1 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
4 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
5 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
6 //! be made in responding to certain messages, see ManyChannelMonitor for more.
8 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
9 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
10 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
11 //! security-domain-separated system design, you should consider having multiple paths for
12 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
14 use bitcoin::blockdata::block::BlockHeader;
15 use bitcoin::blockdata::transaction::{TxIn,TxOut,SigHashType,Transaction};
16 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
17 use bitcoin::blockdata::script::{Script, Builder};
18 use bitcoin::blockdata::opcodes;
19 use bitcoin::consensus::encode::{self, Decodable, Encodable};
20 use bitcoin::util::hash::BitcoinHash;
21 use bitcoin::util::bip143;
23 use bitcoin_hashes::Hash;
24 use bitcoin_hashes::sha256::Hash as Sha256;
25 use bitcoin_hashes::hash160::Hash as Hash160;
26 use bitcoin_hashes::sha256d::Hash as Sha256dHash;
28 use secp256k1::{Secp256k1,Signature};
29 use secp256k1::key::{SecretKey,PublicKey};
32 use ln::msgs::DecodeError;
34 use ln::chan_utils::HTLCOutputInCommitment;
35 use ln::channelmanager::{HTLCSource, PaymentPreimage, PaymentHash};
36 use ln::channel::{ACCEPTED_HTLC_SCRIPT_WEIGHT, OFFERED_HTLC_SCRIPT_WEIGHT};
37 use chain::chaininterface::{ChainListener, ChainWatchInterface, BroadcasterInterface};
38 use chain::transaction::OutPoint;
39 use chain::keysinterface::SpendableOutputDescriptor;
40 use util::logger::Logger;
41 use util::ser::{ReadableArgs, Readable, Writer, Writeable, WriterWriteAdaptor, U48};
42 use util::{byte_utils, events};
44 use std::collections::{HashMap, hash_map};
45 use std::sync::{Arc,Mutex};
46 use std::{hash,cmp, mem};
48 /// An error enum representing a failure to persist a channel monitor update.
50 pub enum ChannelMonitorUpdateErr {
51 /// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of
52 /// our state failed, but is expected to succeed at some point in the future).
54 /// Such a failure will "freeze" a channel, preventing us from revoking old states or
55 /// submitting new commitment transactions to the remote party.
56 /// ChannelManager::test_restore_channel_monitor can be used to retry the update(s) and restore
57 /// the channel to an operational state.
59 /// Note that continuing to operate when no copy of the updated ChannelMonitor could be
60 /// persisted is unsafe - if you failed to store the update on your own local disk you should
61 /// instead return PermanentFailure to force closure of the channel ASAP.
63 /// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur
64 /// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting
65 /// to claim it on this channel) and those updates must be applied wherever they can be. At
66 /// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should
67 /// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to
68 /// the channel which would invalidate previous ChannelMonitors are not made when a channel has
71 /// Note that even if updates made after TemporaryFailure succeed you must still call
72 /// test_restore_channel_monitor to ensure you have the latest monitor and re-enable normal
73 /// channel operation.
75 /// For deployments where a copy of ChannelMonitors and other local state are backed up in a
76 /// remote location (with local copies persisted immediately), it is anticipated that all
77 /// updates will return TemporaryFailure until the remote copies could be updated.
79 /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
80 /// different watchtower and cannot update with all watchtowers that were previously informed
81 /// of this channel). This will force-close the channel in question.
83 /// Should also be used to indicate a failure to update the local copy of the channel monitor.
87 /// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is
88 /// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::insert_combine this
89 /// means you tried to merge two monitors for different channels or for a channel which was
90 /// restored from a backup and then generated new commitment updates.
91 /// Contains a human-readable error message.
93 pub struct MonitorUpdateError(pub &'static str);
95 /// Simple structure send back by ManyChannelMonitor in case of HTLC detected onchain from a
96 /// forward channel and from which info are needed to update HTLC in a backward channel.
97 pub struct HTLCUpdate {
98 pub(super) payment_hash: PaymentHash,
99 pub(super) payment_preimage: Option<PaymentPreimage>,
100 pub(super) source: HTLCSource
103 /// Simple trait indicating ability to track a set of ChannelMonitors and multiplex events between
104 /// them. Generally should be implemented by keeping a local SimpleManyChannelMonitor and passing
105 /// events to it, while also taking any add_update_monitor events and passing them to some remote
108 /// Note that any updates to a channel's monitor *must* be applied to each instance of the
109 /// channel's monitor everywhere (including remote watchtowers) *before* this function returns. If
110 /// an update occurs and a remote watchtower is left with old state, it may broadcast transactions
111 /// which we have revoked, allowing our counterparty to claim all funds in the channel!
112 pub trait ManyChannelMonitor: Send + Sync {
113 /// Adds or updates a monitor for the given `funding_txo`.
115 /// Implementor must also ensure that the funding_txo outpoint is registered with any relevant
116 /// ChainWatchInterfaces such that the provided monitor receives block_connected callbacks with
117 /// any spends of it.
118 fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr>;
120 /// Used by ChannelManager to get list of HTLC resolved onchain and which needed to be updated
121 /// with success or failure backward
122 fn fetch_pending_htlc_updated(&self) -> Vec<HTLCUpdate>;
125 /// A simple implementation of a ManyChannelMonitor and ChainListener. Can be used to create a
126 /// watchtower or watch our own channels.
128 /// Note that you must provide your own key by which to refer to channels.
130 /// If you're accepting remote monitors (ie are implementing a watchtower), you must verify that
131 /// users cannot overwrite a given channel by providing a duplicate key. ie you should probably
132 /// index by a PublicKey which is required to sign any updates.
134 /// If you're using this for local monitoring of your own channels, you probably want to use
135 /// `OutPoint` as the key, which will give you a ManyChannelMonitor implementation.
136 pub struct SimpleManyChannelMonitor<Key> {
137 #[cfg(test)] // Used in ChannelManager tests to manipulate channels directly
138 pub monitors: Mutex<HashMap<Key, ChannelMonitor>>,
140 monitors: Mutex<HashMap<Key, ChannelMonitor>>,
141 chain_monitor: Arc<ChainWatchInterface>,
142 broadcaster: Arc<BroadcasterInterface>,
143 pending_events: Mutex<Vec<events::Event>>,
144 pending_htlc_updated: Mutex<HashMap<PaymentHash, Vec<(HTLCSource, Option<PaymentPreimage>)>>>,
148 impl<Key : Send + cmp::Eq + hash::Hash> ChainListener for SimpleManyChannelMonitor<Key> {
149 fn block_connected(&self, header: &BlockHeader, height: u32, txn_matched: &[&Transaction], _indexes_of_txn_matched: &[u32]) {
150 let block_hash = header.bitcoin_hash();
151 let mut new_events: Vec<events::Event> = Vec::with_capacity(0);
152 let mut htlc_updated_infos = Vec::new();
154 let mut monitors = self.monitors.lock().unwrap();
155 for monitor in monitors.values_mut() {
156 let (txn_outputs, spendable_outputs, mut htlc_updated) = monitor.block_connected(txn_matched, height, &block_hash, &*self.broadcaster);
157 if spendable_outputs.len() > 0 {
158 new_events.push(events::Event::SpendableOutputs {
159 outputs: spendable_outputs,
163 for (ref txid, ref outputs) in txn_outputs {
164 for (idx, output) in outputs.iter().enumerate() {
165 self.chain_monitor.install_watch_outpoint((txid.clone(), idx as u32), &output.script_pubkey);
168 htlc_updated_infos.append(&mut htlc_updated);
172 // ChannelManager will just need to fetch pending_htlc_updated and pass state backward
173 let mut pending_htlc_updated = self.pending_htlc_updated.lock().unwrap();
174 for htlc in htlc_updated_infos.drain(..) {
175 match pending_htlc_updated.entry(htlc.2) {
176 hash_map::Entry::Occupied(mut e) => {
177 // In case of reorg we may have htlc outputs solved in a different way so
178 // we prefer to keep claims but don't store duplicate updates for a given
179 // (payment_hash, HTLCSource) pair.
180 // TODO: Note that we currently don't really use this as ChannelManager
181 // will fail/claim backwards after the first block. We really should delay
182 // a few blocks before failing backwards (but can claim backwards
183 // immediately) as long as we have a few blocks of headroom.
184 let mut existing_claim = false;
185 e.get_mut().retain(|htlc_data| {
186 if htlc.0 == htlc_data.0 {
187 if htlc_data.1.is_some() {
188 existing_claim = true;
194 e.get_mut().push((htlc.0, htlc.1));
197 hash_map::Entry::Vacant(e) => {
198 e.insert(vec![(htlc.0, htlc.1)]);
203 let mut pending_events = self.pending_events.lock().unwrap();
204 pending_events.append(&mut new_events);
207 fn block_disconnected(&self, _: &BlockHeader) { }
210 impl<Key : Send + cmp::Eq + hash::Hash + 'static> SimpleManyChannelMonitor<Key> {
211 /// Creates a new object which can be used to monitor several channels given the chain
212 /// interface with which to register to receive notifications.
213 pub fn new(chain_monitor: Arc<ChainWatchInterface>, broadcaster: Arc<BroadcasterInterface>, logger: Arc<Logger>) -> Arc<SimpleManyChannelMonitor<Key>> {
214 let res = Arc::new(SimpleManyChannelMonitor {
215 monitors: Mutex::new(HashMap::new()),
218 pending_events: Mutex::new(Vec::new()),
219 pending_htlc_updated: Mutex::new(HashMap::new()),
222 let weak_res = Arc::downgrade(&res);
223 res.chain_monitor.register_listener(weak_res);
227 /// Adds or updates the monitor which monitors the channel referred to by the given key.
228 pub fn add_update_monitor_by_key(&self, key: Key, monitor: ChannelMonitor) -> Result<(), MonitorUpdateError> {
229 let mut monitors = self.monitors.lock().unwrap();
230 match monitors.get_mut(&key) {
231 Some(orig_monitor) => {
232 log_trace!(self, "Updating Channel Monitor for channel {}", log_funding_info!(monitor.key_storage));
233 return orig_monitor.insert_combine(monitor);
237 match monitor.key_storage {
238 Storage::Local { ref funding_info, .. } => {
241 return Err(MonitorUpdateError("Try to update a useless monitor without funding_txo !"));
243 &Some((ref outpoint, ref script)) => {
244 log_trace!(self, "Got new Channel Monitor for channel {}", log_bytes!(outpoint.to_channel_id()[..]));
245 self.chain_monitor.install_watch_tx(&outpoint.txid, script);
246 self.chain_monitor.install_watch_outpoint((outpoint.txid, outpoint.index as u32), script);
250 Storage::Watchtower { .. } => {
251 self.chain_monitor.watch_all_txn();
254 monitors.insert(key, monitor);
259 impl ManyChannelMonitor for SimpleManyChannelMonitor<OutPoint> {
260 fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr> {
261 match self.add_update_monitor_by_key(funding_txo, monitor) {
263 Err(_) => Err(ChannelMonitorUpdateErr::PermanentFailure),
267 fn fetch_pending_htlc_updated(&self) -> Vec<HTLCUpdate> {
268 let mut updated = self.pending_htlc_updated.lock().unwrap();
269 let mut pending_htlcs_updated = Vec::with_capacity(updated.len());
270 for (k, v) in updated.drain() {
272 pending_htlcs_updated.push(HTLCUpdate {
274 payment_preimage: htlc_data.1,
279 pending_htlcs_updated
283 impl<Key : Send + cmp::Eq + hash::Hash> events::EventsProvider for SimpleManyChannelMonitor<Key> {
284 fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
285 let mut pending_events = self.pending_events.lock().unwrap();
286 let mut ret = Vec::new();
287 mem::swap(&mut ret, &mut *pending_events);
292 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
293 /// instead claiming it in its own individual transaction.
