1 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
4 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
5 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
6 //! be made in responding to certain messages, see ManyChannelMonitor for more.
8 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
9 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
10 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
11 //! security-domain-separated system design, you should consider having multiple paths for
12 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
14 use bitcoin::blockdata::block::BlockHeader;
15 use bitcoin::blockdata::transaction::{TxIn,TxOut,SigHashType,Transaction};
16 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
17 use bitcoin::blockdata::script::Script;
18 use bitcoin::network::serialize;
19 use bitcoin::util::hash::Sha256dHash;
20 use bitcoin::util::bip143;
22 use crypto::digest::Digest;
24 use secp256k1::{Secp256k1,Message,Signature};
25 use secp256k1::key::{SecretKey,PublicKey};
28 use ln::msgs::{DecodeError, HandleError};
30 use ln::chan_utils::HTLCOutputInCommitment;
31 use chain::chaininterface::{ChainListener, ChainWatchInterface, BroadcasterInterface};
32 use chain::transaction::OutPoint;
33 use util::ser::{Readable, Writer};
34 use util::sha2::Sha256;
37 use std::collections::HashMap;
38 use std::sync::{Arc,Mutex};
41 /// An error enum representing a failure to persist a channel monitor update.
42 pub enum ChannelMonitorUpdateErr {
43 /// Used to indicate a temporary failure (eg connection to a watchtower failed, but is expected
44 /// to succeed at some point in the future).
46 /// Such a failure will "freeze" a channel, preventing us from revoking old states or
47 /// submitting new commitment transactions to the remote party.
48 /// ChannelManager::test_restore_channel_monitor can be used to retry the update(s) and restore
49 /// the channel to an operational state.
51 /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
52 /// different watchtower and cannot update with all watchtowers that were previously informed
53 /// of this channel). This will force-close the channel in question.
57 /// Simple trait indicating ability to track a set of ChannelMonitors and multiplex events between
58 /// them. Generally should be implemented by keeping a local SimpleManyChannelMonitor and passing
59 /// events to it, while also taking any add_update_monitor events and passing them to some remote
62 /// Note that any updates to a channel's monitor *must* be applied to each instance of the
63 /// channel's monitor everywhere (including remote watchtowers) *before* this function returns. If
64 /// an update occurs and a remote watchtower is left with old state, it may broadcast transactions
65 /// which we have revoked, allowing our counterparty to claim all funds in the channel!
66 pub trait ManyChannelMonitor: Send + Sync {
67 /// Adds or updates a monitor for the given `funding_txo`.
69 /// Implementor must also ensure that the funding_txo outpoint is registered with any relevant
70 /// ChainWatchInterfaces such that the provided monitor receives block_connected callbacks with
72 fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr>;
75 /// A simple implementation of a ManyChannelMonitor and ChainListener. Can be used to create a
76 /// watchtower or watch our own channels.
78 /// Note that you must provide your own key by which to refer to channels.
80 /// If you're accepting remote monitors (ie are implementing a watchtower), you must verify that
81 /// users cannot overwrite a given channel by providing a duplicate key. ie you should probably
82 /// index by a PublicKey which is required to sign any updates.
84 /// If you're using this for local monitoring of your own channels, you probably want to use
85 /// `OutPoint` as the key, which will give you a ManyChannelMonitor implementation.
86 pub struct SimpleManyChannelMonitor<Key> {
87 #[cfg(test)] // Used in ChannelManager tests to manipulate channels directly
88 pub monitors: Mutex<HashMap<Key, ChannelMonitor>>,
90 monitors: Mutex<HashMap<Key, ChannelMonitor>>,
91 chain_monitor: Arc<ChainWatchInterface>,
92 broadcaster: Arc<BroadcasterInterface>
95 impl<Key : Send + cmp::Eq + hash::Hash> ChainListener for SimpleManyChannelMonitor<Key> {
96 fn block_connected(&self, _header: &BlockHeader, height: u32, txn_matched: &[&Transaction], _indexes_of_txn_matched: &[u32]) {
97 let monitors = self.monitors.lock().unwrap();
98 for monitor in monitors.values() {
99 let txn_outputs = monitor.block_connected(txn_matched, height, &*self.broadcaster);
100 for (ref txid, ref outputs) in txn_outputs {
101 for (idx, output) in outputs.iter().enumerate() {
102 self.chain_monitor.install_watch_outpoint((txid.clone(), idx as u32), &output.script_pubkey);
108 fn block_disconnected(&self, _: &BlockHeader) { }
111 impl<Key : Send + cmp::Eq + hash::Hash + 'static> SimpleManyChannelMonitor<Key> {
112 /// Creates a new object which can be used to monitor several channels given the chain
113 /// interface with which to register to receive notifications.
114 pub fn new(chain_monitor: Arc<ChainWatchInterface>, broadcaster: Arc<BroadcasterInterface>) -> Arc<SimpleManyChannelMonitor<Key>> {
115 let res = Arc::new(SimpleManyChannelMonitor {
116 monitors: Mutex::new(HashMap::new()),
120 let weak_res = Arc::downgrade(&res);
121 res.chain_monitor.register_listener(weak_res);
125 /// Adds or udpates the monitor which monitors the channel referred to by the given key.
126 pub fn add_update_monitor_by_key(&self, key: Key, monitor: ChannelMonitor) -> Result<(), HandleError> {
127 let mut monitors = self.monitors.lock().unwrap();
128 match monitors.get_mut(&key) {
129 Some(orig_monitor) => return orig_monitor.insert_combine(monitor),
132 match &monitor.funding_txo {
133 &None => self.chain_monitor.watch_all_txn(),
134 &Some((ref outpoint, ref script)) => {
135 self.chain_monitor.install_watch_tx(&outpoint.txid, script);
136 self.chain_monitor.install_watch_outpoint((outpoint.txid, outpoint.index as u32), script);
139 monitors.insert(key, monitor);
144 impl ManyChannelMonitor for SimpleManyChannelMonitor<OutPoint> {
145 fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr> {
146 match self.add_update_monitor_by_key(funding_txo, monitor) {
148 Err(_) => Err(ChannelMonitorUpdateErr::PermanentFailure),
153 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
154 /// instead claiming it in its own individual transaction.
155 const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
156 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
157 /// HTLC-Success transaction.
158 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
159 /// transaction confirmed (and we use it in a few more, equivalent, places).
160 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 6;
161 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
162 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
163 /// copies of ChannelMonitors, including watchtowers).
164 pub(crate) const HTLC_FAIL_TIMEOUT_BLOCKS: u32 = 3;
166 #[derive(Clone, PartialEq)]
169 revocation_base_key: SecretKey,
170 htlc_base_key: SecretKey,
173 revocation_base_key: PublicKey,
174 htlc_base_key: PublicKey,
175 sigs: HashMap<Sha256dHash, Signature>,
179 #[derive(Clone, PartialEq)]
180 struct LocalSignedTx {
181 /// txid of the transaction in tx, just used to make comparison faster
184 revocation_key: PublicKey,
185 a_htlc_key: PublicKey,
186 b_htlc_key: PublicKey,
187 delayed_payment_key: PublicKey,
189 htlc_outputs: Vec<(HTLCOutputInCommitment, Signature, Signature)>,
192 const SERIALIZATION_VERSION: u8 = 1;
193 const MIN_SERIALIZATION_VERSION: u8 = 1;
195 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
196 /// on-chain transactions to ensure no loss of funds occurs.
198 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
199 /// information and are actively monitoring the chain.
200 pub struct ChannelMonitor {
201 funding_txo: Option<(OutPoint, Script)>,
202 commitment_transaction_number_obscure_factor: u64,
204 key_storage: KeyStorage,
205 delayed_payment_base_key: PublicKey,
206 their_htlc_base_key: Option<PublicKey>,
207 their_delayed_payment_base_key: Option<PublicKey>,
208 // first is the idx of the first of the two revocation points
209 their_cur_revocation_points: Option<(u64, PublicKey, Option<PublicKey>)>,
211 our_to_self_delay: u16,
212 their_to_self_delay: Option<u16>,
214 old_secrets: [([u8; 32], u64); 49],
215 remote_claimable_outpoints: HashMap<Sha256dHash, Vec<HTLCOutputInCommitment>>,
216 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
217 /// Nor can we figure out their commitment numbers without the commitment transaction they are
218 /// spending. Thus, in order to claim them via revocation key, we track all the remote
219 /// commitment transactions which we find on-chain, mapping them to the commitment number which
220 /// can be used to derive the revocation key and claim the transactions.
