case should be rare enough anyway.
1939 macro_rules! scan_commitment {
1940 ($htlcs: expr, $local_tx: expr) => {
1941 for ref htlc in $htlcs {
1942 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
1943 // chain with enough room to claim the HTLC without our counterparty being able to
1944 // time out the HTLC first.
1945 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
1946 // concern is being able to claim the corresponding inbound HTLC (on another
1947 // channel) before it expires. In fact, we don't even really care if our
1948 // counterparty here claims such an outbound HTLC after it expired as long as we
1949 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
1950 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
1951 // we give ourselves a few blocks of headroom after expiration before going
1952 // on-chain for an expired HTLC.
1953 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
1954 // from us until we've reached the point where we go on-chain with the
1955 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
1956 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
1957 // aka outbound_cltv + HTLC_FAIL_TIMEOUT_BLOCKS == height - CLTV_CLAIM_BUFFER
1958 // inbound_cltv == height + CLTV_CLAIM_BUFFER
1959 // outbound_cltv + HTLC_FAIL_TIMEOUT_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
1960 // HTLC_FAIL_TIMEOUT_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
1961 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
1962 // HTLC_FAIL_TIMEOUT_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
1963 // The final, above, condition is checked for statically in channelmanager
1964 // with CHECK_CLTV_EXPIRY_SANITY_2.
1965 let htlc_outbound = $local_tx == htlc.offered;
1966 if ( htlc_outbound && htlc.cltv_expiry + HTLC_FAIL_TIMEOUT_BLOCKS <= height) ||
1967 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
1968 log_info!(self, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
1975 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
1976 scan_commitment!(cur_local_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
1979 if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage {
1980 if let &Some(ref txid) = current_remote_commitment_txid {
1981 if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(txid) {
1982 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
1985 if let &Some(ref txid) = prev_remote_commitment_txid {
1986 if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(txid) {
1987 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
1995 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a local
1996 /// or remote commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
1997 fn is_resolving_htlc_output(&mut self, tx: &Transaction) -> Vec<(HTLCSource, Option<PaymentPreimage>, PaymentHash)> {
1998 let mut htlc_updated = Vec::new();
2000 'outer_loop: for input in &tx.input {
2001 let mut payment_data = None;
2002 let revocation_sig_claim = (input.witness.len() == 3 && input.witness[2].len() == OFFERED_HTLC_SCRIPT_WEIGHT && input.witness[1].len() == 33)
2003 || (input.witness.len() == 3 && input.witness[2].len() == ACCEPTED_HTLC_SCRIPT_WEIGHT && input.witness[1].len() == 33);
2004 let accepted_preimage_claim = input.witness.len() == 5 && input.witness[4].len() == ACCEPTED_HTLC_SCRIPT_WEIGHT;
2005 let offered_preimage_claim = input.witness.len() == 3 && input.witness[2].len() == OFFERED_HTLC_SCRIPT_WEIGHT;
2007 macro_rules! log_claim {
2008 ($tx_info: expr, $local_tx: expr, $htlc: expr, $source_avail: expr) => {
2009 // We found the output in question, but aren't failing it backwards
2010 // as we have no corresponding source and no valid remote commitment txid
2011 // to try a weak source binding with same-hash, same-value still-valid offered HTLC.
2012 // This implies either it is an inbound HTLC or an outbound HTLC on a revoked transaction.
2013 let outbound_htlc = $local_tx == $htlc.offered;
2014 if ($local_tx && revocation_sig_claim) ||
2015 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
2016 log_error!(self, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
2017 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2018 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2019 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
2021 log_info!(self, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
2022 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2023 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2024 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
2029 macro_rules! check_htlc_valid_remote {
2030 ($remote_txid: expr, $htlc_output: expr) => {
2031 if let &Some(txid) = $remote_txid {
2032 for &(ref pending_htlc, ref pending_source) in self.remote_claimable_outpoints.get(&txid).unwrap() {
2033 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
2034 if let &Some(ref source) = pending_source {
2035 log_claim!("revoked remote commitment tx", false, pending_htlc, true);
2036 payment_data = Some(((**source).clone(), $htlc_output.payment_hash));
2045 macro_rules! scan_commitment {
2046 ($htlcs: expr, $tx_info: expr, $local_tx: expr) => {
2047 for (ref htlc_output, source_option) in $htlcs {
2048 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
2049 if let Some(ref source) = source_option {
2050 log_claim!($tx_info, $local_tx, htlc_output, true);
2051 // We have a resolution of an HTLC either from one of our latest
2052 // local commitment transactions or an unrevoked remote commitment
2053 // transaction. This implies we either learned a preimage, the HTLC
2054 // has timed out, or we screwed up. In any case, we should now
2055 // resolve the source HTLC with the original sender.