294 const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
295 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
296 /// HTLC-Success transaction.
297 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
298 /// transaction confirmed (and we use it in a few more, equivalent, places).
299 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 6;
300 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
301 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
302 /// copies of ChannelMonitors, including watchtowers).
303 pub(crate) const HTLC_FAIL_TIMEOUT_BLOCKS: u32 = 3;
304 /// Number of blocks we wait on seeing a confirmed HTLC-Timeout or previous revoked commitment
305 /// transaction before we fail corresponding inbound HTLCs. This prevents us from failing backwards
306 /// and then getting a reorg resulting in us losing money.
307 //TODO: We currently don't actually use this...we should
308 pub(crate) const HTLC_FAIL_ANTI_REORG_DELAY: u32 = 6;
310 #[derive(Clone, PartialEq)]
313 revocation_base_key: SecretKey,
314 htlc_base_key: SecretKey,
315 delayed_payment_base_key: SecretKey,
316 payment_base_key: SecretKey,
317 shutdown_pubkey: PublicKey,
318 prev_latest_per_commitment_point: Option<PublicKey>,
319 latest_per_commitment_point: Option<PublicKey>,
320 funding_info: Option<(OutPoint, Script)>,
321 current_remote_commitment_txid: Option<Sha256dHash>,
322 prev_remote_commitment_txid: Option<Sha256dHash>,
325 revocation_base_key: PublicKey,
326 htlc_base_key: PublicKey,
330 #[derive(Clone, PartialEq)]
331 struct LocalSignedTx {
332 /// txid of the transaction in tx, just used to make comparison faster
335 revocation_key: PublicKey,
336 a_htlc_key: PublicKey,
337 b_htlc_key: PublicKey,
338 delayed_payment_key: PublicKey,
340 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<(Signature, Signature)>, Option<HTLCSource>)>,
343 const SERIALIZATION_VERSION: u8 = 1;
344 const MIN_SERIALIZATION_VERSION: u8 = 1;
346 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
347 /// on-chain transactions to ensure no loss of funds occurs.
349 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
350 /// information and are actively monitoring the chain.
352 pub struct ChannelMonitor {
353 commitment_transaction_number_obscure_factor: u64,
355 key_storage: Storage,
356 their_htlc_base_key: Option<PublicKey>,
357 their_delayed_payment_base_key: Option<PublicKey>,
358 // first is the idx of the first of the two revocation points
359 their_cur_revocation_points: Option<(u64, PublicKey, Option<PublicKey>)>,
361 our_to_self_delay: u16,
362 their_to_self_delay: Option<u16>,
364 old_secrets: [([u8; 32], u64); 49],
365 remote_claimable_outpoints: HashMap<Sha256dHash, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
366 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
367 /// Nor can we figure out their commitment numbers without the commitment transaction they are
368 /// spending. Thus, in order to claim them via revocation key, we track all the remote
369 /// commitment transactions which we find on-chain, mapping them to the commitment number which
370 /// can be used to derive the revocation key and claim the transactions.
371 remote_commitment_txn_on_chain: HashMap<Sha256dHash, (u64, Vec<Script>)>,
372 /// Cache used to make pruning of payment_preimages faster.
373 /// Maps payment_hash values to commitment numbers for remote transactions for non-revoked
374 /// remote transactions (ie should remain pretty small).
375 /// Serialized to disk but should generally not be sent to Watchtowers.
376 remote_hash_commitment_number: HashMap<PaymentHash, u64>,
378 // We store two local commitment transactions to avoid any race conditions where we may update
379 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
380 // various monitors for one channel being out of sync, and us broadcasting a local
381 // transaction for which we have deleted claim information on some watchtowers.
382 prev_local_signed_commitment_tx: Option<LocalSignedTx>,
383 current_local_signed_commitment_tx: Option<LocalSignedTx>,
385 // Used just for ChannelManager to make sure it has the latest channel data during
387 current_remote_commitment_number: u64,
389 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
391 destination_script: Script,
393 // We simply modify last_block_hash in Channel's block_connected so that serialization is
394 // consistent but hopefully the users' copy handles block_connected in a consistent way.
395 // (we do *not*, however, update them in insert_combine to ensure any local user copies keep
396 // their last_block_hash from its state and not based on updated copies that didn't run through
397 // the full block_connected).
398 pub(crate) last_block_hash: Sha256dHash,
399 secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
403 #[cfg(any(test, feature = "fuzztarget"))]
404 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
405 /// underlying object
406 impl PartialEq for ChannelMonitor {
407 fn eq(&self, other: &Self) -> bool {
408 if self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
409 self.key_storage != other.key_storage ||
410 self.their_htlc_base_key != other.their_htlc_base_key ||
411 self.their_delayed_payment_base_key != other.their_delayed_payment_base_key ||
412 self.their_cur_revocation_points != other.their_cur_revocation_points ||
413 self.our_to_self_delay != other.our_to_self_delay ||
414 self.their_to_self_delay != other.their_to_self_delay ||
415 self.remote_claimable_outpoints != other.remote_claimable_outpoints ||
416 self.remote_commitment_txn_on_chain != other.remote_commitment_txn_on_chain ||
417 self.remote_hash_commitment_number != other.remote_hash_commitment_number ||
418 self.prev_local_signed_commitment_tx != other.prev_local_signed_commitment_tx ||
419 self.current_remote_commitment_number != other.current_remote_commitment_number ||
420 self.current_local_signed_commitment_tx != other.current_local_signed_commitment_tx ||
421 self.payment_preimages != other.payment_preimages ||
422 self.destination_script != other.destination_script
426 for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) {
427 if secret != o_secret || idx != o_idx {
436 impl ChannelMonitor {
437 pub(super) fn new(revocation_base_key: &SecretKey, delayed_payment_base_key: &SecretKey, htlc_base_key: &SecretKey, payment_base_key: &SecretKey, shutdown_pubkey: &PublicKey, our_to_self_delay: u16, destination_script: Script, logger: Arc<Logger>) -> ChannelMonitor {
439 commitment_transaction_number_obscure_factor: 0,
441 key_storage: Storage::Local {
442 revocation_base_key: revocation_base_key.clone(),
443 htlc_base_key: htlc_base_key.clone(),
444 delayed_payment_base_key: delayed_payment_base_key.clone(),
445 payment_base_key: payment_base_key.clone(),
446 shutdown_pubkey: shutdown_pubkey.clone(),
447 prev_latest_per_commitment_point: None,
448 latest_per_commitment_point: None,
450 current_remote_commitment_txid: None,
451 prev_remote_commitment_txid: None,
453 their_htlc_base_key: None,
454 their_delayed_payment_base_key: None,
455 their_cur_revocation_points: None,
457 our_to_self_delay: our_to_self_delay,
458 their_to_self_delay: None,
460 old_secrets: [([0; 32], 1 << 48); 49],
461 remote_claimable_outpoints: HashMap::new(),
462 remote_commitment_txn_on_chain: HashMap::new(),
463 remote_hash_commitment_number: HashMap::new(),
465 prev_local_signed_commitment_tx: None,
466 current_local_signed_commitment_tx: None,
467 current_remote_commitment_number: 1 << 48,
469 payment_preimages: HashMap::new(),
470 destination_script: destination_script,
472 last_block_hash: Default::default(),
473 secp_ctx: Secp256k1::new(),
479 fn place_secret(idx: u64) -> u8 {
481 if idx & (1 << i) == (1 << i) {
489 fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] {
490 let mut res: [u8; 32] = secret;
492 let bitpos = bits - 1 - i;
493 if idx & (1 << bitpos) == (1 << bitpos) {
494 res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7);
495 res = Sha256::hash(&res).into_inner();
501 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
502 /// needed by local commitment transactions HTCLs nor by remote ones. Unless we haven't already seen remote
503 /// commitment transaction's secret, they are de facto pruned (we can use revocation key).
504 pub(super) fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
505 let pos = ChannelMonitor::place_secret(idx);
507 let (old_secret, old_idx) = self.old_secrets[i as usize];
508 if ChannelMonitor::derive_secret(secret, pos, old_idx) != old_secret {
509 return Err(MonitorUpdateError("Previous secret did not match new one"));
512 if self.get_min_seen_secret() <= idx {
515 self.old_secrets[pos as usize] = (secret, idx);
517 // Prune HTLCs from the previous remote commitment tx so we don't generate failure/fulfill
518 // events for now-revoked/fulfilled HTLCs.
519 // TODO: We should probably consider whether we're really getting the next secret here.
520 if let Storage::Local { ref mut prev_remote_commitment_txid, .. } = self.key_storage {
521 if let Some(txid) = prev_remote_commitment_txid.take() {
522 for &mut (_, ref mut source) in self.remote_claimable_outpoints.get_mut(&txid).unwrap() {
528 if !self.payment_preimages.is_empty() {
529 let local_signed_commitment_tx = self.current_local_signed_commitment_tx.as_ref().expect("Channel needs at least an initial commitment tx !");
530 let prev_local_signed_commitment_tx = self.prev_local_signed_commitment_tx.as_ref();
531 let min_idx = self.get_min_seen_secret();
532 let remote_hash_commitment_number = &mut self.remote_hash_commitment_number;
534 self.payment_preimages.retain(|&k, _| {
535 for &(ref htlc, _, _) in &local_signed_commitment_tx.htlc_outputs {
536 if k == htlc.payment_hash {
540 if let Some(prev_local_commitment_tx) = prev_local_signed_commitment_tx {
541 for &(ref htlc, _, _) in prev_local_commitment_tx.htlc_outputs.iter() {
542 if k == htlc.payment_hash {
547 let contains = if let Some(cn) = remote_hash_commitment_number.get(&k) {
554 remote_hash_commitment_number.remove(&k);
563 /// Informs this monitor of the latest remote (ie non-broadcastable) commitment transaction.
564 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
565 /// possibly future revocation/preimage information) to claim outputs where possible.
566 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
567 pub(super) fn provide_latest_remote_commitment_tx_info(&mut self, unsigned_commitment_tx: &Transaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_revocation_point: PublicKey) {
568 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
569 // so that a remote monitor doesn't learn anything unless there is a malicious close.
570 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
572 for &(ref htlc, _) in &htlc_outputs {
573 self.remote_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
576 let new_txid = unsigned_commitment_tx.txid();
577 log_trace!(self, "Tracking new remote commitment transaction with txid {} at commitment number {} with {} HTLC outputs", new_txid, commitment_number, htlc_outputs.len());
578 log_trace!(self, "New potential remote commitment transaction: {}", encode::serialize_hex(unsigned_commitment_tx));
579 if let Storage::Local { ref mut current_remote_commitment_txid, ref mut prev_remote_commitment_txid, .. } = self.key_storage {
580 *prev_remote_commitment_txid = current_remote_commitment_txid.take();
581 *current_remote_commitment_txid = Some(new_txid);
583 self.remote_claimable_outpoints.insert(new_txid, htlc_outputs);
584 self.current_remote_commitment_number = commitment_number;
585 //TODO: Merge this into the other per-remote-transaction output storage stuff
586 match self.their_cur_revocation_points {
587 Some(old_points) => {
588 if old_points.0 == commitment_number + 1 {
589 self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point)));
590 } else if old_points.0 == commitment_number + 2 {
591 if let Some(old_second_point) = old_points.2 {
592 self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point)));
594 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
597 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
601 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
606 /// Informs this monitor of the latest local (ie broadcastable) commitment transaction. The
607 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
608 /// is important that any clones of this channel monitor (including remote clones) by kept
609 /// up-to-date as our local commitment transaction is updated.