221 remote_commitment_txn_on_chain: Mutex<HashMap<Sha256dHash, u64>>,
222 /// Cache used to make pruning of payment_preimages faster.
223 /// Maps payment_hash values to commitment numbers for remote transactions for non-revoked
224 /// remote transactions (ie should remain pretty small).
225 /// Serialized to disk but should generally not be sent to Watchtowers.
226 remote_hash_commitment_number: HashMap<[u8; 32], u64>,
228 // We store two local commitment transactions to avoid any race conditions where we may update
229 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
230 // various monitors for one channel being out of sync, and us broadcasting a local
231 // transaction for which we have deleted claim information on some watchtowers.
232 prev_local_signed_commitment_tx: Option<LocalSignedTx>,
233 current_local_signed_commitment_tx: Option<LocalSignedTx>,
235 payment_preimages: HashMap<[u8; 32], [u8; 32]>,
237 destination_script: Script,
238 secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
240 impl Clone for ChannelMonitor {
241 fn clone(&self) -> Self {
243 funding_txo: self.funding_txo.clone(),
244 commitment_transaction_number_obscure_factor: self.commitment_transaction_number_obscure_factor.clone(),
246 key_storage: self.key_storage.clone(),
247 delayed_payment_base_key: self.delayed_payment_base_key.clone(),
248 their_htlc_base_key: self.their_htlc_base_key.clone(),
249 their_delayed_payment_base_key: self.their_delayed_payment_base_key.clone(),
250 their_cur_revocation_points: self.their_cur_revocation_points.clone(),
252 our_to_self_delay: self.our_to_self_delay,
253 their_to_self_delay: self.their_to_self_delay,
255 old_secrets: self.old_secrets.clone(),
256 remote_claimable_outpoints: self.remote_claimable_outpoints.clone(),
257 remote_commitment_txn_on_chain: Mutex::new((*self.remote_commitment_txn_on_chain.lock().unwrap()).clone()),
258 remote_hash_commitment_number: self.remote_hash_commitment_number.clone(),
260 prev_local_signed_commitment_tx: self.prev_local_signed_commitment_tx.clone(),
261 current_local_signed_commitment_tx: self.current_local_signed_commitment_tx.clone(),
263 payment_preimages: self.payment_preimages.clone(),
265 destination_script: self.destination_script.clone(),
266 secp_ctx: self.secp_ctx.clone(),
271 #[cfg(any(test, feature = "fuzztarget"))]
272 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
273 /// underlying object
274 impl PartialEq for ChannelMonitor {
275 fn eq(&self, other: &Self) -> bool {
276 if self.funding_txo != other.funding_txo ||
277 self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
278 self.key_storage != other.key_storage ||
279 self.delayed_payment_base_key != other.delayed_payment_base_key ||
280 self.their_htlc_base_key != other.their_htlc_base_key ||
281 self.their_delayed_payment_base_key != other.their_delayed_payment_base_key ||
282 self.their_cur_revocation_points != other.their_cur_revocation_points ||
283 self.our_to_self_delay != other.our_to_self_delay ||
284 self.their_to_self_delay != other.their_to_self_delay ||
285 self.remote_claimable_outpoints != other.remote_claimable_outpoints ||
286 self.remote_hash_commitment_number != other.remote_hash_commitment_number ||
287 self.prev_local_signed_commitment_tx != other.prev_local_signed_commitment_tx ||
288 self.current_local_signed_commitment_tx != other.current_local_signed_commitment_tx ||
289 self.payment_preimages != other.payment_preimages ||
290 self.destination_script != other.destination_script
294 for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) {
295 if secret != o_secret || idx != o_idx {
299 let us = self.remote_commitment_txn_on_chain.lock().unwrap();
300 let them = other.remote_commitment_txn_on_chain.lock().unwrap();
306 impl ChannelMonitor {
307 pub(super) fn new(revocation_base_key: &SecretKey, delayed_payment_base_key: &PublicKey, htlc_base_key: &SecretKey, our_to_self_delay: u16, destination_script: Script) -> ChannelMonitor {
310 commitment_transaction_number_obscure_factor: 0,
312 key_storage: KeyStorage::PrivMode {
313 revocation_base_key: revocation_base_key.clone(),
314 htlc_base_key: htlc_base_key.clone(),
316 delayed_payment_base_key: delayed_payment_base_key.clone(),
317 their_htlc_base_key: None,
318 their_delayed_payment_base_key: None,
319 their_cur_revocation_points: None,
321 our_to_self_delay: our_to_self_delay,
322 their_to_self_delay: None,
324 old_secrets: [([0; 32], 1 << 48); 49],
325 remote_claimable_outpoints: HashMap::new(),
326 remote_commitment_txn_on_chain: Mutex::new(HashMap::new()),
327 remote_hash_commitment_number: HashMap::new(),
329 prev_local_signed_commitment_tx: None,
330 current_local_signed_commitment_tx: None,
332 payment_preimages: HashMap::new(),
334 destination_script: destination_script,
335 secp_ctx: Secp256k1::new(),
340 fn place_secret(idx: u64) -> u8 {
342 if idx & (1 << i) == (1 << i) {
350 fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] {
351 let mut res: [u8; 32] = secret;
353 let bitpos = bits - 1 - i;
354 if idx & (1 << bitpos) == (1 << bitpos) {
355 res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7);
356 let mut sha = Sha256::new();
358 sha.result(&mut res);
364 /// Inserts a revocation secret into this channel monitor. Also optionally tracks the next
365 /// revocation point which may be required to claim HTLC outputs which we know the preimage of
366 /// in case the remote end force-closes using their latest state. Prunes old preimages if neither
367 /// needed by local commitment transactions HTCLs nor by remote ones. Unless we haven't already seen remote
368 /// commitment transaction's secret, they are de facto pruned (we can use revocation key).
369 pub(super) fn provide_secret(&mut self, idx: u64, secret: [u8; 32], their_next_revocation_point: Option<(u64, PublicKey)>) -> Result<(), HandleError> {
370 let pos = ChannelMonitor::place_secret(idx);
372 let (old_secret, old_idx) = self.old_secrets[i as usize];
373 if ChannelMonitor::derive_secret(secret, pos, old_idx) != old_secret {
374 return Err(HandleError{err: "Previous secret did not match new one", action: None})
377 self.old_secrets[pos as usize] = (secret, idx);
379 if let Some(new_revocation_point) = their_next_revocation_point {
380 match self.their_cur_revocation_points {
381 Some(old_points) => {
382 if old_points.0 == new_revocation_point.0 + 1 {
383 self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(new_revocation_point.1)));
384 } else if old_points.0 == new_revocation_point.0 + 2 {
385 if let Some(old_second_point) = old_points.2 {
386 self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(new_revocation_point.1)));
388 self.their_cur_revocation_points = Some((new_revocation_point.0, new_revocation_point.1, None));
391 self.their_cur_revocation_points = Some((new_revocation_point.0, new_revocation_point.1, None));
395 self.their_cur_revocation_points = Some((new_revocation_point.0, new_revocation_point.1, None));
400 if !self.payment_preimages.is_empty() {
401 let local_signed_commitment_tx = self.current_local_signed_commitment_tx.as_ref().expect("Channel needs at least an initial commitment tx !");
402 let prev_local_signed_commitment_tx = self.prev_local_signed_commitment_tx.as_ref();
403 let min_idx = self.get_min_seen_secret();
404 let remote_hash_commitment_number = &mut self.remote_hash_commitment_number;
406 self.payment_preimages.retain(|&k, _| {
407 for &(ref htlc, _, _) in &local_signed_commitment_tx.htlc_outputs {
408 if k == htlc.payment_hash {
412 if let Some(prev_local_commitment_tx) = prev_local_signed_commitment_tx {
413 for &(ref htlc, _, _) in prev_local_commitment_tx.htlc_outputs.iter() {
414 if k == htlc.payment_hash {
419 let contains = if let Some(cn) = remote_hash_commitment_number.get(&k) {
426 remote_hash_commitment_number.remove(&k);
435 /// Informs this monitor of the latest remote (ie non-broadcastable) commitment transaction.
436 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
437 /// possibly future revocation/preimage information) to claim outputs where possible.
438 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
439 pub(super) fn provide_latest_remote_commitment_tx_info(&mut self, unsigned_commitment_tx: &Transaction, htlc_outputs: Vec<HTLCOutputInCommitment>, commitment_number: u64) {
440 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
441 // so that a remote monitor doesn't learn anything unless there is a malicious close.