2056 payment_data = Some(((*source).clone(), htlc_output.payment_hash));
2057 } else if !$local_tx {
2058 if let Storage::Local { ref current_remote_commitment_txid, .. } = self.key_storage {
2059 check_htlc_valid_remote!(current_remote_commitment_txid, htlc_output);
2061 if payment_data.is_none() {
2062 if let Storage::Local { ref prev_remote_commitment_txid, .. } = self.key_storage {
2063 check_htlc_valid_remote!(prev_remote_commitment_txid, htlc_output);
2067 if payment_data.is_none() {
2068 log_claim!($tx_info, $local_tx, htlc_output, false);
2069 continue 'outer_loop;
2076 if let Some(ref current_local_signed_commitment_tx) = self.current_local_signed_commitment_tx {
2077 if input.previous_output.txid == current_local_signed_commitment_tx.txid {
2078 scan_commitment!(current_local_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2079 "our latest local commitment tx", true);
2082 if let Some(ref prev_local_signed_commitment_tx) = self.prev_local_signed_commitment_tx {
2083 if input.previous_output.txid == prev_local_signed_commitment_tx.txid {
2084 scan_commitment!(prev_local_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2085 "our previous local commitment tx", true);
2088 if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(&input.previous_output.txid) {
2089 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
2090 "remote commitment tx", false);
2093 // Check that scan_commitment, above, decided there is some source worth relaying an
2094 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
2095 if let Some((source, payment_hash)) = payment_data {
2096 let mut payment_preimage = PaymentPreimage([0; 32]);
2097 if accepted_preimage_claim {
2098 payment_preimage.0.copy_from_slice(&input.witness[3]);
2099 htlc_updated.push((source, Some(payment_preimage), payment_hash));
2100 } else if offered_preimage_claim {
2101 payment_preimage.0.copy_from_slice(&input.witness[1]);
2102 htlc_updated.push((source, Some(payment_preimage), payment_hash));
2104 htlc_updated.push((source, None, payment_hash));
2112 const MAX_ALLOC_SIZE: usize = 64*1024;
2114 impl<R: ::std::io::Read> ReadableArgs<R, Arc<Logger>> for (Sha256dHash, ChannelMonitor) {
2115 fn read(reader: &mut R, logger: Arc<Logger>) -> Result<Self, DecodeError> {
2116 let secp_ctx = Secp256k1::new();
2117 macro_rules! unwrap_obj {
2121 Err(_) => return Err(DecodeError::InvalidValue),
2126 let _ver: u8 = Readable::read(reader)?;
2127 let min_ver: u8 = Readable::read(reader)?;
2128 if min_ver > SERIALIZATION_VERSION {
2129 return Err(DecodeError::UnknownVersion);
2132 let commitment_transaction_number_obscure_factor = <U48 as Readable<R>>::read(reader)?.0;
2134 let key_storage = match <u8 as Readable<R>>::read(reader)? {
2136 let revocation_base_key = Readable::read(reader)?;
2137 let htlc_base_key = Readable::read(reader)?;
2138 let delayed_payment_base_key = Readable::read(reader)?;
2139 let payment_base_key = Readable::read(reader)?;
2140 let shutdown_pubkey = Readable::read(reader)?;
2141 let prev_latest_per_commitment_point = Readable::read(reader)?;
2142 let latest_per_commitment_point = Readable::read(reader)?;
2143 // Technically this can fail and serialize fail a round-trip, but only for serialization of
2144 // barely-init'd ChannelMonitors that we can't do anything with.