610 /// Panics if set_their_to_self_delay has never been called.
611 /// Also update Storage with latest local per_commitment_point to derive local_delayedkey in
612 /// case of onchain HTLC tx
613 pub(super) fn provide_latest_local_commitment_tx_info(&mut self, signed_commitment_tx: Transaction, local_keys: chan_utils::TxCreationKeys, feerate_per_kw: u64, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<(Signature, Signature)>, Option<HTLCSource>)>) {
614 assert!(self.their_to_self_delay.is_some());
615 self.prev_local_signed_commitment_tx = self.current_local_signed_commitment_tx.take();
616 self.current_local_signed_commitment_tx = Some(LocalSignedTx {
617 txid: signed_commitment_tx.txid(),
618 tx: signed_commitment_tx,
619 revocation_key: local_keys.revocation_key,
620 a_htlc_key: local_keys.a_htlc_key,
621 b_htlc_key: local_keys.b_htlc_key,
622 delayed_payment_key: local_keys.a_delayed_payment_key,
627 if let Storage::Local { ref mut latest_per_commitment_point, .. } = self.key_storage {
628 *latest_per_commitment_point = Some(local_keys.per_commitment_point);
630 panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?");
634 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
635 /// commitment_tx_infos which contain the payment hash have been revoked.
636 pub(super) fn provide_payment_preimage(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage) {
637 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
640 /// Combines this ChannelMonitor with the information contained in the other ChannelMonitor.
641 /// After a successful call this ChannelMonitor is up-to-date and is safe to use to monitor the
642 /// chain for new blocks/transactions.
643 pub fn insert_combine(&mut self, mut other: ChannelMonitor) -> Result<(), MonitorUpdateError> {
644 match self.key_storage {
645 Storage::Local { ref funding_info, .. } => {
646 if funding_info.is_none() { return Err(MonitorUpdateError("Try to combine a Local monitor without funding_info")); }
647 let our_funding_info = funding_info;
648 if let Storage::Local { ref funding_info, .. } = other.key_storage {
649 if funding_info.is_none() { return Err(MonitorUpdateError("Try to combine a Local monitor without funding_info")); }
650 // We should be able to compare the entire funding_txo, but in fuzztarget it's trivially
651 // easy to collide the funding_txo hash and have a different scriptPubKey.
652 if funding_info.as_ref().unwrap().0 != our_funding_info.as_ref().unwrap().0 {
653 return Err(MonitorUpdateError("Funding transaction outputs are not identical!"));
656 return Err(MonitorUpdateError("Try to combine a Local monitor with a Watchtower one !"));
659 Storage::Watchtower { .. } => {
660 if let Storage::Watchtower { .. } = other.key_storage {
663 return Err(MonitorUpdateError("Try to combine a Watchtower monitor with a Local one !"));
667 let other_min_secret = other.get_min_seen_secret();
668 let our_min_secret = self.get_min_seen_secret();
669 if our_min_secret > other_min_secret {
670 self.provide_secret(other_min_secret, other.get_secret(other_min_secret).unwrap())?;
672 if let Some(ref local_tx) = self.current_local_signed_commitment_tx {
673 if let Some(ref other_local_tx) = other.current_local_signed_commitment_tx {
674 let our_commitment_number = 0xffffffffffff - ((((local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (local_tx.tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
675 let other_commitment_number = 0xffffffffffff - ((((other_local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (other_local_tx.tx.lock_time as u64 & 0xffffff)) ^ other.commitment_transaction_number_obscure_factor);
676 if our_commitment_number >= other_commitment_number {
677 self.key_storage = other.key_storage;
681 // TODO: We should use current_remote_commitment_number and the commitment number out of
682 // local transactions to decide how to merge
683 if our_min_secret >= other_min_secret {
684 self.their_cur_revocation_points = other.their_cur_revocation_points;
685 for (txid, htlcs) in other.remote_claimable_outpoints.drain() {
686 self.remote_claimable_outpoints.insert(txid, htlcs);
688 if let Some(local_tx) = other.prev_local_signed_commitment_tx {
689 self.prev_local_signed_commitment_tx = Some(local_tx);
691 if let Some(local_tx) = other.current_local_signed_commitment_tx {
692 self.current_local_signed_commitment_tx = Some(local_tx);
694 self.payment_preimages = other.payment_preimages;
697 self.current_remote_commitment_number = cmp::min(self.current_remote_commitment_number, other.current_remote_commitment_number);
701 /// Panics if commitment_transaction_number_obscure_factor doesn't fit in 48 bits
702 pub(super) fn set_commitment_obscure_factor(&mut self, commitment_transaction_number_obscure_factor: u64) {
703 assert!(commitment_transaction_number_obscure_factor < (1 << 48));
704 self.commitment_transaction_number_obscure_factor = commitment_transaction_number_obscure_factor;
707 /// Allows this monitor to scan only for transactions which are applicable. Note that this is
708 /// optional, without it this monitor cannot be used in an SPV client, but you may wish to
709 /// avoid this (or call unset_funding_info) on a monitor you wish to send to a watchtower as it
710 /// provides slightly better privacy.
711 /// It's the responsibility of the caller to register outpoint and script with passing the former
712 /// value as key to add_update_monitor.
713 pub(super) fn set_funding_info(&mut self, new_funding_info: (OutPoint, Script)) {
714 match self.key_storage {
715 Storage::Local { ref mut funding_info, .. } => {
716 *funding_info = Some(new_funding_info);
718 Storage::Watchtower { .. } => {
719 panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?");
724 /// We log these base keys at channel opening to being able to rebuild redeemscript in case of leaked revoked commit tx
725 pub(super) fn set_their_base_keys(&mut self, their_htlc_base_key: &PublicKey, their_delayed_payment_base_key: &PublicKey) {
726 self.their_htlc_base_key = Some(their_htlc_base_key.clone());
727 self.their_delayed_payment_base_key = Some(their_delayed_payment_base_key.clone());
730 pub(super) fn set_their_to_self_delay(&mut self, their_to_self_delay: u16) {
731 self.their_to_self_delay = Some(their_to_self_delay);
734 pub(super) fn unset_funding_info(&mut self) {
735 match self.key_storage {
736 Storage::Local { ref mut funding_info, .. } => {
737 *funding_info = None;
739 Storage::Watchtower { .. } => {
740 panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?");
745 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
746 pub fn get_funding_txo(&self) -> Option<OutPoint> {
747 match self.key_storage {
748 Storage::Local { ref funding_info, .. } => {
750 &Some((outpoint, _)) => Some(outpoint),
754 Storage::Watchtower { .. } => {
760 /// Gets the sets of all outpoints which this ChannelMonitor expects to hear about spends of.
761 /// Generally useful when deserializing as during normal operation the return values of
762 /// block_connected are sufficient to ensure all relevant outpoints are being monitored (note
763 /// that the get_funding_txo outpoint and transaction must also be monitored for!).
764 pub fn get_monitored_outpoints(&self) -> Vec<(Sha256dHash, u32, &Script)> {
765 let mut res = Vec::with_capacity(self.remote_commitment_txn_on_chain.len() * 2);
766 for (ref txid, &(_, ref outputs)) in self.remote_commitment_txn_on_chain.iter() {
767 for (idx, output) in outputs.iter().enumerate() {
768 res.push(((*txid).clone(), idx as u32, output));
774 /// Serializes into a vec, with various modes for the exposed pub fns
775 fn write<W: Writer>(&self, writer: &mut W, for_local_storage: bool) -> Result<(), ::std::io::Error> {
776 //TODO: We still write out all the serialization here manually instead of using the fancy
777 //serialization framework we have, we should migrate things over to it.
778 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
779 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
781 // Set in initial Channel-object creation, so should always be set by now:
782 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
784 macro_rules! write_option {
791 &None => 0u8.write(writer)?,
796 match self.key_storage {
797 Storage::Local { ref revocation_base_key, ref htlc_base_key, ref delayed_payment_base_key, ref payment_base_key, ref shutdown_pubkey, ref prev_latest_per_commitment_point, ref latest_per_commitment_point, ref funding_info, ref current_remote_commitment_txid, ref prev_remote_commitment_txid } => {
798 writer.write_all(&[0; 1])?;
799 writer.write_all(&revocation_base_key[..])?;
800 writer.write_all(&htlc_base_key[..])?;
801 writer.write_all(&delayed_payment_base_key[..])?;
802 writer.write_all(&payment_base_key[..])?;
803 writer.write_all(&shutdown_pubkey.serialize())?;
804 if let Some(ref prev_latest_per_commitment_point) = *prev_latest_per_commitment_point {
805 writer.write_all(&[1; 1])?;
806 writer.write_all(&prev_latest_per_commitment_point.serialize())?;
808 writer.write_all(&[0; 1])?;
810 if let Some(ref latest_per_commitment_point) = *latest_per_commitment_point {
811 writer.write_all(&[1; 1])?;
812 writer.write_all(&latest_per_commitment_point.serialize())?;
814 writer.write_all(&[0; 1])?;
817 &Some((ref outpoint, ref script)) => {
818 writer.write_all(&outpoint.txid[..])?;
819 writer.write_all(&byte_utils::be16_to_array(outpoint.index))?;
820 script.write(writer)?;
823 debug_assert!(false, "Try to serialize a useless Local monitor !");
826 write_option!(current_remote_commitment_txid);
827 write_option!(prev_remote_commitment_txid);
829 Storage::Watchtower { .. } => unimplemented!(),
832 writer.write_all(&self.their_htlc_base_key.as_ref().unwrap().serialize())?;
833 writer.write_all(&self.their_delayed_payment_base_key.as_ref().unwrap().serialize())?;
835 match self.their_cur_revocation_points {
836 Some((idx, pubkey, second_option)) => {
837 writer.write_all(&byte_utils::be48_to_array(idx))?;
838 writer.write_all(&pubkey.serialize())?;
839 match second_option {
840 Some(second_pubkey) => {
841 writer.write_all(&second_pubkey.serialize())?;
844 writer.write_all(&[0; 33])?;
849 writer.write_all(&byte_utils::be48_to_array(0))?;
853 writer.write_all(&byte_utils::be16_to_array(self.our_to_self_delay))?;
854 writer.write_all(&byte_utils::be16_to_array(self.their_to_self_delay.unwrap()))?;
856 for &(ref secret, ref idx) in self.old_secrets.iter() {
857 writer.write_all(secret)?;
858 writer.write_all(&byte_utils::be64_to_array(*idx))?;
861 macro_rules! serialize_htlc_in_commitment {
862 ($htlc_output: expr) => {
863 writer.write_all(&[$htlc_output.offered as u8; 1])?;
864 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
865 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
866 writer.write_all(&$htlc_output.payment_hash.0[..])?;
867 write_option!(&$htlc_output.transaction_output_index);
871 writer.write_all(&byte_utils::be64_to_array(self.remote_claimable_outpoints.len() as u64))?;
872 for (ref txid, ref htlc_infos) in self.remote_claimable_outpoints.iter() {
873 writer.write_all(&txid[..])?;
874 writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
875 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
876 serialize_htlc_in_commitment!(htlc_output);
877 write_option!(htlc_source);
881 writer.write_all(&byte_utils::be64_to_array(self.remote_commitment_txn_on_chain.len() as u64))?;
882 for (ref txid, &(commitment_number, ref txouts)) in self.remote_commitment_txn_on_chain.iter() {
883 writer.write_all(&txid[..])?;
884 writer.write_all(&byte_utils::be48_to_array(commitment_number))?;
885 (txouts.len() as u64).write(writer)?;
886 for script in txouts.iter() {
887 script.write(writer)?;
891 if for_local_storage {
892 writer.write_all(&byte_utils::be64_to_array(self.remote_hash_commitment_number.len() as u64))?;
893 for (ref payment_hash, commitment_number) in self.remote_hash_commitment_number.iter() {
894 writer.write_all(&payment_hash.0[..])?;
895 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
898 writer.write_all(&byte_utils::be64_to_array(0))?;
901 macro_rules! serialize_local_tx {
902 ($local_tx: expr) => {
903 if let Err(e) = $local_tx.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) {
905 encode::Error::Io(e) => return Err(e),
906 _ => panic!("local tx must have been well-formed!"),
910 writer.write_all(&$local_tx.revocation_key.serialize())?;
911 writer.write_all(&$local_tx.a_htlc_key.serialize())?;
912 writer.write_all(&$local_tx.b_htlc_key.serialize())?;
913 writer.write_all(&$local_tx.delayed_payment_key.serialize())?;
915 writer.write_all(&byte_utils::be64_to_array($local_tx.feerate_per_kw))?;
916 writer.write_all(&byte_utils::be64_to_array($local_tx.htlc_outputs.len() as u64))?;
917 for &(ref htlc_output, ref sigs, ref htlc_source) in $local_tx.htlc_outputs.iter() {
918 serialize_htlc_in_commitment!(htlc_output);
919 if let &Some((ref their_sig, ref our_sig)) = sigs {
921 writer.write_all(&their_sig.serialize_compact())?;
922 writer.write_all(&our_sig.serialize_compact())?;
926 write_option!(htlc_source);
931 if let Some(ref prev_local_tx) = self.prev_local_signed_commitment_tx {
932 writer.write_all(&[1; 1])?;
933 serialize_local_tx!(prev_local_tx);
935 writer.write_all(&[0; 1])?;
938 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
939 writer.write_all(&[1; 1])?;
940 serialize_local_tx!(cur_local_tx);
942 writer.write_all(&[0; 1])?;
945 if for_local_storage {
946 writer.write_all(&byte_utils::be48_to_array(self.current_remote_commitment_number))?;
948 writer.write_all(&byte_utils::be48_to_array(0))?;
951 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
952 for payment_preimage in self.payment_preimages.values() {
953 writer.write_all(&payment_preimage.0[..])?;
956 self.last_block_hash.write(writer)?;
957 self.destination_script.write(writer)?;
962 /// Writes this monitor into the given writer, suitable for writing to disk.