442 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
444 for htlc in &htlc_outputs {
445 self.remote_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
447 self.remote_claimable_outpoints.insert(unsigned_commitment_tx.txid(), htlc_outputs);
450 /// Informs this monitor of the latest local (ie broadcastable) commitment transaction. The
451 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
452 /// is important that any clones of this channel monitor (including remote clones) by kept
453 /// up-to-date as our local commitment transaction is updated.
454 /// Panics if set_their_to_self_delay has never been called.
455 pub(super) fn provide_latest_local_commitment_tx_info(&mut self, signed_commitment_tx: Transaction, local_keys: chan_utils::TxCreationKeys, feerate_per_kw: u64, htlc_outputs: Vec<(HTLCOutputInCommitment, Signature, Signature)>) {
456 assert!(self.their_to_self_delay.is_some());
457 self.prev_local_signed_commitment_tx = self.current_local_signed_commitment_tx.take();
458 self.current_local_signed_commitment_tx = Some(LocalSignedTx {
459 txid: signed_commitment_tx.txid(),
460 tx: signed_commitment_tx,
461 revocation_key: local_keys.revocation_key,
462 a_htlc_key: local_keys.a_htlc_key,
463 b_htlc_key: local_keys.b_htlc_key,
464 delayed_payment_key: local_keys.a_delayed_payment_key,
470 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
471 /// commitment_tx_infos which contain the payment hash have been revoked.
472 pub(super) fn provide_payment_preimage(&mut self, payment_hash: &[u8; 32], payment_preimage: &[u8; 32]) {
473 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
476 /// Combines this ChannelMonitor with the information contained in the other ChannelMonitor.
477 /// After a successful call this ChannelMonitor is up-to-date and is safe to use to monitor the
478 /// chain for new blocks/transactions.
479 pub fn insert_combine(&mut self, mut other: ChannelMonitor) -> Result<(), HandleError> {
480 if self.funding_txo.is_some() {
481 // We should be able to compare the entire funding_txo, but in fuzztarget its trivially
482 // easy to collide the funding_txo hash and have a different scriptPubKey.
483 if other.funding_txo.is_some() && other.funding_txo.as_ref().unwrap().0 != self.funding_txo.as_ref().unwrap().0 {
484 return Err(HandleError{err: "Funding transaction outputs are not identical!", action: None});
487 self.funding_txo = other.funding_txo.take();
489 let other_min_secret = other.get_min_seen_secret();
490 let our_min_secret = self.get_min_seen_secret();
491 if our_min_secret > other_min_secret {
492 self.provide_secret(other_min_secret, other.get_secret(other_min_secret).unwrap(), None)?;
494 if our_min_secret >= other_min_secret {
495 self.their_cur_revocation_points = other.their_cur_revocation_points;
496 for (txid, htlcs) in other.remote_claimable_outpoints.drain() {
497 self.remote_claimable_outpoints.insert(txid, htlcs);
499 if let Some(local_tx) = other.prev_local_signed_commitment_tx {
500 self.prev_local_signed_commitment_tx = Some(local_tx);
502 if let Some(local_tx) = other.current_local_signed_commitment_tx {
503 self.current_local_signed_commitment_tx = Some(local_tx);
505 self.payment_preimages = other.payment_preimages;
510 /// Panics if commitment_transaction_number_obscure_factor doesn't fit in 48 bits
511 pub(super) fn set_commitment_obscure_factor(&mut self, commitment_transaction_number_obscure_factor: u64) {
512 assert!(commitment_transaction_number_obscure_factor < (1 << 48));
513 self.commitment_transaction_number_obscure_factor = commitment_transaction_number_obscure_factor;
516 /// Allows this monitor to scan only for transactions which are applicable. Note that this is
517 /// optional, without it this monitor cannot be used in an SPV client, but you may wish to
518 /// avoid this (or call unset_funding_info) on a monitor you wish to send to a watchtower as it
519 /// provides slightly better privacy.
520 /// It's the responsibility of the caller to register outpoint and script with passing the former
521 /// value as key to add_update_monitor.
522 pub(super) fn set_funding_info(&mut self, funding_info: (OutPoint, Script)) {
523 self.funding_txo = Some(funding_info);
526 /// We log these base keys at channel opening to being able to rebuild redeemscript in case of leaked revoked commit tx
527 pub(super) fn set_their_base_keys(&mut self, their_htlc_base_key: &PublicKey, their_delayed_payment_base_key: &PublicKey) {
528 self.their_htlc_base_key = Some(their_htlc_base_key.clone());
529 self.their_delayed_payment_base_key = Some(their_delayed_payment_base_key.clone());
532 pub(super) fn set_their_to_self_delay(&mut self, their_to_self_delay: u16) {
533 self.their_to_self_delay = Some(their_to_self_delay);
536 pub(super) fn unset_funding_info(&mut self) {
537 self.funding_txo = None;
540 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
541 pub fn get_funding_txo(&self) -> Option<OutPoint> {
542 match self.funding_txo {
543 Some((outpoint, _)) => Some(outpoint),
548 /// Serializes into a vec, with various modes for the exposed pub fns
549 fn write<W: Writer>(&self, writer: &mut W, for_local_storage: bool) -> Result<(), ::std::io::Error> {
550 //TODO: We still write out all the serialization here manually instead of using the fancy
551 //serialization framework we have, we should migrate things over to it.
552 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
553 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
555 match &self.funding_txo {
556 &Some((ref outpoint, ref script)) => {
557 writer.write_all(&outpoint.txid[..])?;
558 writer.write_all(&byte_utils::be16_to_array(outpoint.index))?;
559 writer.write_all(&byte_utils::be64_to_array(script.len() as u64))?;
560 writer.write_all(&script[..])?;
563 // We haven't even been initialized...not sure why anyone is serializing us, but
564 // not much to give them.
569 // Set in initial Channel-object creation, so should always be set by now:
570 writer.write_all(&byte_utils::be48_to_array(self.commitment_transaction_number_obscure_factor))?;
572 match self.key_storage {
573 KeyStorage::PrivMode { ref revocation_base_key, ref htlc_base_key } => {
574 writer.write_all(&[0; 1])?;
575 writer.write_all(&revocation_base_key[..])?;
576 writer.write_all(&htlc_base_key[..])?;
578 KeyStorage::SigsMode { .. } => unimplemented!(),
581 writer.write_all(&self.delayed_payment_base_key.serialize())?;
582 writer.write_all(&self.their_htlc_base_key.as_ref().unwrap().serialize())?;
583 writer.write_all(&self.their_delayed_payment_base_key.as_ref().unwrap().serialize())?;
585 match self.their_cur_revocation_points {
586 Some((idx, pubkey, second_option)) => {
587 writer.write_all(&byte_utils::be48_to_array(idx))?;
588 writer.write_all(&pubkey.serialize())?;
589 match second_option {
590 Some(second_pubkey) => {
591 writer.write_all(&second_pubkey.serialize())?;
594 writer.write_all(&[0; 33])?;
599 writer.write_all(&byte_utils::be48_to_array(0))?;
603 writer.write_all(&byte_utils::be16_to_array(self.our_to_self_delay))?;
604 writer.write_all(&byte_utils::be16_to_array(self.their_to_self_delay.unwrap()))?;
606 for &(ref secret, ref idx) in self.old_secrets.iter() {
607 writer.write_all(secret)?;
608 writer.write_all(&byte_utils::be64_to_array(*idx))?;
611 macro_rules! serialize_htlc_in_commitment {
612 ($htlc_output: expr) => {
613 writer.write_all(&[$htlc_output.offered as u8; 1])?;
614 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
615 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
616 writer.write_all(&$htlc_output.payment_hash)?;
617 writer.write_all(&byte_utils::be32_to_array($htlc_output.transaction_output_index))?;
621 writer.write_all(&byte_utils::be64_to_array(self.remote_claimable_outpoints.len() as u64))?;
622 for (txid, htlc_outputs) in self.remote_claimable_outpoints.iter() {
623 writer.write_all(&txid[..])?;
624 writer.write_all(&byte_utils::be64_to_array(htlc_outputs.len() as u64))?;
625 for htlc_output in htlc_outputs.iter() {
626 serialize_htlc_in_commitment!(htlc_output);
631 let remote_commitment_txn_on_chain = self.remote_commitment_txn_on_chain.lock().unwrap();
632 writer.write_all(&byte_utils::be64_to_array(remote_commitment_txn_on_chain.len() as u64))?;
633 for (txid, commitment_number) in remote_commitment_txn_on_chain.iter() {
634 writer.write_all(&txid[..])?;
635 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
639 if for_local_storage {
640 writer.write_all(&byte_utils::be64_to_array(self.remote_hash_commitment_number.len() as u64))?;
641 for (payment_hash, commitment_number) in self.remote_hash_commitment_number.iter() {
642 writer.write_all(payment_hash)?;
643 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
646 writer.write_all(&byte_utils::be64_to_array(0))?;
649 macro_rules! serialize_local_tx {
650 ($local_tx: expr) => {
651 let tx_ser = serialize::serialize(&$local_tx.tx).unwrap();
652 writer.write_all(&byte_utils::be64_to_array(tx_ser.len() as u64))?;
653 writer.write_all(&tx_ser)?;
655 writer.write_all(&$local_tx.revocation_key.serialize())?;
656 writer.write_all(&$local_tx.a_htlc_key.serialize())?;
657 writer.write_all(&$local_tx.b_htlc_key.serialize())?;
658 writer.write_all(&$local_tx.delayed_payment_key.serialize())?;
660 writer.write_all(&byte_utils::be64_to_array($local_tx.feerate_per_kw))?;
661 writer.write_all(&byte_utils::be64_to_array($local_tx.htlc_outputs.len() as u64))?;
662 for &(ref htlc_output, ref their_sig, ref our_sig) in $local_tx.htlc_outputs.iter() {
663 serialize_htlc_in_commitment!(htlc_output);
664 writer.write_all(&their_sig.serialize_compact(&self.secp_ctx))?;
665 writer.write_all(&our_sig.serialize_compact(&self.secp_ctx))?;
670 if let Some(ref prev_local_tx) = self.prev_local_signed_commitment_tx {
671 writer.write_all(&[1; 1])?;
672 serialize_local_tx!(prev_local_tx);
674 writer.write_all(&[0; 1])?;
677 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
678 writer.write_all(&[1; 1])?;
679 serialize_local_tx!(cur_local_tx);
681 writer.write_all(&[0; 1])?;
684 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
685 for payment_preimage in self.payment_preimages.values() {
686 writer.write_all(payment_preimage)?;
689 writer.write_all(&byte_utils::be64_to_array(self.destination_script.len() as u64))?;
690 writer.write_all(&self.destination_script[..])?;
695 /// Writes this monitor into the given writer, suitable for writing to disk.