2145 let outpoint = OutPoint {
2146 txid: Readable::read(reader)?,
2147 index: Readable::read(reader)?,
2149 let funding_info = Some((outpoint, Readable::read(reader)?));
2150 let current_remote_commitment_txid = Readable::read(reader)?;
2151 let prev_remote_commitment_txid = Readable::read(reader)?;
2153 revocation_base_key,
2155 delayed_payment_base_key,
2158 prev_latest_per_commitment_point,
2159 latest_per_commitment_point,
2161 current_remote_commitment_txid,
2162 prev_remote_commitment_txid,
2165 _ => return Err(DecodeError::InvalidValue),
2168 let their_htlc_base_key = Some(Readable::read(reader)?);
2169 let their_delayed_payment_base_key = Some(Readable::read(reader)?);
2171 let their_cur_revocation_points = {
2172 let first_idx = <U48 as Readable<R>>::read(reader)?.0;
2176 let first_point = Readable::read(reader)?;
2177 let second_point_slice: [u8; 33] = Readable::read(reader)?;
2178 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
2179 Some((first_idx, first_point, None))
2181 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
2186 let our_to_self_delay: u16 = Readable::read(reader)?;
2187 let their_to_self_delay: Option<u16> = Some(Readable::read(reader)?);
2189 let mut old_secrets = [([0; 32], 1 << 48); 49];
2190 for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() {
2191 *secret = Readable::read(reader)?;
2192 *idx = Readable::read(reader)?;
2195 macro_rules! read_htlc_in_commitment {
2198 let offered: bool = Readable::read(reader)?;
2199 let amount_msat: u64 = Readable::read(reader)?;
2200 let cltv_expiry: u32 = Readable::read(reader)?;
2201 let payment_hash: PaymentHash = Readable::read(reader)?;
2202 let transaction_output_index: Option<u32> = Readable::read(reader)?;
2204 HTLCOutputInCommitment {
2205 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
2211 let remote_claimable_outpoints_len: u64 = Readable::read(reader)?;
2212 let mut remote_claimable_outpoints = HashMap::with_capacity(cmp::min(remote_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
2213 for _ in 0..remote_claimable_outpoints_len {
2214 let txid: Sha256dHash = Readable::read(reader)?;
2215 let htlcs_count: u64 = Readable::read(reader)?;
2216 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
2217 for _ in 0..htlcs_count {
2218 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable<R>>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
2220 if let Some(_) = remote_claimable_outpoints.insert(txid, htlcs) {
2221 return Err(DecodeError::InvalidValue);
2225 let remote_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
2226 let mut remote_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(remote_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
2227 for _ in 0..remote_commitment_txn_on_chain_len {
2228 let txid: Sha256dHash = Readable::read(reader)?;
2229 let commitment_number = <U48 as Readable<R>>::read(reader)?.0;
2230 let outputs_count = <u64 as Readable<R>>::read(reader)?;
2231 let mut outputs = Vec::with_capacity(cmp::min(outputs_count as usize, MAX_ALLOC_SIZE / 8));
2232 for _ in 0..outputs_count {
2233 outputs.push(Readable::read(reader)?);
2235 if let Some(_) = remote_commitment_txn_on_chain.insert(txid, (commitment_number, outputs)) {
2236 return Err(DecodeError::InvalidValue);
2240 let remote_hash_commitment_number_len: u64 = Readable::read(reader)?;
2241 let mut remote_hash_commitment_number = HashMap::with_capacity(cmp::min(remote_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
2242 for _ in 0..remote_hash_commitment_number_len {
2243 let payment_hash: PaymentHash = Readable::read(reader)?;
2244 let commitment_number = <U48 as Readable<R>>::read(reader)?.0;
2245 if let Some(_) = remote_hash_commitment_number.insert(payment_hash, commitment_number) {
2246 return Err(DecodeError::InvalidValue);
2250 macro_rules! read_local_tx {
2253 let tx = match Transaction::consensus_decode(reader.by_ref()) {
2256 encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)),
2257 _ => return Err(DecodeError::InvalidValue),
2261 if tx.input.is_empty() {
2262 // Ensure tx didn't hit the 0-input ambiguity case.