964 /// Note that the deserializer is only implemented for (Sha256dHash, ChannelMonitor), which
965 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
966 /// the "reorg path" (ie not just starting at the same height but starting at the highest
967 /// common block that appears on your best chain as well as on the chain which contains the
968 /// last block hash returned) upon deserializing the object!
969 pub fn write_for_disk<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
970 self.write(writer, true)
973 /// Encodes this monitor into the given writer, suitable for sending to a remote watchtower
975 /// Note that the deserializer is only implemented for (Sha256dHash, ChannelMonitor), which
976 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
977 /// the "reorg path" (ie not just starting at the same height but starting at the highest
978 /// common block that appears on your best chain as well as on the chain which contains the
979 /// last block hash returned) upon deserializing the object!
980 pub fn write_for_watchtower<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
981 self.write(writer, false)
984 /// Can only fail if idx is < get_min_seen_secret
985 pub(super) fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
986 for i in 0..self.old_secrets.len() {
987 if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 {
988 return Some(ChannelMonitor::derive_secret(self.old_secrets[i].0, i as u8, idx))
991 assert!(idx < self.get_min_seen_secret());
995 pub(super) fn get_min_seen_secret(&self) -> u64 {
996 //TODO This can be optimized?
997 let mut min = 1 << 48;
998 for &(_, idx) in self.old_secrets.iter() {
1006 pub(super) fn get_cur_remote_commitment_number(&self) -> u64 {
1007 self.current_remote_commitment_number
1010 pub(super) fn get_cur_local_commitment_number(&self) -> u64 {
1011 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
1012 0xffff_ffff_ffff - ((((local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (local_tx.tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor)
1013 } else { 0xffff_ffff_ffff }
1016 /// Attempts to claim a remote commitment transaction's outputs using the revocation key and
1017 /// data in remote_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
1018 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
1019 /// HTLC-Success/HTLC-Timeout transactions.
1020 /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
1021 /// revoked remote commitment tx
1022 fn check_spend_remote_transaction(&mut self, tx: &Transaction, height: u32) -> (Vec<Transaction>, (Sha256dHash, Vec<TxOut>), Vec<SpendableOutputDescriptor>, Vec<(HTLCSource, Option<PaymentPreimage>, PaymentHash)>) {
1023 // Most secp and related errors trying to create keys means we have no hope of constructing
1024 // a spend transaction...so we return no transactions to broadcast
1025 let mut txn_to_broadcast = Vec::new();
1026 let mut watch_outputs = Vec::new();
1027 let mut spendable_outputs = Vec::new();
1028 let mut htlc_updated = Vec::new();
1030 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1031 let per_commitment_option = self.remote_claimable_outpoints.get(&commitment_txid);
1033 macro_rules! ignore_error {
1034 ( $thing : expr ) => {
1037 Err(_) => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs, htlc_updated)
1042 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
1043 if commitment_number >= self.get_min_seen_secret() {
1044 let secret = self.get_secret(commitment_number).unwrap();
1045 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1046 let (revocation_pubkey, b_htlc_key, local_payment_key) = match self.key_storage {
1047 Storage::Local { ref revocation_base_key, ref htlc_base_key, ref payment_base_key, .. } => {
1048 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1049 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))),
1050 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))),
1051 Some(ignore_error!(chan_utils::derive_private_key(&self.secp_ctx, &per_commitment_point, &payment_base_key))))
1053 Storage::Watchtower { ref revocation_base_key, ref htlc_base_key, .. } => {
1054 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1055 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key)),
1056 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &htlc_base_key)),
1060 let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.their_delayed_payment_base_key.unwrap()));
1061 let a_htlc_key = match self.their_htlc_base_key {
1062 None => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs, htlc_updated),
1063 Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &their_htlc_base_key)),
1066 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.our_to_self_delay, &delayed_key);
1067 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
1069 let local_payment_p2wpkh = if let Some(payment_key) = local_payment_key {
1070 // Note that the Network here is ignored as we immediately drop the address for the
1071 // script_pubkey version.
1072 let payment_hash160 = Hash160::hash(&PublicKey::from_secret_key(&self.secp_ctx, &payment_key).serialize());
1073 Some(Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_hash160[..]).into_script())
1076 let mut total_value = 0;
1077 let mut values = Vec::new();
1078 let mut inputs = Vec::new();
1079 let mut htlc_idxs = Vec::new();
1081 for (idx, outp) in tx.output.iter().enumerate() {
1082 if outp.script_pubkey == revokeable_p2wsh {
1084 previous_output: BitcoinOutPoint {
1085 txid: commitment_txid,
1088 script_sig: Script::new(),
1089 sequence: 0xfffffffd,
1090 witness: Vec::new(),
1092 htlc_idxs.push(None);
1093 values.push(outp.value);
1094 total_value += outp.value;
1095 } else if Some(&outp.script_pubkey) == local_payment_p2wpkh.as_ref() {
1096 spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WPKH {
1097 outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 },
1098 key: local_payment_key.unwrap(),
1099 output: outp.clone(),
1104 macro_rules! sign_input {
1105 ($sighash_parts: expr, $input: expr, $htlc_idx: expr, $amount: expr) => {
1107 let (sig, redeemscript) = match self.key_storage {
1108 Storage::Local { ref revocation_base_key, .. } => {
1109 let redeemscript = if $htlc_idx.is_none() { revokeable_redeemscript.clone() } else {
1110 let htlc = &per_commitment_option.unwrap()[$htlc_idx.unwrap()].0;
1111 chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey)
1113 let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..]);
1114 let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key));
1115 (self.secp_ctx.sign(&sighash, &revocation_key), redeemscript)
1117 Storage::Watchtower { .. } => {
1121 $input.witness.push(sig.serialize_der().to_vec());
1122 $input.witness[0].push(SigHashType::All as u8);
1123 if $htlc_idx.is_none() {
1124 $input.witness.push(vec!(1));
1126 $input.witness.push(revocation_pubkey.serialize().to_vec());
1128 $input.witness.push(redeemscript.into_bytes());
1133 if let Some(ref per_commitment_data) = per_commitment_option {
1134 inputs.reserve_exact(per_commitment_data.len());
1136 for (idx, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1137 if let Some(transaction_output_index) = htlc.transaction_output_index {
1138 let expected_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
1139 if transaction_output_index as usize >= tx.output.len() ||
1140 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 ||
1141 tx.output[transaction_output_index as usize].script_pubkey != expected_script.to_v0_p2wsh() {
1142 return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs, htlc_updated); // Corrupted per_commitment_data, fuck this user
1145 previous_output: BitcoinOutPoint {
1146 txid: commitment_txid,
1147 vout: transaction_output_index,
1149 script_sig: Script::new(),
1150 sequence: 0xfffffffd,
1151 witness: Vec::new(),
1153 if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER {
1155 htlc_idxs.push(Some(idx));
1156 values.push(tx.output[transaction_output_index as usize].value);
1157 total_value += htlc.amount_msat / 1000;
1159 let mut single_htlc_tx = Transaction {
1163 output: vec!(TxOut {
1164 script_pubkey: self.destination_script.clone(),
1165 value: htlc.amount_msat / 1000, //TODO: - fee
1168 let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx);
1169 sign_input!(sighash_parts, single_htlc_tx.input[0], Some(idx), htlc.amount_msat / 1000);
1170 txn_to_broadcast.push(single_htlc_tx);
1176 if !inputs.is_empty() || !txn_to_broadcast.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
1177 // We're definitely a remote commitment transaction!
1178 log_trace!(self, "Got broadcast of revoked remote commitment transaction, generating general spend tx with {} inputs and {} other txn to broadcast", inputs.len(), txn_to_broadcast.len());
1179 watch_outputs.append(&mut tx.output.clone());
1180 self.remote_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect()));
1182 // TODO: We really should only fail backwards after our revocation claims have been
1183 // confirmed, but we also need to do more other tracking of in-flight pre-confirm
1184 // on-chain claims, so we can do that at the same time.