696 pub fn write_for_disk<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
697 self.write(writer, true)
700 /// Encodes this monitor into the given writer, suitable for sending to a remote watchtower
701 pub fn write_for_watchtower<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
702 self.write(writer, false)
705 //TODO: Functions to serialize/deserialize (with different forms depending on which information
706 //we want to leave out (eg funding_txo, etc).
708 /// Can only fail if idx is < get_min_seen_secret
709 pub(super) fn get_secret(&self, idx: u64) -> Result<[u8; 32], HandleError> {
710 for i in 0..self.old_secrets.len() {
711 if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 {
712 return Ok(ChannelMonitor::derive_secret(self.old_secrets[i].0, i as u8, idx))
715 assert!(idx < self.get_min_seen_secret());
716 Err(HandleError{err: "idx too low", action: None})
719 pub(super) fn get_min_seen_secret(&self) -> u64 {
720 //TODO This can be optimized?
721 let mut min = 1 << 48;
722 for &(_, idx) in self.old_secrets.iter() {
730 /// Attempts to claim a remote commitment transaction's outputs using the revocation key and
731 /// data in remote_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
732 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
733 /// HTLC-Success/HTLC-Timeout transactions.
734 fn check_spend_remote_transaction(&self, tx: &Transaction, height: u32) -> (Vec<Transaction>, (Sha256dHash, Vec<TxOut>)) {
735 // Most secp and related errors trying to create keys means we have no hope of constructing
736 // a spend transaction...so we return no transactions to broadcast
737 let mut txn_to_broadcast = Vec::new();
738 let mut watch_outputs = Vec::new();
740 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
741 let per_commitment_option = self.remote_claimable_outpoints.get(&commitment_txid);
743 macro_rules! ignore_error {
744 ( $thing : expr ) => {
747 Err(_) => return (txn_to_broadcast, (commitment_txid, watch_outputs))
752 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
753 if commitment_number >= self.get_min_seen_secret() {
754 let secret = self.get_secret(commitment_number).unwrap();
755 let per_commitment_key = ignore_error!(SecretKey::from_slice(&self.secp_ctx, &secret));
756 let (revocation_pubkey, b_htlc_key) = match self.key_storage {
757 KeyStorage::PrivMode { ref revocation_base_key, ref htlc_base_key } => {
758 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
759 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))),
760 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))))
762 KeyStorage::SigsMode { ref revocation_base_key, ref htlc_base_key, .. } => {
763 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
764 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key)),
765 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &htlc_base_key)))
768 let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.their_delayed_payment_base_key.unwrap()));
769 let a_htlc_key = match self.their_htlc_base_key {
770 None => return (txn_to_broadcast, (commitment_txid, watch_outputs)),
771 Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &their_htlc_base_key)),
774 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.our_to_self_delay, &delayed_key);
775 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
777 let mut total_value = 0;
778 let mut values = Vec::new();
779 let mut inputs = Vec::new();
780 let mut htlc_idxs = Vec::new();
782 for (idx, outp) in tx.output.iter().enumerate() {
783 if outp.script_pubkey == revokeable_p2wsh {
785 previous_output: BitcoinOutPoint {
786 txid: commitment_txid,
789 script_sig: Script::new(),
790 sequence: 0xfffffffd,
793 htlc_idxs.push(None);
794 values.push(outp.value);
795 total_value += outp.value;
796 break; // There can only be one of these
800 macro_rules! sign_input {
801 ($sighash_parts: expr, $input: expr, $htlc_idx: expr, $amount: expr) => {
803 let (sig, redeemscript) = match self.key_storage {
804 KeyStorage::PrivMode { ref revocation_base_key, .. } => {
805 let redeemscript = if $htlc_idx.is_none() { revokeable_redeemscript.clone() } else {
806 let htlc = &per_commitment_option.unwrap()[$htlc_idx.unwrap()];
807 chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey)
809 let sighash = ignore_error!(Message::from_slice(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..]));
810 let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key));
811 (self.secp_ctx.sign(&sighash, &revocation_key), redeemscript)
813 KeyStorage::SigsMode { .. } => {
817 $input.witness.push(sig.serialize_der(&self.secp_ctx).to_vec());
818 $input.witness[0].push(SigHashType::All as u8);
819 if $htlc_idx.is_none() {
820 $input.witness.push(vec!(1));
822 $input.witness.push(revocation_pubkey.serialize().to_vec());
824 $input.witness.push(redeemscript.into_bytes());
829 if let Some(per_commitment_data) = per_commitment_option {
830 inputs.reserve_exact(per_commitment_data.len());
832 for (idx, htlc) in per_commitment_data.iter().enumerate() {
833 let expected_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
834 if htlc.transaction_output_index as usize >= tx.output.len() ||
835 tx.output[htlc.transaction_output_index as usize].value != htlc.amount_msat / 1000 ||
836 tx.output[htlc.transaction_output_index as usize].script_pubkey != expected_script.to_v0_p2wsh() {
837 return (txn_to_broadcast, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user
840 previous_output: BitcoinOutPoint {
841 txid: commitment_txid,
842 vout: htlc.transaction_output_index,
844 script_sig: Script::new(),
845 sequence: 0xfffffffd,
848 if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER {
850 htlc_idxs.push(Some(idx));
851 values.push(tx.output[htlc.transaction_output_index as usize].value);
852 total_value += htlc.amount_msat / 1000;
854 let mut single_htlc_tx = Transaction {
859 script_pubkey: self.destination_script.clone(),
860 value: htlc.amount_msat / 1000, //TODO: - fee
863 let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx);
864 sign_input!(sighash_parts, single_htlc_tx.input[0], Some(idx), htlc.amount_msat / 1000);
865 txn_to_broadcast.push(single_htlc_tx);
870 if !inputs.is_empty() || !txn_to_broadcast.is_empty() { // ie we're confident this is actually ours
871 // We're definitely a remote commitment transaction!