2263 return Err(DecodeError::InvalidValue);
2266 let revocation_key = Readable::read(reader)?;
2267 let a_htlc_key = Readable::read(reader)?;
2268 let b_htlc_key = Readable::read(reader)?;
2269 let delayed_payment_key = Readable::read(reader)?;
2270 let feerate_per_kw: u64 = Readable::read(reader)?;
2272 let htlcs_len: u64 = Readable::read(reader)?;
2273 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128));
2274 for _ in 0..htlcs_len {
2275 let htlc = read_htlc_in_commitment!();
2276 let sigs = match <u8 as Readable<R>>::read(reader)? {
2278 1 => Some((Readable::read(reader)?, Readable::read(reader)?)),
2279 _ => return Err(DecodeError::InvalidValue),
2281 htlcs.push((htlc, sigs, Readable::read(reader)?));
2286 tx, revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, feerate_per_kw,
2293 let prev_local_signed_commitment_tx = match <u8 as Readable<R>>::read(reader)? {
2296 Some(read_local_tx!())
2298 _ => return Err(DecodeError::InvalidValue),
2301 let current_local_signed_commitment_tx = match <u8 as Readable<R>>::read(reader)? {
2304 Some(read_local_tx!())
2306 _ => return Err(DecodeError::InvalidValue),
2309 let current_remote_commitment_number = <U48 as Readable<R>>::read(reader)?.0;
2311 let payment_preimages_len: u64 = Readable::read(reader)?;
2312 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
2313 for _ in 0..payment_preimages_len {
2314 let preimage: PaymentPreimage = Readable::read(reader)?;
2315 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2316 if let Some(_) = payment_preimages.insert(hash, preimage) {
2317 return Err(DecodeError::InvalidValue);
2321 let last_block_hash: Sha256dHash = Readable::read(reader)?;
2322 let destination_script = Readable::read(reader)?;
2324 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
2325 let mut htlc_updated_waiting_threshold_conf = HashMap::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
2326 for _ in 0..waiting_threshold_conf_len {
2327 let height_target = Readable::read(reader)?;
2328 let updates_len: u64 = Readable::read(reader)?;
2329 let mut updates = Vec::with_capacity(cmp::min(updates_len as usize, MAX_ALLOC_SIZE / 128));
2330 for _ in 0..updates_len {
2331 let htlc_source = Readable::read(reader)?;
2332 let preimage = Readable::read(reader)?;
2333 let hash = Readable::read(reader)?;
2334 updates.push((htlc_source, preimage, hash));
2336 htlc_updated_waiting_threshold_conf.insert(height_target, updates);
2339 Ok((last_block_hash.clone(), ChannelMonitor {
2340 commitment_transaction_number_obscure_factor,
2343 their_htlc_base_key,
2344 their_delayed_payment_base_key,
2345 their_cur_revocation_points,
2348 their_to_self_delay,
2351 remote_claimable_outpoints,
2352 remote_commitment_txn_on_chain,
2353 remote_hash_commitment_number,
2355 prev_local_signed_commitment_tx,
2356 current_local_signed_commitment_tx,
2357 current_remote_commitment_number,
2363 htlc_updated_waiting_threshold_conf,
2375 use bitcoin::blockdata::script::{Script, Builder};
2376 use bitcoin::blockdata::opcodes;
2377 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, SigHashType};
2378 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
2379 use bitcoin::util::bip143;
2380 use bitcoin_hashes::Hash;
2381 use bitcoin_hashes::sha256::Hash as Sha256;
2382 use bitcoin_hashes::sha256d::Hash as Sha256dHash;
2383 use bitcoin_hashes::hex::FromHex;
2385 use ln::channelmanager::{PaymentPreimage, PaymentHash};
2386 use ln::channelmonitor::{ChannelMonitor, InputDescriptors};
2388 use ln::chan_utils::{HTLCOutputInCommitment, TxCreationKeys};
2389 use util::test_utils::TestLogger;
2390 use secp256k1::key::{SecretKey,PublicKey};
2391 use secp256k1::Secp256k1;
2392 use rand::{thread_rng,Rng};
2396 fn test_per_commitment_storage() {
2397 // Test vectors from BOLT 3:
2398 let mut secrets: Vec<[u8; 32]> = Vec::new();
2399 let mut monitor: ChannelMonitor;
2400 let secp_ctx = Secp256k1::new();
2401 let logger = Arc::new(TestLogger::new());
2403 macro_rules! test_secrets {
2405 let mut idx = 281474976710655;
2406 for secret in secrets.iter() {
2407 assert_eq!(monitor.get_secret(idx).unwrap(), *secret);
2410 assert_eq!(monitor.get_min_seen_secret(), idx + 1);
2411 assert!(monitor.get_secret(idx).is_none());
2416 // insert_secret correct sequence
2417 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2420 secrets.push([0; 32]);
2421 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2422 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2425 secrets.push([0; 32]);
2426 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2427 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2430 secrets.push([0; 32]);
2431 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2432 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2435 secrets.push([0; 32]);
2436 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2437 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2440 secrets.push([0; 32]);
2441 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
2442 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2445 secrets.push([0; 32]);
2446 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
2447 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
2450 secrets.push([0; 32]);
2451 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
2452 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
2455 secrets.push([0; 32]);
2456 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
2457 monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap();
2462 // insert_secret #1 incorrect
2463 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2466 secrets.push([0; 32]);
2467 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
2468 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2471 secrets.push([0; 32]);
2472 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2473 assert_eq!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap_err().0,