1185 macro_rules! check_htlc_fails {
1186 ($txid: expr, $commitment_tx: expr) => {
1187 if let Some(ref outpoints) = self.remote_claimable_outpoints.get($txid) {
1188 for &(ref htlc, ref source_option) in outpoints.iter() {
1189 if let &Some(ref source) = source_option {
1190 log_trace!(self, "Failing HTLC with payment_hash {} from {} remote commitment tx due to broadcast of revoked remote commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx);
1191 htlc_updated.push(((**source).clone(), None, htlc.payment_hash.clone()));
1197 if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage {
1198 if let &Some(ref txid) = current_remote_commitment_txid {
1199 check_htlc_fails!(txid, "current");
1201 if let &Some(ref txid) = prev_remote_commitment_txid {
1202 check_htlc_fails!(txid, "remote");
1205 // No need to check local commitment txn, symmetric HTLCSource must be present as per-htlc data on remote commitment tx
1207 if inputs.is_empty() { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs, htlc_updated); } // Nothing to be done...probably a false positive/local tx
1209 let outputs = vec!(TxOut {
1210 script_pubkey: self.destination_script.clone(),
1211 value: total_value, //TODO: - fee
1213 let mut spend_tx = Transaction {
1220 let mut values_drain = values.drain(..);
1221 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
1223 for (input, htlc_idx) in spend_tx.input.iter_mut().zip(htlc_idxs.iter()) {
1224 let value = values_drain.next().unwrap();
1225 sign_input!(sighash_parts, input, htlc_idx, value);
1228 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
1229 outpoint: BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 },
1230 output: spend_tx.output[0].clone(),
1232 txn_to_broadcast.push(spend_tx);
1233 } else if let Some(per_commitment_data) = per_commitment_option {
1234 // While this isn't useful yet, there is a potential race where if a counterparty
1235 // revokes a state at the same time as the commitment transaction for that state is
1236 // confirmed, and the watchtower receives the block before the user, the user could
1237 // upload a new ChannelMonitor with the revocation secret but the watchtower has
1238 // already processed the block, resulting in the remote_commitment_txn_on_chain entry
1239 // not being generated by the above conditional. Thus, to be safe, we go ahead and
1241 watch_outputs.append(&mut tx.output.clone());
1242 self.remote_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect()));
1244 log_trace!(self, "Got broadcast of non-revoked remote commitment transaction {}", commitment_txid);
1246 // TODO: We really should only fail backwards after our revocation claims have been
1247 // confirmed, but we also need to do more other tracking of in-flight pre-confirm
1248 // on-chain claims, so we can do that at the same time.
1249 macro_rules! check_htlc_fails {
1250 ($txid: expr, $commitment_tx: expr, $id: tt) => {
1251 if let Some(ref latest_outpoints) = self.remote_claimable_outpoints.get($txid) {
1252 $id: for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1253 if let &Some(ref source) = source_option {
1254 // Check if the HTLC is present in the commitment transaction that was
1255 // broadcast, but not if it was below the dust limit, which we should
1256 // fail backwards immediately as there is no way for us to learn the
1257 // payment_preimage.
1258 // Note that if the dust limit were allowed to change between
1259 // commitment transactions we'd want to be check whether *any*
1260 // broadcastable commitment transaction has the HTLC in it, but it
1261 // cannot currently change after channel initialization, so we don't
1263 for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() {
1264 if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() {
1268 log_trace!(self, "Failing HTLC with payment_hash {} from {} remote commitment tx due to broadcast of remote commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx);
1269 htlc_updated.push(((**source).clone(), None, htlc.payment_hash.clone()));
1275 if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage {
1276 if let &Some(ref txid) = current_remote_commitment_txid {
1277 check_htlc_fails!(txid, "current", 'current_loop);
1279 if let &Some(ref txid) = prev_remote_commitment_txid {
1280 check_htlc_fails!(txid, "previous", 'prev_loop);
1284 if let Some(revocation_points) = self.their_cur_revocation_points {
1285 let revocation_point_option =
1286 if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
1287 else if let Some(point) = revocation_points.2.as_ref() {
1288 if revocation_points.0 == commitment_number + 1 { Some(point) } else { None }
1290 if let Some(revocation_point) = revocation_point_option {
1291 let (revocation_pubkey, b_htlc_key) = match self.key_storage {
1292 Storage::Local { ref revocation_base_key, ref htlc_base_key, .. } => {
1293 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))),
1294 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))))
1296 Storage::Watchtower { ref revocation_base_key, ref htlc_base_key, .. } => {
1297 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &revocation_base_key)),
1298 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &htlc_base_key)))
1301 let a_htlc_key = match self.their_htlc_base_key {
1302 None => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs, htlc_updated),
1303 Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &their_htlc_base_key)),
1306 for (idx, outp) in tx.output.iter().enumerate() {
1307 if outp.script_pubkey.is_v0_p2wpkh() {
1308 match self.key_storage {
1309 Storage::Local { ref payment_base_key, .. } => {
1310 if let Ok(local_key) = chan_utils::derive_private_key(&self.secp_ctx, &revocation_point, &payment_base_key) {
1311 spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WPKH {
1312 outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 },
1314 output: outp.clone(),
1318 Storage::Watchtower { .. } => {}
1320 break; // Only to_remote ouput is claimable
1324 let mut total_value = 0;
1325 let mut values = Vec::new();
1326 let mut inputs = Vec::new();
1328 macro_rules! sign_input {
1329 ($sighash_parts: expr, $input: expr, $amount: expr, $preimage: expr) => {
1331 let (sig, redeemscript) = match self.key_storage {
1332 Storage::Local { ref htlc_base_key, .. } => {
1333 let htlc = &per_commitment_option.unwrap()[$input.sequence as usize].0;
1334 let redeemscript = chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
1335 let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..]);
1336 let htlc_key = ignore_error!(chan_utils::derive_private_key(&self.secp_ctx, revocation_point, &htlc_base_key));
1337 (self.secp_ctx.sign(&sighash, &htlc_key), redeemscript)
1339 Storage::Watchtower { .. } => {
1343 $input.witness.push(sig.serialize_der().to_vec());
1344 $input.witness[0].push(SigHashType::All as u8);
1345 $input.witness.push($preimage);
1346 $input.witness.push(redeemscript.into_bytes());
1351 for (idx, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1352 if let Some(transaction_output_index) = htlc.transaction_output_index {
1353 let expected_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
1354 if transaction_output_index as usize >= tx.output.len() ||
1355 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 ||
1356 tx.output[transaction_output_index as usize].script_pubkey != expected_script.to_v0_p2wsh() {
1357 return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs, htlc_updated); // Corrupted per_commitment_data, fuck this user
1359 if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1361 previous_output: BitcoinOutPoint {
1362 txid: commitment_txid,
1363 vout: transaction_output_index,
1365 script_sig: Script::new(),
1366 sequence: idx as u32, // reset to 0xfffffffd in sign_input
1367 witness: Vec::new(),
1369 if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER {
1371 values.push((tx.output[transaction_output_index as usize].value, payment_preimage));
1372 total_value += htlc.amount_msat / 1000;
1374 let mut single_htlc_tx = Transaction {
1378 output: vec!(TxOut {
1379 script_pubkey: self.destination_script.clone(),
1380 value: htlc.amount_msat / 1000, //TODO: - fee
1383 let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx);
1384 sign_input!(sighash_parts, single_htlc_tx.input[0], htlc.amount_msat / 1000, payment_preimage.0.to_vec());
1385 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
1386 outpoint: BitcoinOutPoint { txid: single_htlc_tx.txid(), vout: 0 },
1387 output: single_htlc_tx.output[0].clone(),
1389 txn_to_broadcast.push(single_htlc_tx);
1393 // TODO: If the HTLC has already expired, potentially merge it with the
1394 // rest of the claim transaction, as above.
1396 previous_output: BitcoinOutPoint {
1397 txid: commitment_txid,
1398 vout: transaction_output_index,
1400 script_sig: Script::new(),
1401 sequence: idx as u32,
1402 witness: Vec::new(),
1404 let mut timeout_tx = Transaction {
1406 lock_time: htlc.cltv_expiry,
1408 output: vec!(TxOut {
1409 script_pubkey: self.destination_script.clone(),
1410 value: htlc.amount_msat / 1000,
1413 let sighash_parts = bip143::SighashComponents::new(&timeout_tx);
1414 sign_input!(sighash_parts, timeout_tx.input[0], htlc.amount_msat / 1000, vec![0]);
1415 txn_to_broadcast.push(timeout_tx);
1420 if inputs.is_empty() { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs, htlc_updated); } // Nothing to be done...probably a false positive/local tx
1422 let outputs = vec!(TxOut {
1423 script_pubkey: self.destination_script.clone(),
1424 value: total_value, //TODO: - fee
1426 let mut spend_tx = Transaction {
1433 let mut values_drain = values.drain(..);
1434 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
1436 for input in spend_tx.input.iter_mut() {
1437 let value = values_drain.next().unwrap();
1438 sign_input!(sighash_parts, input, value.0, (value.1).0.to_vec());
1441 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
1442 outpoint: BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 },
1443 output: spend_tx.output[0].clone(),
1445 txn_to_broadcast.push(spend_tx);
1450 (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs, htlc_updated)
1453 /// Attempts to claim a remote HTLC-Success/HTLC-Timeout's outputs using the revocation key
1454 fn check_spend_remote_htlc(&self, tx: &Transaction, commitment_number: u64) -> (Option<Transaction>, Option<SpendableOutputDescriptor>) {
1455 if tx.input.len() != 1 || tx.output.len() != 1 {
1459 macro_rules! ignore_error {
1460 ( $thing : expr ) => {
1463 Err(_) => return (None, None)
1468 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (None, None); };
1469 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1470 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1471 let revocation_pubkey = match self.key_storage {
1472 Storage::Local { ref revocation_base_key, .. } => {
1473 ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key)))
1475 Storage::Watchtower { ref revocation_base_key, .. } => {
1476 ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key))
1479 let delayed_key = match self.their_delayed_payment_base_key {
1480 None => return (None, None),
1481 Some(their_delayed_payment_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &their_delayed_payment_base_key)),
1483 let redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.their_to_self_delay.unwrap(), &delayed_key);
1484 let revokeable_p2wsh = redeemscript.to_v0_p2wsh();
1485 let htlc_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1487 let mut inputs = Vec::new();
1490 if tx.output[0].script_pubkey == revokeable_p2wsh { //HTLC transactions have one txin, one txout
1492 previous_output: BitcoinOutPoint {
1496 script_sig: Script::new(),
1497 sequence: 0xfffffffd,
1498 witness: Vec::new(),
1500 amount = tx.output[0].value;
1503 if !inputs.is_empty() {
1504 let outputs = vec!(TxOut {
1505 script_pubkey: self.destination_script.clone(),
1506 value: amount, //TODO: - fee
1509 let mut spend_tx = Transaction {
1516 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
1518 let sig = match self.key_storage {
1519 Storage::Local { ref revocation_base_key, .. } => {
1520 let sighash = hash_to_message!(&sighash_parts.sighash_all(&spend_tx.input[0], &redeemscript, amount)[..]);
1521 let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key));