872 watch_outputs.append(&mut tx.output.clone());
873 self.remote_commitment_txn_on_chain.lock().unwrap().insert(commitment_txid, commitment_number);
875 if inputs.is_empty() { return (txn_to_broadcast, (commitment_txid, watch_outputs)); } // Nothing to be done...probably a false positive/local tx
877 let outputs = vec!(TxOut {
878 script_pubkey: self.destination_script.clone(),
879 value: total_value, //TODO: - fee
881 let mut spend_tx = Transaction {
888 let mut values_drain = values.drain(..);
889 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
891 for (input, htlc_idx) in spend_tx.input.iter_mut().zip(htlc_idxs.iter()) {
892 let value = values_drain.next().unwrap();
893 sign_input!(sighash_parts, input, htlc_idx, value);
896 txn_to_broadcast.push(spend_tx);
897 } else if let Some(per_commitment_data) = per_commitment_option {
898 // While this isn't useful yet, there is a potential race where if a counterparty
899 // revokes a state at the same time as the commitment transaction for that state is
900 // confirmed, and the watchtower receives the block before the user, the user could
901 // upload a new ChannelMonitor with the revocation secret but the watchtower has
902 // already processed the block, resulting in the remote_commitment_txn_on_chain entry
903 // not being generated by the above conditional. Thus, to be safe, we go ahead and
905 watch_outputs.append(&mut tx.output.clone());
906 self.remote_commitment_txn_on_chain.lock().unwrap().insert(commitment_txid, commitment_number);
908 if let Some(revocation_points) = self.their_cur_revocation_points {
909 let revocation_point_option =
910 if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
911 else if let Some(point) = revocation_points.2.as_ref() {
912 if revocation_points.0 == commitment_number + 1 { Some(point) } else { None }
914 if let Some(revocation_point) = revocation_point_option {
915 let (revocation_pubkey, b_htlc_key) = match self.key_storage {
916 KeyStorage::PrivMode { ref revocation_base_key, ref htlc_base_key } => {
917 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))),
918 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))))
920 KeyStorage::SigsMode { ref revocation_base_key, ref htlc_base_key, .. } => {
921 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &revocation_base_key)),
922 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &htlc_base_key)))
925 let a_htlc_key = match self.their_htlc_base_key {
926 None => return (txn_to_broadcast, (commitment_txid, watch_outputs)),
927 Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &their_htlc_base_key)),
930 let mut total_value = 0;
931 let mut values = Vec::new();
932 let mut inputs = Vec::new();
934 macro_rules! sign_input {
935 ($sighash_parts: expr, $input: expr, $amount: expr, $preimage: expr) => {
937 let (sig, redeemscript) = match self.key_storage {
938 KeyStorage::PrivMode { ref htlc_base_key, .. } => {
939 let htlc = &per_commitment_option.unwrap()[$input.sequence as usize];
940 let redeemscript = chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
941 let sighash = ignore_error!(Message::from_slice(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..]));
942 let htlc_key = ignore_error!(chan_utils::derive_private_key(&self.secp_ctx, revocation_point, &htlc_base_key));
943 (self.secp_ctx.sign(&sighash, &htlc_key), redeemscript)
945 KeyStorage::SigsMode { .. } => {
949 $input.witness.push(sig.serialize_der(&self.secp_ctx).to_vec());
950 $input.witness[0].push(SigHashType::All as u8);
951 $input.witness.push($preimage);
952 $input.witness.push(redeemscript.into_bytes());
957 for (idx, htlc) in per_commitment_data.iter().enumerate() {
958 if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
960 previous_output: BitcoinOutPoint {
961 txid: commitment_txid,
962 vout: htlc.transaction_output_index,
964 script_sig: Script::new(),
965 sequence: idx as u32, // reset to 0xfffffffd in sign_input
968 if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER {
970 values.push((tx.output[htlc.transaction_output_index as usize].value, payment_preimage));
971 total_value += htlc.amount_msat / 1000;
973 let mut single_htlc_tx = Transaction {
978 script_pubkey: self.destination_script.clone(),
979 value: htlc.amount_msat / 1000, //TODO: - fee
982 let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx);
983 sign_input!(sighash_parts, single_htlc_tx.input[0], htlc.amount_msat / 1000, payment_preimage.to_vec());
984 txn_to_broadcast.push(single_htlc_tx);
989 if inputs.is_empty() { return (txn_to_broadcast, (commitment_txid, watch_outputs)); } // Nothing to be done...probably a false positive/local tx
991 let outputs = vec!(TxOut {
992 script_pubkey: self.destination_script.clone(),
993 value: total_value, //TODO: - fee
995 let mut spend_tx = Transaction {
1002 let mut values_drain = values.drain(..);
1003 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
1005 for input in spend_tx.input.iter_mut() {
1006 let value = values_drain.next().unwrap();
1007 sign_input!(sighash_parts, input, value.0, value.1.to_vec());
1010 txn_to_broadcast.push(spend_tx);
1015 (txn_to_broadcast, (commitment_txid, watch_outputs))
1018 /// Attempst to claim a remote HTLC-Success/HTLC-Timeout s outputs using the revocation key
1019 fn check_spend_remote_htlc(&self, tx: &Transaction, commitment_number: u64) -> Option<Transaction> {
1020 if tx.input.len() != 1 || tx.output.len() != 1 {
1024 macro_rules! ignore_error {
1025 ( $thing : expr ) => {
1028 Err(_) => return None
1033 let secret = ignore_error!(self.get_secret(commitment_number));
1034 let per_commitment_key = ignore_error!(SecretKey::from_slice(&self.secp_ctx, &secret));
1035 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1036 let revocation_pubkey = match self.key_storage {
1037 KeyStorage::PrivMode { ref revocation_base_key, .. } => {
1038 ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key)))
1040 KeyStorage::SigsMode { ref revocation_base_key, .. } => {
1041 ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key))
1044 let delayed_key = match self.their_delayed_payment_base_key {
1045 None => return None,
1046 Some(their_delayed_payment_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &their_delayed_payment_base_key)),
1048 let redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.their_to_self_delay.unwrap(), &delayed_key);
1049 let revokeable_p2wsh = redeemscript.to_v0_p2wsh();
1050 let htlc_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1052 let mut inputs = Vec::new();
1055 if tx.output[0].script_pubkey == revokeable_p2wsh { //HTLC transactions have one txin, one txout
1057 previous_output: BitcoinOutPoint {
1061 script_sig: Script::new(),
1062 sequence: 0xfffffffd,
1063 witness: Vec::new(),
1065 amount = tx.output[0].value;
1068 if !inputs.is_empty() {
1069 let outputs = vec!(TxOut {
1070 script_pubkey: self.destination_script.clone(),
1071 value: amount, //TODO: - fee
1074 let mut spend_tx = Transaction {
1081 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
1083 let sig = match self.key_storage {
1084 KeyStorage::PrivMode { ref revocation_base_key, .. } => {
1085 let sighash = ignore_error!(Message::from_slice(&sighash_parts.sighash_all(&spend_tx.input[0], &redeemscript, amount)[..]));
1086 let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key));
1087 self.secp_ctx.sign(&sighash, &revocation_key)
1089 KeyStorage::SigsMode { .. } => {
1093 spend_tx.input[0].witness.push(sig.serialize_der(&self.secp_ctx).to_vec());
1094 spend_tx.input[0].witness[0].push(SigHashType::All as u8);
1095 spend_tx.input[0].witness.push(vec!(1));
1096 spend_tx.input[0].witness.push(redeemscript.into_bytes());
1102 fn broadcast_by_local_state(&self, local_tx: &LocalSignedTx) -> Vec<Transaction> {
1103 let mut res = Vec::with_capacity(local_tx.htlc_outputs.len());
1105 for &(ref htlc, ref their_sig, ref our_sig) in local_tx.htlc_outputs.iter() {
1107 let mut htlc_timeout_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key);
1109 htlc_timeout_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
1111 htlc_timeout_tx.input[0].witness.push(their_sig.serialize_der(&self.secp_ctx).to_vec());
1112 htlc_timeout_tx.input[0].witness[1].push(SigHashType::All as u8);
1113 htlc_timeout_tx.input[0].witness.push(our_sig.serialize_der(&self.secp_ctx).to_vec());
1114 htlc_timeout_tx.input[0].witness[2].push(SigHashType::All as u8);
1116 htlc_timeout_tx.input[0].witness.push(Vec::new());
1117 htlc_timeout_tx.input[0].witness.push(chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key).into_bytes());
1119 res.push(htlc_timeout_tx);
1121 if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1122 let mut htlc_success_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key);
1124 htlc_success_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
1126 htlc_success_tx.input[0].witness.push(their_sig.serialize_der(&self.secp_ctx).to_vec());
1127 htlc_success_tx.input[0].witness[1].push(SigHashType::All as u8);
1128 htlc_success_tx.input[0].witness.push(our_sig.serialize_der(&self.secp_ctx).to_vec());
1129 htlc_success_tx.input[0].witness[2].push(SigHashType::All as u8);
1131 htlc_success_tx.input[0].witness.push(payment_preimage.to_vec());
1132 htlc_success_tx.input[0].witness.push(chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key).into_bytes());
1134 res.push(htlc_success_tx);
1142 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
1143 /// revoked using data in local_claimable_outpoints.