2474 "Previous secret did not match new one");
2478 // insert_secret #2 incorrect (#1 derived from incorrect)
2479 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2482 secrets.push([0; 32]);
2483 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
2484 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2487 secrets.push([0; 32]);
2488 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
2489 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2492 secrets.push([0; 32]);
2493 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2494 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2497 secrets.push([0; 32]);
2498 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2499 assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap_err().0,
2500 "Previous secret did not match new one");
2504 // insert_secret #3 incorrect
2505 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2508 secrets.push([0; 32]);
2509 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2510 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2513 secrets.push([0; 32]);
2514 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2515 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2518 secrets.push([0; 32]);
2519 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
2520 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2523 secrets.push([0; 32]);
2524 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2525 assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap_err().0,
2526 "Previous secret did not match new one");
2530 // insert_secret #4 incorrect (1,2,3 derived from incorrect)
2531 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2534 secrets.push([0; 32]);
2535 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
2536 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2539 secrets.push([0; 32]);
2540 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
2541 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2544 secrets.push([0; 32]);
2545 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
2546 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2549 secrets.push([0; 32]);
2550 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap());
2551 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2554 secrets.push([0; 32]);
2555 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
2556 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2559 secrets.push([0; 32]);
2560 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
2561 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
2564 secrets.push([0; 32]);
2565 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
2566 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
2569 secrets.push([0; 32]);
2570 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
2571 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
2572 "Previous secret did not match new one");
2576 // insert_secret #5 incorrect
2577 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2580 secrets.push([0; 32]);
2581 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2582 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2585 secrets.push([0; 32]);
2586 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2587 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2590 secrets.push([0; 32]);
2591 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2592 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2595 secrets.push([0; 32]);
2596 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2597 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2600 secrets.push([0; 32]);
2601 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
2602 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2605 secrets.push([0; 32]);
2606 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
2607 assert_eq!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap_err().0,
2608 "Previous secret did not match new one");
2612 // insert_secret #6 incorrect (5 derived from incorrect)
2613 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2616 secrets.push([0; 32]);
2617 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2618 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2621 secrets.push([0; 32]);
2622 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2623 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2626 secrets.push([0; 32]);
2627 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2628 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2631 secrets.push([0; 32]);
2632 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2633 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2636 secrets.push([0; 32]);
2637 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
2638 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2641 secrets.push([0; 32]);
2642 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap());
2643 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
2646 secrets.push([0; 32]);
2647 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
2648 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
2651 secrets.push([0; 32]);
2652 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
2653 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
2654 "Previous secret did not match new one");
2658 // insert_secret #7 incorrect
2659 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2662 secrets.push([0; 32]);
2663 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2664 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2667 secrets.push([0; 32]);
2668 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2669 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2672 secrets.push([0; 32]);
2673 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2674 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2677 secrets.push([0; 32]);