1522 self.secp_ctx.sign(&sighash, &revocation_key)
1524 Storage::Watchtower { .. } => {
1528 spend_tx.input[0].witness.push(sig.serialize_der().to_vec());
1529 spend_tx.input[0].witness[0].push(SigHashType::All as u8);
1530 spend_tx.input[0].witness.push(vec!(1));
1531 spend_tx.input[0].witness.push(redeemscript.into_bytes());
1533 let outpoint = BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 };
1534 let output = spend_tx.output[0].clone();
1535 (Some(spend_tx), Some(SpendableOutputDescriptor::StaticOutput { outpoint, output }))
1536 } else { (None, None) }
1539 fn broadcast_by_local_state(&self, local_tx: &LocalSignedTx, per_commitment_point: &Option<PublicKey>, delayed_payment_base_key: &Option<SecretKey>) -> (Vec<Transaction>, Vec<SpendableOutputDescriptor>, Vec<TxOut>) {
1540 let mut res = Vec::with_capacity(local_tx.htlc_outputs.len());
1541 let mut spendable_outputs = Vec::with_capacity(local_tx.htlc_outputs.len());
1542 let mut watch_outputs = Vec::with_capacity(local_tx.htlc_outputs.len());
1544 macro_rules! add_dynamic_output {
1545 ($father_tx: expr, $vout: expr) => {
1546 if let Some(ref per_commitment_point) = *per_commitment_point {
1547 if let Some(ref delayed_payment_base_key) = *delayed_payment_base_key {
1548 if let Ok(local_delayedkey) = chan_utils::derive_private_key(&self.secp_ctx, per_commitment_point, delayed_payment_base_key) {
1549 spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WSH {
1550 outpoint: BitcoinOutPoint { txid: $father_tx.txid(), vout: $vout },
1551 key: local_delayedkey,
1552 witness_script: chan_utils::get_revokeable_redeemscript(&local_tx.revocation_key, self.our_to_self_delay, &local_tx.delayed_payment_key),
1553 to_self_delay: self.our_to_self_delay,
1554 output: $father_tx.output[$vout as usize].clone(),
1563 let redeemscript = chan_utils::get_revokeable_redeemscript(&local_tx.revocation_key, self.their_to_self_delay.unwrap(), &local_tx.delayed_payment_key);
1564 let revokeable_p2wsh = redeemscript.to_v0_p2wsh();
1565 for (idx, output) in local_tx.tx.output.iter().enumerate() {
1566 if output.script_pubkey == revokeable_p2wsh {
1567 add_dynamic_output!(local_tx.tx, idx as u32);
1572 for &(ref htlc, ref sigs, _) in local_tx.htlc_outputs.iter() {
1573 if let Some(transaction_output_index) = htlc.transaction_output_index {
1574 if let &Some((ref their_sig, ref our_sig)) = sigs {
1576 log_trace!(self, "Broadcasting HTLC-Timeout transaction against local commitment transactions");
1577 let mut htlc_timeout_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key);
1579 htlc_timeout_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
1581 htlc_timeout_tx.input[0].witness.push(their_sig.serialize_der().to_vec());
1582 htlc_timeout_tx.input[0].witness[1].push(SigHashType::All as u8);
1583 htlc_timeout_tx.input[0].witness.push(our_sig.serialize_der().to_vec());
1584 htlc_timeout_tx.input[0].witness[2].push(SigHashType::All as u8);
1586 htlc_timeout_tx.input[0].witness.push(Vec::new());
1587 htlc_timeout_tx.input[0].witness.push(chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key).into_bytes());
1589 add_dynamic_output!(htlc_timeout_tx, 0);
1590 res.push(htlc_timeout_tx);
1592 if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1593 log_trace!(self, "Broadcasting HTLC-Success transaction against local commitment transactions");
1594 let mut htlc_success_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key);
1596 htlc_success_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
1598 htlc_success_tx.input[0].witness.push(their_sig.serialize_der().to_vec());
1599 htlc_success_tx.input[0].witness[1].push(SigHashType::All as u8);
1600 htlc_success_tx.input[0].witness.push(our_sig.serialize_der().to_vec());
1601 htlc_success_tx.input[0].witness[2].push(SigHashType::All as u8);
1603 htlc_success_tx.input[0].witness.push(payment_preimage.0.to_vec());
1604 htlc_success_tx.input[0].witness.push(chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key).into_bytes());
1606 add_dynamic_output!(htlc_success_tx, 0);
1607 res.push(htlc_success_tx);
1610 watch_outputs.push(local_tx.tx.output[transaction_output_index as usize].clone());
1611 } else { panic!("Should have sigs for non-dust local tx outputs!") }
1615 (res, spendable_outputs, watch_outputs)
1618 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
1619 /// revoked using data in local_claimable_outpoints.
1620 /// Should not be used if check_spend_revoked_transaction succeeds.
1621 fn check_spend_local_transaction(&self, tx: &Transaction, _height: u32) -> (Vec<Transaction>, Vec<SpendableOutputDescriptor>, (Sha256dHash, Vec<TxOut>)) {
1622 let commitment_txid = tx.txid();
1623 // TODO: If we find a match here we need to fail back HTLCs that weren't included in the
1624 // broadcast commitment transaction, either because they didn't meet dust or because they
1625 // weren't yet included in our commitment transaction(s).
1626 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
1627 if local_tx.txid == commitment_txid {
1628 log_trace!(self, "Got latest local commitment tx broadcast, searching for available HTLCs to claim");
1629 match self.key_storage {
1630 Storage::Local { ref delayed_payment_base_key, ref latest_per_commitment_point, .. } => {
1631 let (local_txn, spendable_outputs, watch_outputs) = self.broadcast_by_local_state(local_tx, latest_per_commitment_point, &Some(*delayed_payment_base_key));
1632 return (local_txn, spendable_outputs, (commitment_txid, watch_outputs));
1634 Storage::Watchtower { .. } => {
1635 let (local_txn, spendable_outputs, watch_outputs) = self.broadcast_by_local_state(local_tx, &None, &None);
1636 return (local_txn, spendable_outputs, (commitment_txid, watch_outputs));
1641 if let &Some(ref local_tx) = &self.prev_local_signed_commitment_tx {
1642 if local_tx.txid == commitment_txid {
1643 log_trace!(self, "Got previous local commitment tx broadcast, searching for available HTLCs to claim");
1644 match self.key_storage {
1645 Storage::Local { ref delayed_payment_base_key, ref prev_latest_per_commitment_point, .. } => {
1646 let (local_txn, spendable_outputs, watch_outputs) = self.broadcast_by_local_state(local_tx, prev_latest_per_commitment_point, &Some(*delayed_payment_base_key));
1647 return (local_txn, spendable_outputs, (commitment_txid, watch_outputs));
1649 Storage::Watchtower { .. } => {
1650 let (local_txn, spendable_outputs, watch_outputs) = self.broadcast_by_local_state(local_tx, &None, &None);
1651 return (local_txn, spendable_outputs, (commitment_txid, watch_outputs));
1656 (Vec::new(), Vec::new(), (commitment_txid, Vec::new()))
1659 /// Generate a spendable output event when closing_transaction get registered onchain.
1660 fn check_spend_closing_transaction(&self, tx: &Transaction) -> Option<SpendableOutputDescriptor> {
1661 if tx.input[0].sequence == 0xFFFFFFFF && !tx.input[0].witness.is_empty() && tx.input[0].witness.last().unwrap().len() == 71 {
1662 match self.key_storage {
1663 Storage::Local { ref shutdown_pubkey, .. } => {
1664 let our_channel_close_key_hash = Hash160::hash(&shutdown_pubkey.serialize());
1665 let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script();
1666 for (idx, output) in tx.output.iter().enumerate() {
1667 if shutdown_script == output.script_pubkey {
1668 return Some(SpendableOutputDescriptor::StaticOutput {
1669 outpoint: BitcoinOutPoint { txid: tx.txid(), vout: idx as u32 },
1670 output: output.clone(),
1675 Storage::Watchtower { .. } => {
1676 //TODO: we need to ensure an offline client will generate the event when it
1677 // comes back online after only the watchtower saw the transaction
1684 /// Used by ChannelManager deserialization to broadcast the latest local state if it's copy of
1685 /// the Channel was out-of-date.
1686 pub(super) fn get_latest_local_commitment_txn(&self) -> Vec<Transaction> {
1687 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
1688 let mut res = vec![local_tx.tx.clone()];
1689 match self.key_storage {
1690 Storage::Local { ref delayed_payment_base_key, ref prev_latest_per_commitment_point, .. } => {
1691 res.append(&mut self.broadcast_by_local_state(local_tx, prev_latest_per_commitment_point, &Some(*delayed_payment_base_key)).0);
1693 _ => panic!("Can only broadcast by local channelmonitor"),
1701 fn block_connected(&mut self, txn_matched: &[&Transaction], height: u32, block_hash: &Sha256dHash, broadcaster: &BroadcasterInterface)-> (Vec<(Sha256dHash, Vec<TxOut>)>, Vec<SpendableOutputDescriptor>, Vec<(HTLCSource, Option<PaymentPreimage>, PaymentHash)>) {
1702 let mut watch_outputs = Vec::new();
1703 let mut spendable_outputs = Vec::new();
1704 let mut htlc_updated = Vec::new();
1705 for tx in txn_matched {
1706 if tx.input.len() == 1 {
1707 // Assuming our keys were not leaked (in which case we're screwed no matter what),
1708 // commitment transactions and HTLC transactions will all only ever have one input,
1709 // which is an easy way to filter out any potential non-matching txn for lazy
1711 let prevout = &tx.input[0].previous_output;
1712 let mut txn: Vec<Transaction> = Vec::new();
1713 let funding_txo = match self.key_storage {
1714 Storage::Local { ref funding_info, .. } => {
1715 funding_info.clone()
1717 Storage::Watchtower { .. } => {
1721 if funding_txo.is_none() || (prevout.txid == funding_txo.as_ref().unwrap().0.txid && prevout.vout == funding_txo.as_ref().unwrap().0.index as u32) {
1722 let (remote_txn, new_outputs, mut spendable_output, mut updated) = self.check_spend_remote_transaction(tx, height);
1724 spendable_outputs.append(&mut spendable_output);
1725 if !new_outputs.1.is_empty() {
1726 watch_outputs.push(new_outputs);
1729 let (local_txn, mut spendable_output, new_outputs) = self.check_spend_local_transaction(tx, height);
1730 spendable_outputs.append(&mut spendable_output);
1732 if !new_outputs.1.is_empty() {
1733 watch_outputs.push(new_outputs);
1736 if !funding_txo.is_none() && txn.is_empty() {
1737 if let Some(spendable_output) = self.check_spend_closing_transaction(tx) {
1738 spendable_outputs.push(spendable_output);
1741 if updated.len() > 0 {
1742 htlc_updated.append(&mut updated);
1745 if let Some(&(commitment_number, _)) = self.remote_commitment_txn_on_chain.get(&prevout.txid) {
1746 let (tx, spendable_output) = self.check_spend_remote_htlc(tx, commitment_number);
1747 if let Some(tx) = tx {
1750 if let Some(spendable_output) = spendable_output {
1751 spendable_outputs.push(spendable_output);
1755 for tx in txn.iter() {
1756 broadcaster.broadcast_transaction(tx);
1759 // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
1760 // can also be resolved in a few other ways which can have more than one output. Thus,
1761 // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
1762 let mut updated = self.is_resolving_htlc_output(tx);
1763 if updated.len() > 0 {
1764 htlc_updated.append(&mut updated);
1767 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
1768 if self.would_broadcast_at_height(height) {
1769 broadcaster.broadcast_transaction(&cur_local_tx.tx);
1770 match self.key_storage {
1771 Storage::Local { ref delayed_payment_base_key, ref latest_per_commitment_point, .. } => {
1772 let (txs, mut spendable_output, new_outputs) = self.broadcast_by_local_state(&cur_local_tx, latest_per_commitment_point, &Some(*delayed_payment_base_key));
1773 spendable_outputs.append(&mut spendable_output);
1774 if !new_outputs.is_empty() {
1775 watch_outputs.push((cur_local_tx.txid.clone(), new_outputs));
1778 broadcaster.broadcast_transaction(&tx);
1781 Storage::Watchtower { .. } => {
1782 let (txs, mut spendable_output, new_outputs) = self.broadcast_by_local_state(&cur_local_tx, &None, &None);
1783 spendable_outputs.append(&mut spendable_output);
1784 if !new_outputs.is_empty() {
1785 watch_outputs.push((cur_local_tx.txid.clone(), new_outputs));
1788 broadcaster.broadcast_transaction(&tx);
1794 self.last_block_hash = block_hash.clone();
1795 (watch_outputs, spendable_outputs, htlc_updated)
1798 pub(super) fn would_broadcast_at_height(&self, height: u32) -> bool {
1799 // We need to consider all HTLCs which are:
1800 // * in any unrevoked remote commitment transaction, as they could broadcast said
1801 // transactions and we'd end up in a race, or
1802 // * are in our latest local commitment transaction, as this is the thing we will
1803 // broadcast if we go on-chain.