1144 /// Should not be used if check_spend_revoked_transaction succeeds.
1145 fn check_spend_local_transaction(&self, tx: &Transaction, _height: u32) -> Vec<Transaction> {
1146 let commitment_txid = tx.txid();
1147 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
1148 if local_tx.txid == commitment_txid {
1149 return self.broadcast_by_local_state(local_tx);
1152 if let &Some(ref local_tx) = &self.prev_local_signed_commitment_tx {
1153 if local_tx.txid == commitment_txid {
1154 return self.broadcast_by_local_state(local_tx);
1160 fn block_connected(&self, txn_matched: &[&Transaction], height: u32, broadcaster: &BroadcasterInterface)-> Vec<(Sha256dHash, Vec<TxOut>)> {
1161 let mut watch_outputs = Vec::new();
1162 for tx in txn_matched {
1163 if tx.input.len() == 1 {
1164 // Assuming our keys were not leaked (in which case we're screwed no matter what),
1165 // commitment transactions and HTLC transactions will all only ever have one input,
1166 // which is an easy way to filter out any potential non-matching txn for lazy
1168 let prevout = &tx.input[0].previous_output;
1169 let mut txn: Vec<Transaction> = Vec::new();
1170 if self.funding_txo.is_none() || (prevout.txid == self.funding_txo.as_ref().unwrap().0.txid && prevout.vout == self.funding_txo.as_ref().unwrap().0.index as u32) {
1171 let (remote_txn, new_outputs) = self.check_spend_remote_transaction(tx, height);
1173 if !new_outputs.1.is_empty() {
1174 watch_outputs.push(new_outputs);
1177 txn = self.check_spend_local_transaction(tx, height);
1180 let remote_commitment_txn_on_chain = self.remote_commitment_txn_on_chain.lock().unwrap();
1181 if let Some(commitment_number) = remote_commitment_txn_on_chain.get(&prevout.txid) {
1182 if let Some(tx) = self.check_spend_remote_htlc(tx, *commitment_number) {
1187 for tx in txn.iter() {
1188 broadcaster.broadcast_transaction(tx);
1192 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
1193 if self.would_broadcast_at_height(height) {
1194 broadcaster.broadcast_transaction(&cur_local_tx.tx);
1195 for tx in self.broadcast_by_local_state(&cur_local_tx) {
1196 broadcaster.broadcast_transaction(&tx);
1203 pub(super) fn would_broadcast_at_height(&self, height: u32) -> bool {
1204 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
1205 for &(ref htlc, _, _) in cur_local_tx.htlc_outputs.iter() {
1206 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
1207 // chain with enough room to claim the HTLC without our counterparty being able to
1208 // time out the HTLC first.
1209 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
1210 // concern is being able to claim the corresponding inbound HTLC (on another
1211 // channel) before it expires. In fact, we don't even really care if our
1212 // counterparty here claims such an outbound HTLC after it expired as long as we
1213 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
1214 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
1215 // we give ourselves a few blocks of headroom after expiration before going
1216 // on-chain for an expired HTLC.
1217 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
1218 // from us until we've reached the point where we go on-chain with the
1219 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
1220 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
1221 // aka outbound_cltv + HTLC_FAIL_TIMEOUT_BLOCKS == height - CLTV_CLAIM_BUFFER
1222 // inbound_cltv == height + CLTV_CLAIM_BUFFER
1223 // outbound_cltv + HTLC_FAIL_TIMEOUT_BLOCKS + CLTV_CLAIM_BUFER <= inbound_cltv - CLTV_CLAIM_BUFFER
1224 // HTLC_FAIL_TIMEOUT_BLOCKS + 2*CLTV_CLAIM_BUFER <= inbound_cltv - outbound_cltv
1225 // HTLC_FAIL_TIMEOUT_BLOCKS + 2*CLTV_CLAIM_BUFER <= CLTV_EXPIRY_DELTA
1226 if ( htlc.offered && htlc.cltv_expiry + HTLC_FAIL_TIMEOUT_BLOCKS <= height) ||
1227 (!htlc.offered && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
1236 impl<R: ::std::io::Read> Readable<R> for ChannelMonitor {
1237 fn read(reader: &mut R) -> Result<Self, DecodeError> {
1238 // TODO: read_to_end and then deserializing from that vector is really dumb, we should
1239 // actually use the fancy serialization framework we have instead of hacking around it.
1240 let mut datavec = Vec::new();
1241 reader.read_to_end(&mut datavec)?;
1242 let data = &datavec;
1244 let mut read_pos = 0;
1245 macro_rules! read_bytes {
1246 ($byte_count: expr) => {
1248 if ($byte_count as usize) > data.len() - read_pos {
1249 return Err(DecodeError::ShortRead);
1251 read_pos += $byte_count as usize;
1252 &data[read_pos - $byte_count as usize..read_pos]
1257 let secp_ctx = Secp256k1::new();
1258 macro_rules! unwrap_obj {
1262 Err(_) => return Err(DecodeError::InvalidValue),
1267 let _ver = read_bytes!(1)[0];
1268 let min_ver = read_bytes!(1)[0];
1269 if min_ver > SERIALIZATION_VERSION {
1270 return Err(DecodeError::UnknownVersion);
1273 // Technically this can fail and serialize fail a round-trip, but only for serialization of
1274 // barely-init'd ChannelMonitors that we can't do anything with.
1275 let outpoint = OutPoint {
1276 txid: Sha256dHash::from(read_bytes!(32)),
1277 index: byte_utils::slice_to_be16(read_bytes!(2)),
1279 let script_len = byte_utils::slice_to_be64(read_bytes!(8));
1280 let funding_txo = Some((outpoint, Script::from(read_bytes!(script_len).to_vec())));
1281 let commitment_transaction_number_obscure_factor = byte_utils::slice_to_be48(read_bytes!(6));
1283 let key_storage = match read_bytes!(1)[0] {
1285 KeyStorage::PrivMode {
1286 revocation_base_key: unwrap_obj!(SecretKey::from_slice(&secp_ctx, read_bytes!(32))),
1287 htlc_base_key: unwrap_obj!(SecretKey::from_slice(&secp_ctx, read_bytes!(32))),
1290 _ => return Err(DecodeError::InvalidValue),
1293 let delayed_payment_base_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
1294 let their_htlc_base_key = Some(unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33))));
1295 let their_delayed_payment_base_key = Some(unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33))));
1297 let their_cur_revocation_points = {
1298 let first_idx = byte_utils::slice_to_be48(read_bytes!(6));
1302 let first_point = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
1303 let second_point_slice = read_bytes!(33);
1304 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
1305 Some((first_idx, first_point, None))
1307 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&secp_ctx, second_point_slice)))))
1312 let our_to_self_delay = byte_utils::slice_to_be16(read_bytes!(2));
1313 let their_to_self_delay = Some(byte_utils::slice_to_be16(read_bytes!(2)));
1315 let mut old_secrets = [([0; 32], 1 << 48); 49];
1316 for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() {
1317 secret.copy_from_slice(read_bytes!(32));
1318 *idx = byte_utils::slice_to_be64(read_bytes!(8));
1321 macro_rules! read_htlc_in_commitment {
1324 let offered = match read_bytes!(1)[0] {
1325 0 => false, 1 => true,
1326 _ => return Err(DecodeError::InvalidValue),
1328 let amount_msat = byte_utils::slice_to_be64(read_bytes!(8));
1329 let cltv_expiry = byte_utils::slice_to_be32(read_bytes!(4));
1330 let mut payment_hash = [0; 32];
1331 payment_hash[..].copy_from_slice(read_bytes!(32));
1332 let transaction_output_index = byte_utils::slice_to_be32(read_bytes!(4));
1334 HTLCOutputInCommitment {
1335 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
1341 let remote_claimable_outpoints_len = byte_utils::slice_to_be64(read_bytes!(8));
1342 if remote_claimable_outpoints_len > data.len() as u64 / 64 { return Err(DecodeError::BadLengthDescriptor); }
1343 let mut remote_claimable_outpoints = HashMap::with_capacity(remote_claimable_outpoints_len as usize);
1344 for _ in 0..remote_claimable_outpoints_len {
1345 let txid = Sha256dHash::from(read_bytes!(32));
1346 let outputs_count = byte_utils::slice_to_be64(read_bytes!(8));
1347 if outputs_count > data.len() as u64 / 32 { return Err(DecodeError::BadLengthDescriptor); }
1348 let mut outputs = Vec::with_capacity(outputs_count as usize);
1349 for _ in 0..outputs_count {
1350 outputs.push(read_htlc_in_commitment!());
1352 if let Some(_) = remote_claimable_outpoints.insert(txid, outputs) {
1353 return Err(DecodeError::InvalidValue);
1357 let remote_commitment_txn_on_chain_len = byte_utils::slice_to_be64(read_bytes!(8));
1358 if remote_commitment_txn_on_chain_len > data.len() as u64 / 32 { return Err(DecodeError::BadLengthDescriptor); }
1359 let mut remote_commitment_txn_on_chain = HashMap::with_capacity(remote_commitment_txn_on_chain_len as usize);
1360 for _ in 0..remote_commitment_txn_on_chain_len {
1361 let txid = Sha256dHash::from(read_bytes!(32));
1362 let commitment_number = byte_utils::slice_to_be48(read_bytes!(6));
1363 if let Some(_) = remote_commitment_txn_on_chain.insert(txid, commitment_number) {
1364 return Err(DecodeError::InvalidValue);
1368 let remote_hash_commitment_number_len = byte_utils::slice_to_be64(read_bytes!(8));
1369 if remote_hash_commitment_number_len > data.len() as u64 / 32 { return Err(DecodeError::BadLengthDescriptor); }
1370 let mut remote_hash_commitment_number = HashMap::with_capacity(remote_hash_commitment_number_len as usize);
1371 for _ in 0..remote_hash_commitment_number_len {
1372 let mut txid = [0; 32];
1373 txid[..].copy_from_slice(read_bytes!(32));
1374 let commitment_number = byte_utils::slice_to_be48(read_bytes!(6));
1375 if let Some(_) = remote_hash_commitment_number.insert(txid, commitment_number) {
1376 return Err(DecodeError::InvalidValue);
1380 macro_rules! read_local_tx {
1383 let tx_len = byte_utils::slice_to_be64(read_bytes!(8));