2678 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2679 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2682 secrets.push([0; 32]);
2683 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
2684 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2687 secrets.push([0; 32]);
2688 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
2689 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
2692 secrets.push([0; 32]);
2693 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap());
2694 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
2697 secrets.push([0; 32]);
2698 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
2699 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
2700 "Previous secret did not match new one");
2704 // insert_secret #8 incorrect
2705 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2708 secrets.push([0; 32]);
2709 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2710 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2713 secrets.push([0; 32]);
2714 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2715 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2718 secrets.push([0; 32]);
2719 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2720 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2723 secrets.push([0; 32]);
2724 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2725 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2728 secrets.push([0; 32]);
2729 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
2730 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2733 secrets.push([0; 32]);
2734 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
2735 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
2738 secrets.push([0; 32]);
2739 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
2740 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
2743 secrets.push([0; 32]);
2744 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap());
2745 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
2746 "Previous secret did not match new one");
2751 fn test_prune_preimages() {
2752 let secp_ctx = Secp256k1::new();
2753 let logger = Arc::new(TestLogger::new());
2755 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
2756 macro_rules! dummy_keys {
2760 per_commitment_point: dummy_key.clone(),
2761 revocation_key: dummy_key.clone(),
2762 a_htlc_key: dummy_key.clone(),
2763 b_htlc_key: dummy_key.clone(),
2764 a_delayed_payment_key: dummy_key.clone(),
2765 b_payment_key: dummy_key.clone(),
2770 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
2772 let mut preimages = Vec::new();
2774 let mut rng = thread_rng();
2776 let mut preimage = PaymentPreimage([0; 32]);
2777 rng.fill_bytes(&mut preimage.0[..]);
2778 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2779 preimages.push((preimage, hash));
2783 macro_rules! preimages_slice_to_htlc_outputs {
2784 ($preimages_slice: expr) => {
2786 let mut res = Vec::new();
2787 for (idx, preimage) in $preimages_slice.iter().enumerate() {
2788 res.push((HTLCOutputInCommitment {
2792 payment_hash: preimage.1.clone(),
2793 transaction_output_index: Some(idx as u32),
2800 macro_rules! preimages_to_local_htlcs {
2801 ($preimages_slice: expr) => {
2803 let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
2804 let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
2810 macro_rules! test_preimages_exist {
2811 ($preimages_slice: expr, $monitor: expr) => {
2812 for preimage in $preimages_slice {
2813 assert!($monitor.payment_preimages.contains_key(&preimage.1));
2818 // Prune with one old state and a local commitment tx holding a few overlaps with the
2820 let mut monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2821 monitor.set_their_to_self_delay(10);
2823 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..10]));
2824 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key);
2825 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key);
2826 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key);
2827 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key);
2828 for &(ref preimage, ref hash) in preimages.iter() {
2829 monitor.provide_payment_preimage(hash, preimage);
2832 // Now provide a secret, pruning preimages 10-15
2833 let mut secret = [0; 32];
2834 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2835 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
2836 assert_eq!(monitor.payment_preimages.len(), 15);
2837 test_preimages_exist!(&preimages[0..10], monitor);
2838 test_preimages_exist!(&preimages[15..20], monitor);
2840 // Now provide a further secret, pruning preimages 15-17
2841 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2842 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
2843 assert_eq!(monitor.payment_preimages.len(), 13);
2844 test_preimages_exist!(&preimages[0..10], monitor);
2845 test_preimages_exist!(&preimages[17..20], monitor);
2847 // Now update local commitment tx info, pruning only element 18 as we still care about the
2848 // previous commitment tx's preimages too
2849 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..5]));
2850 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2851 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
2852 assert_eq!(monitor.payment_preimages.len(), 12);
2853 test_preimages_exist!(&preimages[0..10], monitor);
2854 test_preimages_exist!(&preimages[18..20], monitor);
2856 // But if we do it again, we'll prune 5-10
2857 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..3]));
2858 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2859 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
2860 assert_eq!(monitor.payment_preimages.len(), 5);
2861 test_preimages_exist!(&preimages[0..5], monitor);
2865 fn test_claim_txn_weight_computation() {
2866 // We test Claim txn weight, knowing that we want expected weigth and
2867 // not actual case to avoid sigs and time-lock delays hell variances.