1804 // Note that we consider HTLCs which were below dust threshold here - while they don't
1805 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
1806 // to the source, and if we don't fail the channel we will have to ensure that the next
1807 // updates that peer sends us are update_fails, failing the channel if not. It's probably
1808 // easier to just fail the channel as this case should be rare enough anyway.
1809 macro_rules! scan_commitment {
1810 ($htlcs: expr, $local_tx: expr) => {
1811 for ref htlc in $htlcs {
1812 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
1813 // chain with enough room to claim the HTLC without our counterparty being able to
1814 // time out the HTLC first.
1815 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
1816 // concern is being able to claim the corresponding inbound HTLC (on another
1817 // channel) before it expires. In fact, we don't even really care if our
1818 // counterparty here claims such an outbound HTLC after it expired as long as we
1819 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
1820 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
1821 // we give ourselves a few blocks of headroom after expiration before going
1822 // on-chain for an expired HTLC.
1823 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
1824 // from us until we've reached the point where we go on-chain with the
1825 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
1826 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
1827 // aka outbound_cltv + HTLC_FAIL_TIMEOUT_BLOCKS == height - CLTV_CLAIM_BUFFER
1828 // inbound_cltv == height + CLTV_CLAIM_BUFFER
1829 // outbound_cltv + HTLC_FAIL_TIMEOUT_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
1830 // HTLC_FAIL_TIMEOUT_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
1831 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
1832 // HTLC_FAIL_TIMEOUT_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
1833 // The final, above, condition is checked for statically in channelmanager
1834 // with CHECK_CLTV_EXPIRY_SANITY_2.
1835 let htlc_outbound = $local_tx == htlc.offered;
1836 if ( htlc_outbound && htlc.cltv_expiry + HTLC_FAIL_TIMEOUT_BLOCKS <= height) ||
1837 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
1838 log_info!(self, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
1845 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
1846 scan_commitment!(cur_local_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
1849 if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage {
1850 if let &Some(ref txid) = current_remote_commitment_txid {
1851 if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(txid) {
1852 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
1855 if let &Some(ref txid) = prev_remote_commitment_txid {
1856 if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(txid) {
1857 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
1865 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a local
1866 /// or remote commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
1867 fn is_resolving_htlc_output(&mut self, tx: &Transaction) -> Vec<(HTLCSource, Option<PaymentPreimage>, PaymentHash)> {
1868 let mut htlc_updated = Vec::new();
1870 'outer_loop: for input in &tx.input {
1871 let mut payment_data = None;
1872 let revocation_sig_claim = (input.witness.len() == 3 && input.witness[2].len() == OFFERED_HTLC_SCRIPT_WEIGHT && input.witness[1].len() == 33)
1873 || (input.witness.len() == 3 && input.witness[2].len() == ACCEPTED_HTLC_SCRIPT_WEIGHT && input.witness[1].len() == 33);
1874 let accepted_preimage_claim = input.witness.len() == 5 && input.witness[4].len() == ACCEPTED_HTLC_SCRIPT_WEIGHT;
1875 let offered_preimage_claim = input.witness.len() == 3 && input.witness[2].len() == OFFERED_HTLC_SCRIPT_WEIGHT;
1877 macro_rules! log_claim {
1878 ($tx_info: expr, $local_tx: expr, $htlc: expr, $source_avail: expr) => {
1879 // We found the output in question, but aren't failing it backwards
1880 // as we have no corresponding source. This implies either it is an
1881 // inbound HTLC or an outbound HTLC on a revoked transaction.
1882 let outbound_htlc = $local_tx == $htlc.offered;
1883 if ($local_tx && revocation_sig_claim) ||
1884 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
1885 log_error!(self, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
1886 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
1887 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
1888 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
1890 log_info!(self, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
1891 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
1892 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
1893 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
1898 macro_rules! scan_commitment {
1899 ($htlcs: expr, $tx_info: expr, $local_tx: expr) => {
1900 for (ref htlc_output, source_option) in $htlcs {
1901 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
1902 if let Some(ref source) = source_option {
1903 log_claim!($tx_info, $local_tx, htlc_output, true);
1904 // We have a resolution of an HTLC either from one of our latest
1905 // local commitment transactions or an unrevoked remote commitment
1906 // transaction. This implies we either learned a preimage, the HTLC
1907 // has timed out, or we screwed up. In any case, we should now
1908 // resolve the source HTLC with the original sender.
1909 payment_data = Some(((*source).clone(), htlc_output.payment_hash));
1911 log_claim!($tx_info, $local_tx, htlc_output, false);
1912 continue 'outer_loop;
1919 if let Some(ref current_local_signed_commitment_tx) = self.current_local_signed_commitment_tx {
1920 if input.previous_output.txid == current_local_signed_commitment_tx.txid {
1921 scan_commitment!(current_local_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
1922 "our latest local commitment tx", true);
1925 if let Some(ref prev_local_signed_commitment_tx) = self.prev_local_signed_commitment_tx {
1926 if input.previous_output.txid == prev_local_signed_commitment_tx.txid {
1927 scan_commitment!(prev_local_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
1928 "our previous local commitment tx", true);
1931 if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(&input.previous_output.txid) {
1932 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
1933 "remote commitment tx", false);
1936 // Check that scan_commitment, above, decided there is some source worth relaying an
1937 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
1938 if let Some((source, payment_hash)) = payment_data {
1939 let mut payment_preimage = PaymentPreimage([0; 32]);
1940 if accepted_preimage_claim {
1941 payment_preimage.0.copy_from_slice(&input.witness[3]);
1942 htlc_updated.push((source, Some(payment_preimage), payment_hash));
1943 } else if offered_preimage_claim {
1944 payment_preimage.0.copy_from_slice(&input.witness[1]);
1945 htlc_updated.push((source, Some(payment_preimage), payment_hash));
1947 htlc_updated.push((source, None, payment_hash));
1955 const MAX_ALLOC_SIZE: usize = 64*1024;
1957 impl<R: ::std::io::Read> ReadableArgs<R, Arc<Logger>> for (Sha256dHash, ChannelMonitor) {
1958 fn read(reader: &mut R, logger: Arc<Logger>) -> Result<Self, DecodeError> {
1959 let secp_ctx = Secp256k1::new();
1960 macro_rules! unwrap_obj {
1964 Err(_) => return Err(DecodeError::InvalidValue),
1969 let _ver: u8 = Readable::read(reader)?;
1970 let min_ver: u8 = Readable::read(reader)?;
1971 if min_ver > SERIALIZATION_VERSION {
1972 return Err(DecodeError::UnknownVersion);
1975 let commitment_transaction_number_obscure_factor = <U48 as Readable<R>>::read(reader)?.0;
1977 let key_storage = match <u8 as Readable<R>>::read(reader)? {
1979 let revocation_base_key = Readable::read(reader)?;
1980 let htlc_base_key = Readable::read(reader)?;
1981 let delayed_payment_base_key = Readable::read(reader)?;
1982 let payment_base_key = Readable::read(reader)?;
1983 let shutdown_pubkey = Readable::read(reader)?;
1984 let prev_latest_per_commitment_point = Readable::read(reader)?;
1985 let latest_per_commitment_point = Readable::read(reader)?;
1986 // Technically this can fail and serialize fail a round-trip, but only for serialization of
1987 // barely-init'd ChannelMonitors that we can't do anything with.
1988 let outpoint = OutPoint {
1989 txid: Readable::read(reader)?,
1990 index: Readable::read(reader)?,
1992 let funding_info = Some((outpoint, Readable::read(reader)?));
1993 let current_remote_commitment_txid = Readable::read(reader)?;
1994 let prev_remote_commitment_txid = Readable::read(reader)?;
1996 revocation_base_key,
1998 delayed_payment_base_key,
2001 prev_latest_per_commitment_point,
2002 latest_per_commitment_point,
2004 current_remote_commitment_txid,
2005 prev_remote_commitment_txid,
2008 _ => return Err(DecodeError::InvalidValue),
2011 let their_htlc_base_key = Some(Readable::read(reader)?);
2012 let their_delayed_payment_base_key = Some(Readable::read(reader)?);
2014 let their_cur_revocation_points = {
2015 let first_idx = <U48 as Readable<R>>::read(reader)?.0;
2019 let first_point = Readable::read(reader)?;
2020 let second_point_slice: [u8; 33] = Readable::read(reader)?;
2021 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
2022 Some((first_idx, first_point, None))
2024 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
2029 let our_to_self_delay: u16 = Readable::read(reader)?;
2030 let their_to_self_delay: Option<u16> = Some(Readable::read(reader)?);
2032 let mut old_secrets = [([0; 32], 1 << 48); 49];
2033 for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() {
2034 *secret = Readable::read(reader)?;
2035 *idx = Readable::read(reader)?;
2038 macro_rules! read_htlc_in_commitment {
2041 let offered: bool = Readable::read(reader)?;
2042 let amount_msat: u64 = Readable::read(reader)?;
2043 let cltv_expiry: u32 = Readable::read(reader)?;
2044 let payment_hash: PaymentHash = Readable::read(reader)?;
2045 let transaction_output_index: Option<u32> = Readable::read(reader)?;
2047 HTLCOutputInCommitment {
2048 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
2054 let remote_claimable_outpoints_len: u64 = Readable::read(reader)?;
2055 let mut remote_claimable_outpoints = HashMap::with_capacity(cmp::min(remote_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
2056 for _ in 0..remote_claimable_outpoints_len {
2057 let txid: Sha256dHash = Readable::read(reader)?;
2058 let htlcs_count: u64 = Readable::read(reader)?;
2059 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
2060 for _ in 0..htlcs_count {
2061 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable<R>>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
2063 if let Some(_) = remote_claimable_outpoints.insert(txid, htlcs) {
2064 return Err(DecodeError::InvalidValue);
2068 let remote_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
2069 let mut remote_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(remote_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
2070 for _ in 0..remote_commitment_txn_on_chain_len {
2071 let txid: Sha256dHash = Readable::read(reader)?;
2072 let commitment_number = <U48 as Readable<R>>::read(reader)?.0;
2073 let outputs_count = <u64 as Readable<R>>::read(reader)?;
2074 let mut outputs = Vec::with_capacity(cmp::min(outputs_count as usize, MAX_ALLOC_SIZE / 8));
2075 for _ in 0..outputs_count {
2076 outputs.push(Readable::read(reader)?);
2078 if let Some(_) = remote_commitment_txn_on_chain.insert(txid, (commitment_number, outputs)) {
2079 return Err(DecodeError::InvalidValue);
2083 let remote_hash_commitment_number_len: u64 = Readable::read(reader)?;
2084 let mut remote_hash_commitment_number = HashMap::with_capacity(cmp::min(remote_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
2085 for _ in 0..remote_hash_commitment_number_len {
2086 let payment_hash: PaymentHash = Readable::read(reader)?;
2087 let commitment_number = <U48 as Readable<R>>::read(reader)?.0;
2088 if let Some(_) = remote_hash_commitment_number.insert(payment_hash, commitment_number) {
2089 return Err(DecodeError::InvalidValue);
2093 macro_rules! read_local_tx {
2096 let tx = match Transaction::consensus_decode(reader.by_ref()) {
2099 encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)),
2100 _ => return Err(DecodeError::InvalidValue),
2104 if tx.input.is_empty() {
2105 // Ensure tx didn't hit the 0-input ambiguity case.