1384 let tx_ser = read_bytes!(tx_len);
1385 let tx: Transaction = unwrap_obj!(serialize::deserialize(tx_ser));
1386 if serialize::serialize(&tx).unwrap() != tx_ser {
1387 // We check that the tx re-serializes to the same form to ensure there is
1388 // no extra data, and as rust-bitcoin doesn't handle the 0-input ambiguity
1390 return Err(DecodeError::InvalidValue);
1393 let revocation_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
1394 let a_htlc_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
1395 let b_htlc_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
1396 let delayed_payment_key = unwrap_obj!(PublicKey::from_slice(&secp_ctx, read_bytes!(33)));
1397 let feerate_per_kw = byte_utils::slice_to_be64(read_bytes!(8));
1399 let htlc_outputs_len = byte_utils::slice_to_be64(read_bytes!(8));
1400 if htlc_outputs_len > data.len() as u64 / 128 { return Err(DecodeError::BadLengthDescriptor); }
1401 let mut htlc_outputs = Vec::with_capacity(htlc_outputs_len as usize);
1402 for _ in 0..htlc_outputs_len {
1403 htlc_outputs.push((read_htlc_in_commitment!(),
1404 unwrap_obj!(Signature::from_compact(&secp_ctx, read_bytes!(64))),
1405 unwrap_obj!(Signature::from_compact(&secp_ctx, read_bytes!(64)))));
1410 tx, revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, feerate_per_kw, htlc_outputs
1416 let prev_local_signed_commitment_tx = match read_bytes!(1)[0] {
1419 Some(read_local_tx!())
1421 _ => return Err(DecodeError::InvalidValue),
1424 let current_local_signed_commitment_tx = match read_bytes!(1)[0] {
1427 Some(read_local_tx!())
1429 _ => return Err(DecodeError::InvalidValue),
1432 let payment_preimages_len = byte_utils::slice_to_be64(read_bytes!(8));
1433 if payment_preimages_len > data.len() as u64 / 32 { return Err(DecodeError::InvalidValue); }
1434 let mut payment_preimages = HashMap::with_capacity(payment_preimages_len as usize);
1435 let mut sha = Sha256::new();
1436 for _ in 0..payment_preimages_len {
1437 let mut preimage = [0; 32];
1438 preimage[..].copy_from_slice(read_bytes!(32));
1440 sha.input(&preimage);
1441 let mut hash = [0; 32];
1442 sha.result(&mut hash);
1443 if let Some(_) = payment_preimages.insert(hash, preimage) {
1444 return Err(DecodeError::InvalidValue);
1448 let destination_script_len = byte_utils::slice_to_be64(read_bytes!(8));
1449 let destination_script = Script::from(read_bytes!(destination_script_len).to_vec());
1453 commitment_transaction_number_obscure_factor,
1456 delayed_payment_base_key,
1457 their_htlc_base_key,
1458 their_delayed_payment_base_key,
1459 their_cur_revocation_points,
1462 their_to_self_delay,
1465 remote_claimable_outpoints,
1466 remote_commitment_txn_on_chain: Mutex::new(remote_commitment_txn_on_chain),
1467 remote_hash_commitment_number,
1469 prev_local_signed_commitment_tx,
1470 current_local_signed_commitment_tx,
1483 use bitcoin::blockdata::script::Script;
1484 use bitcoin::blockdata::transaction::Transaction;
1485 use crypto::digest::Digest;
1487 use ln::channelmonitor::ChannelMonitor;
1488 use ln::chan_utils::{HTLCOutputInCommitment, TxCreationKeys};
1489 use util::sha2::Sha256;
1490 use secp256k1::key::{SecretKey,PublicKey};
1491 use secp256k1::{Secp256k1, Signature};
1492 use rand::{thread_rng,Rng};
1495 fn test_per_commitment_storage() {
1496 // Test vectors from BOLT 3:
1497 let mut secrets: Vec<[u8; 32]> = Vec::new();
1498 let mut monitor: ChannelMonitor;
1499 let secp_ctx = Secp256k1::new();
1501 macro_rules! test_secrets {
1503 let mut idx = 281474976710655;
1504 for secret in secrets.iter() {
1505 assert_eq!(monitor.get_secret(idx).unwrap(), *secret);
1508 assert_eq!(monitor.get_min_seen_secret(), idx + 1);
1509 assert!(monitor.get_secret(idx).is_err());
1513 let delayed_payment_base_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap());
1516 // insert_secret correct sequence
1517 monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &delayed_payment_base_key, &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new());
1520 secrets.push([0; 32]);
1521 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
1522 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap();
1525 secrets.push([0; 32]);
1526 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
1527 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap();
1530 secrets.push([0; 32]);
1531 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
1532 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap();
1535 secrets.push([0; 32]);
1536 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
1537 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap();
1540 secrets.push([0; 32]);
1541 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
1542 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap();
1545 secrets.push([0; 32]);
1546 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
1547 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap();
1550 secrets.push([0; 32]);
1551 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
1552 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone(), None).unwrap();
1555 secrets.push([0; 32]);
1556 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
1557 monitor.provide_secret(281474976710648, secrets.last().unwrap().clone(), None).unwrap();
1562 // insert_secret #1 incorrect
1563 monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &delayed_payment_base_key, &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new());
1566 secrets.push([0; 32]);
1567 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
1568 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap();
1571 secrets.push([0; 32]);
1572 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
1573 assert_eq!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap_err().err,
1574 "Previous secret did not match new one");
1578 // insert_secret #2 incorrect (#1 derived from incorrect)
1579 monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &delayed_payment_base_key, &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new());
1582 secrets.push([0; 32]);
1583 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
1584 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap();
1587 secrets.push([0; 32]);
1588 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
1589 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap();
1592 secrets.push([0; 32]);
1593 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
1594 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap();
1597 secrets.push([0; 32]);
1598 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
1599 assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap_err().err,
1600 "Previous secret did not match new one");
1604 // insert_secret #3 incorrect
1605 monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &delayed_payment_base_key, &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new());
1608 secrets.push([0; 32]);
1609 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
1610 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap();
1613 secrets.push([0; 32]);
1614 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
1615 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap();
1618 secrets.push([0; 32]);
1619 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
1620 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap();
1623 secrets.push([0; 32]);
1624 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
1625 assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap_err().err,
1626 "Previous secret did not match new one");
1630 // insert_secret #4 incorrect (1,2,3 derived from incorrect)
1631 monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &delayed_payment_base_key, &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new());
1634 secrets.push([0; 32]);
1635 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
1636 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap();
1639 secrets.push([0; 32]);
1640 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
1641 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap();
1644 secrets.push([0; 32]);
1645 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
1646 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap();
1649 secrets.push([0; 32]);
1650 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap());
1651 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap();
1654 secrets.push([0; 32]);
1655 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
1656 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap();
1659 secrets.push([0; 32]);
1660 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
1661 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap();
1664 secrets.push([0; 32]);
1665 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
1666 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone(), None).unwrap();
1669 secrets.push([0; 32]);
1670 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
1671 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone(), None).unwrap_err().err,
1672 "Previous secret did not match new one");
1676 // insert_secret #5 incorrect
1677 monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &delayed_payment_base_key, &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new());
1680 secrets.push([0; 32]);
1681 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
1682 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap();
1685 secrets.push([0; 32]);
1686 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
1687 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap();
1690 secrets.push([0; 32]);