2869 let secp_ctx = Secp256k1::new();
2870 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
2871 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
2872 let mut sum_actual_sigs: u64 = 0;
2874 macro_rules! sign_input {
2875 ($sighash_parts: expr, $input: expr, $idx: expr, $amount: expr, $input_type: expr, $sum_actual_sigs: expr) => {
2876 let htlc = HTLCOutputInCommitment {
2877 offered: if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::OfferedHTLC { true } else { false },
2879 cltv_expiry: 2 << 16,
2880 payment_hash: PaymentHash([1; 32]),
2881 transaction_output_index: Some($idx),
2883 let redeem_script = if *$input_type == InputDescriptors::RevokedOutput { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &pubkey, &pubkey, &pubkey) };
2884 let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeem_script, $amount)[..]);
2885 let sig = secp_ctx.sign(&sighash, &privkey);
2886 $input.witness.push(sig.serialize_der().to_vec());
2887 $input.witness[0].push(SigHashType::All as u8);
2888 sum_actual_sigs += $input.witness[0].len() as u64;
2889 if *$input_type == InputDescriptors::RevokedOutput {
2890 $input.witness.push(vec!(1));
2891 } else if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::RevokedReceivedHTLC {
2892 $input.witness.push(pubkey.clone().serialize().to_vec());
2893 } else if *$input_type == InputDescriptors::ReceivedHTLC {
2894 $input.witness.push(vec![0]);
2896 $input.witness.push(PaymentPreimage([1; 32]).0.to_vec());
2898 $input.witness.push(redeem_script.into_bytes());
2899 println!("witness[0] {}", $input.witness[0].len());
2900 println!("witness[1] {}", $input.witness[1].len());
2901 println!("witness[2] {}", $input.witness[2].len());
2905 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
2906 let txid = Sha256dHash::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
2908 // Justice tx with 1 to_local, 2 revoked offered HTLCs, 1 revoked received HTLCs
2909 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
2911 claim_tx.input.push(TxIn {
2912 previous_output: BitcoinOutPoint {
2916 script_sig: Script::new(),
2917 sequence: 0xfffffffd,
2918 witness: Vec::new(),
2921 claim_tx.output.push(TxOut {
2922 script_pubkey: script_pubkey.clone(),
2925 let base_weight = claim_tx.get_weight();
2926 let sighash_parts = bip143::SighashComponents::new(&claim_tx);
2927 let inputs_des = vec![InputDescriptors::RevokedOutput, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedReceivedHTLC];
2928 for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() {
2929 sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs);
2931 assert_eq!(base_weight + ChannelMonitor::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() as u64 - sum_actual_sigs));
2933 // Claim tx with 1 offered HTLCs, 3 received HTLCs
2934 claim_tx.input.clear();
2935 sum_actual_sigs = 0;
2937 claim_tx.input.push(TxIn {
2938 previous_output: BitcoinOutPoint {
2942 script_sig: Script::new(),
2943 sequence: 0xfffffffd,
2944 witness: Vec::new(),
2947 let base_weight = claim_tx.get_weight();
2948 let sighash_parts = bip143::SighashComponents::new(&claim_tx);
2949 let inputs_des = vec![InputDescriptors::OfferedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC];
2950 for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() {
2951 sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs);
2953 assert_eq!(base_weight + ChannelMonitor::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() as u64 - sum_actual_sigs));
2955 // Justice tx with 1 revoked HTLC-Success tx output
2956 claim_tx.input.clear();
2957 sum_actual_sigs = 0;
2958 claim_tx.input.push(TxIn {
2959 previous_output: BitcoinOutPoint {
2963 script_sig: Script::new(),
2964 sequence: 0xfffffffd,
2965 witness: Vec::new(),
2967 let base_weight = claim_tx.get_weight();
2968 let sighash_parts = bip143::SighashComponents::new(&claim_tx);
2969 let inputs_des = vec![InputDescriptors::RevokedOutput];
2970 for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() {
2971 sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs);
2973 assert_eq!(base_weight + ChannelMonitor::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_isg */ (73 * inputs_des.len() as u64 - sum_actual_sigs));
2976 // Further testing is done in the ChannelManager integration tests.