1691 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
1692 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap();
1695 secrets.push([0; 32]);
1696 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
1697 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap();
1700 secrets.push([0; 32]);
1701 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
1702 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap();
1705 secrets.push([0; 32]);
1706 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
1707 assert_eq!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap_err().err,
1708 "Previous secret did not match new one");
1712 // insert_secret #6 incorrect (5 derived from incorrect)
1713 monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &delayed_payment_base_key, &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new());
1716 secrets.push([0; 32]);
1717 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
1718 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap();
1721 secrets.push([0; 32]);
1722 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
1723 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap();
1726 secrets.push([0; 32]);
1727 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
1728 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap();
1731 secrets.push([0; 32]);
1732 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
1733 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap();
1736 secrets.push([0; 32]);
1737 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
1738 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap();
1741 secrets.push([0; 32]);
1742 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap());
1743 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap();
1746 secrets.push([0; 32]);
1747 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
1748 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone(), None).unwrap();
1751 secrets.push([0; 32]);
1752 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
1753 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone(), None).unwrap_err().err,
1754 "Previous secret did not match new one");
1758 // insert_secret #7 incorrect
1759 monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &delayed_payment_base_key, &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new());
1762 secrets.push([0; 32]);
1763 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
1764 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap();
1767 secrets.push([0; 32]);
1768 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
1769 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap();
1772 secrets.push([0; 32]);
1773 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
1774 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap();
1777 secrets.push([0; 32]);
1778 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
1779 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap();
1782 secrets.push([0; 32]);
1783 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
1784 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap();
1787 secrets.push([0; 32]);
1788 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
1789 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap();
1792 secrets.push([0; 32]);
1793 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap());
1794 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone(), None).unwrap();
1797 secrets.push([0; 32]);
1798 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
1799 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone(), None).unwrap_err().err,
1800 "Previous secret did not match new one");
1804 // insert_secret #8 incorrect
1805 monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &delayed_payment_base_key, &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new());
1808 secrets.push([0; 32]);
1809 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
1810 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone(), None).unwrap();
1813 secrets.push([0; 32]);
1814 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
1815 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone(), None).unwrap();
1818 secrets.push([0; 32]);
1819 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
1820 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone(), None).unwrap();
1823 secrets.push([0; 32]);
1824 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
1825 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone(), None).unwrap();
1828 secrets.push([0; 32]);
1829 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
1830 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone(), None).unwrap();
1833 secrets.push([0; 32]);
1834 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
1835 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone(), None).unwrap();
1838 secrets.push([0; 32]);
1839 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
1840 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone(), None).unwrap();
1843 secrets.push([0; 32]);
1844 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap());
1845 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone(), None).unwrap_err().err,
1846 "Previous secret did not match new one");
1851 fn test_prune_preimages() {
1852 let secp_ctx = Secp256k1::new();
1853 let dummy_sig = Signature::from_der(&secp_ctx, &hex::decode("3045022100fa86fa9a36a8cd6a7bb8f06a541787d51371d067951a9461d5404de6b928782e02201c8b7c334c10aed8976a3a465be9a28abff4cb23acbf00022295b378ce1fa3cd").unwrap()[..]).unwrap();
1855 macro_rules! dummy_keys {
1858 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap());
1860 per_commitment_point: dummy_key.clone(),
1861 revocation_key: dummy_key.clone(),
1862 a_htlc_key: dummy_key.clone(),
1863 b_htlc_key: dummy_key.clone(),
1864 a_delayed_payment_key: dummy_key.clone(),
1865 b_payment_key: dummy_key.clone(),
1870 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
1872 let mut preimages = Vec::new();
1874 let mut rng = thread_rng();
1876 let mut preimage = [0; 32];
1877 rng.fill_bytes(&mut preimage);
1878 let mut sha = Sha256::new();
1879 sha.input(&preimage);
1880 let mut hash = [0; 32];
1881 sha.result(&mut hash);
1882 preimages.push((preimage, hash));
1886 macro_rules! preimages_slice_to_htlc_outputs {
1887 ($preimages_slice: expr) => {
1889 let mut res = Vec::new();
1890 for (idx, preimage) in $preimages_slice.iter().enumerate() {
1891 res.push(HTLCOutputInCommitment {
1895 payment_hash: preimage.1.clone(),
1896 transaction_output_index: idx as u32,
1903 macro_rules! preimages_to_local_htlcs {
1904 ($preimages_slice: expr) => {
1906 let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
1907 let res: Vec<_> = inp.drain(..).map(|e| { (e, dummy_sig.clone(), dummy_sig.clone()) }).collect();
1913 macro_rules! test_preimages_exist {
1914 ($preimages_slice: expr, $monitor: expr) => {
1915 for preimage in $preimages_slice {
1916 assert!($monitor.payment_preimages.contains_key(&preimage.1));
1921 // Prune with one old state and a local commitment tx holding a few overlaps with the
1923 let delayed_payment_base_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap());
1924 let mut monitor = ChannelMonitor::new(&SecretKey::from_slice(&secp_ctx, &[42; 32]).unwrap(), &delayed_payment_base_key, &SecretKey::from_slice(&secp_ctx, &[43; 32]).unwrap(), 0, Script::new());
1925 monitor.set_their_to_self_delay(10);
1927 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..10]));
1928 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655);
1929 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654);
1930 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653);
1931 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652);
1932 for &(ref preimage, ref hash) in preimages.iter() {
1933 monitor.provide_payment_preimage(hash, preimage);
1936 // Now provide a secret, pruning preimages 10-15
1937 let mut secret = [0; 32];
1938 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
1939 monitor.provide_secret(281474976710655, secret.clone(), None).unwrap();
1940 assert_eq!(monitor.payment_preimages.len(), 15);
1941 test_preimages_exist!(&preimages[0..10], monitor);
1942 test_preimages_exist!(&preimages[15..20], monitor);
1944 // Now provide a further secret, pruning preimages 15-17
1945 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
1946 monitor.provide_secret(281474976710654, secret.clone(), None).unwrap();
1947 assert_eq!(monitor.payment_preimages.len(), 13);
1948 test_preimages_exist!(&preimages[0..10], monitor);
1949 test_preimages_exist!(&preimages[17..20], monitor);
1951 // Now update local commitment tx info, pruning only element 18 as we still care about the
1952 // previous commitment tx's preimages too
1953 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..5]));
1954 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
1955 monitor.provide_secret(281474976710653, secret.clone(), None).unwrap();
1956 assert_eq!(monitor.payment_preimages.len(), 12);
1957 test_preimages_exist!(&preimages[0..10], monitor);
1958 test_preimages_exist!(&preimages[18..20], monitor);
1960 // But if we do it again, we'll prune 5-10
1961 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..3]));
1962 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
1963 monitor.provide_secret(281474976710652, secret.clone(), None).unwrap();
1964 assert_eq!(monitor.payment_preimages.len(), 5);
1965 test_preimages_exist!(&preimages[0..5], monitor);
1968 // Further testing is done in the ChannelManager integration tests.