2106 return Err(DecodeError::InvalidValue);
2109 let revocation_key = Readable::read(reader)?;
2110 let a_htlc_key = Readable::read(reader)?;
2111 let b_htlc_key = Readable::read(reader)?;
2112 let delayed_payment_key = Readable::read(reader)?;
2113 let feerate_per_kw: u64 = Readable::read(reader)?;
2115 let htlcs_len: u64 = Readable::read(reader)?;
2116 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128));
2117 for _ in 0..htlcs_len {
2118 let htlc = read_htlc_in_commitment!();
2119 let sigs = match <u8 as Readable<R>>::read(reader)? {
2121 1 => Some((Readable::read(reader)?, Readable::read(reader)?)),
2122 _ => return Err(DecodeError::InvalidValue),
2124 htlcs.push((htlc, sigs, Readable::read(reader)?));
2129 tx, revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, feerate_per_kw,
2136 let prev_local_signed_commitment_tx = match <u8 as Readable<R>>::read(reader)? {
2139 Some(read_local_tx!())
2141 _ => return Err(DecodeError::InvalidValue),
2144 let current_local_signed_commitment_tx = match <u8 as Readable<R>>::read(reader)? {
2147 Some(read_local_tx!())
2149 _ => return Err(DecodeError::InvalidValue),
2152 let current_remote_commitment_number = <U48 as Readable<R>>::read(reader)?.0;
2154 let payment_preimages_len: u64 = Readable::read(reader)?;
2155 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
2156 for _ in 0..payment_preimages_len {
2157 let preimage: PaymentPreimage = Readable::read(reader)?;
2158 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2159 if let Some(_) = payment_preimages.insert(hash, preimage) {
2160 return Err(DecodeError::InvalidValue);
2164 let last_block_hash: Sha256dHash = Readable::read(reader)?;
2165 let destination_script = Readable::read(reader)?;
2167 Ok((last_block_hash.clone(), ChannelMonitor {
2168 commitment_transaction_number_obscure_factor,
2171 their_htlc_base_key,
2172 their_delayed_payment_base_key,
2173 their_cur_revocation_points,
2176 their_to_self_delay,
2179 remote_claimable_outpoints,
2180 remote_commitment_txn_on_chain,
2181 remote_hash_commitment_number,
2183 prev_local_signed_commitment_tx,
2184 current_local_signed_commitment_tx,
2185 current_remote_commitment_number,
2200 use bitcoin::blockdata::script::Script;
2201 use bitcoin::blockdata::transaction::Transaction;
2202 use bitcoin_hashes::Hash;
2203 use bitcoin_hashes::sha256::Hash as Sha256;
2205 use ln::channelmanager::{PaymentPreimage, PaymentHash};
2206 use ln::channelmonitor::ChannelMonitor;
2207 use ln::chan_utils::{HTLCOutputInCommitment, TxCreationKeys};
2208 use util::test_utils::TestLogger;
2209 use secp256k1::key::{SecretKey,PublicKey};
2210 use secp256k1::Secp256k1;
2211 use rand::{thread_rng,Rng};
2215 fn test_per_commitment_storage() {
2216 // Test vectors from BOLT 3:
2217 let mut secrets: Vec<[u8; 32]> = Vec::new();
2218 let mut monitor: ChannelMonitor;
2219 let secp_ctx = Secp256k1::new();
2220 let logger = Arc::new(TestLogger::new());
2222 macro_rules! test_secrets {
2224 let mut idx = 281474976710655;
2225 for secret in secrets.iter() {
2226 assert_eq!(monitor.get_secret(idx).unwrap(), *secret);
2229 assert_eq!(monitor.get_min_seen_secret(), idx + 1);
2230 assert!(monitor.get_secret(idx).is_none());
2235 // insert_secret correct sequence
2236 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2239 secrets.push([0; 32]);
2240 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2241 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2244 secrets.push([0; 32]);
2245 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2246 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2249 secrets.push([0; 32]);
2250 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2251 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2254 secrets.push([0; 32]);
2255 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2256 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2259 secrets.push([0; 32]);
2260 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
2261 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2264 secrets.push([0; 32]);
2265 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
2266 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
2269 secrets.push([0; 32]);
2270 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
2271 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
2274 secrets.push([0; 32]);
2275 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
2276 monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap();
2281 // insert_secret #1 incorrect
2282 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2285 secrets.push([0; 32]);
2286 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
2287 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2290 secrets.push([0; 32]);
2291 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2292 assert_eq!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap_err().0,
2293 "Previous secret did not match new one");
2297 // insert_secret #2 incorrect (#1 derived from incorrect)
2298 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2301 secrets.push([0; 32]);
2302 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
2303 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2306 secrets.push([0; 32]);
2307 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
2308 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2311 secrets.push([0; 32]);
2312 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2313 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2316 secrets.push([0; 32]);
2317 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2318 assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap_err().0,
2319 "Previous secret did not match new one");
2323 // insert_secret #3 incorrect
2324 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2327 secrets.push([0; 32]);
2328 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2329 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2332 secrets.push([0; 32]);
2333 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2334 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2337 secrets.push([0; 32]);
2338 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
2339 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2342 secrets.push([0; 32]);
2343 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2344 assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap_err().0,
2345 "Previous secret did not match new one");
2349 // insert_secret #4 incorrect (1,2,3 derived from incorrect)
2350 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2353 secrets.push([0; 32]);
2354 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
2355 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2358 secrets.push([0; 32]);
2359 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
2360 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2363 secrets.push([0; 32]);
2364 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
2365 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2368 secrets.push([0; 32]);
2369 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap());
2370 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2373 secrets.push([0; 32]);
2374 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
2375 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2378 secrets.push([0; 32]);
2379 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
2380 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
2383 secrets.push([0; 32]);
2384 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
2385 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
2388 secrets.push([0; 32]);
2389 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
2390 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
2391 "Previous secret did not match new one");
2395 // insert_secret #5 incorrect
2396 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2399 secrets.push([0; 32]);
2400 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2401 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2404 secrets.push([0; 32]);
2405 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2406 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2409 secrets.push([0; 32]);
2410 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2411 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2414 secrets.push([0; 32]);
2415 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2416 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2419 secrets.push([0; 32]);
2420 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
2421 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2424 secrets.push([0; 32]);
2425 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
2426 assert_eq!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap_err().0,
2427 "Previous secret did not match new one");
2431 // insert_secret #6 incorrect (5 derived from incorrect)
2432 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2435 secrets.push([0; 32]);
2436 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2437 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2440 secrets.push([0; 32]);
2441 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2442 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2445 secrets.push([0; 32]);
2446 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2447 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2450 secrets.push([0; 32]);
2451 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2452 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2455 secrets.push([0; 32]);
2456 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
2457 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2460 secrets.push([0; 32]);
2461 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap());
2462 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
2465 secrets.push([0; 32]);
2466 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
2467 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
2470 secrets.push([0; 32]);
2471 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
2472 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
2473 "Previous secret did not match new one");
2477 // insert_secret #7 incorrect
2478 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2481 secrets.push([0; 32]);
2482 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2483 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2486 secrets.push([0; 32]);
2487 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2488 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2491 secrets.push([0; 32]);
2492 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2493 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2496 secrets.push([0; 32]);
2497 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2498 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2501 secrets.push([0; 32]);
2502 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
2503 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2506 secrets.push([0; 32]);
2507 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
2508 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
2511 secrets.push([0; 32]);
2512 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap());
2513 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
2516 secrets.push([0; 32]);
2517 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
2518 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
2519 "Previous secret did not match new one");
2523 // insert_secret #8 incorrect
2524 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2527 secrets.push([0; 32]);
2528 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2529 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
2532 secrets.push([0; 32]);
2533 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2534 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
2537 secrets.push([0; 32]);
2538 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2539 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
2542 secrets.push([0; 32]);
2543 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2544 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
2547 secrets.push([0; 32]);
2548 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
2549 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
2552 secrets.push([0; 32]);
2553 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
2554 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
2557 secrets.push([0; 32]);
2558 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
2559 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
2562 secrets.push([0; 32]);
2563 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap());
2564 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
2565 "Previous secret did not match new one");
2570 fn test_prune_preimages() {
2571 let secp_ctx = Secp256k1::new();
2572 let logger = Arc::new(TestLogger::new());
2574 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
2575 macro_rules! dummy_keys {
2579 per_commitment_point: dummy_key.clone(),
2580 revocation_key: dummy_key.clone(),
2581 a_htlc_key: dummy_key.clone(),
2582 b_htlc_key: dummy_key.clone(),
2583 a_delayed_payment_key: dummy_key.clone(),
2584 b_payment_key: dummy_key.clone(),
2589 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
2591 let mut preimages = Vec::new();
2593 let mut rng = thread_rng();
2595 let mut preimage = PaymentPreimage([0; 32]);
2596 rng.fill_bytes(&mut preimage.0[..]);
2597 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2598 preimages.push((preimage, hash));
2602 macro_rules! preimages_slice_to_htlc_outputs {
2603 ($preimages_slice: expr) => {
2605 let mut res = Vec::new();
2606 for (idx, preimage) in $preimages_slice.iter().enumerate() {
2607 res.push((HTLCOutputInCommitment {
2611 payment_hash: preimage.1.clone(),
2612 transaction_output_index: Some(idx as u32),
2619 macro_rules! preimages_to_local_htlcs {
2620 ($preimages_slice: expr) => {
2622 let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
2623 let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
2629 macro_rules! test_preimages_exist {
2630 ($preimages_slice: expr, $monitor: expr) => {
2631 for preimage in $preimages_slice {
2632 assert!($monitor.payment_preimages.contains_key(&preimage.1));
2637 // Prune with one old state and a local commitment tx holding a few overlaps with the
2639 let mut monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
2640 monitor.set_their_to_self_delay(10);
2642 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..10]));
2643 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key);
2644 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key);
2645 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key);
2646 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key);
2647 for &(ref preimage, ref hash) in preimages.iter() {
2648 monitor.provide_payment_preimage(hash, preimage);
2651 // Now provide a secret, pruning preimages 10-15
2652 let mut secret = [0; 32];
2653 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2654 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
2655 assert_eq!(monitor.payment_preimages.len(), 15);
2656 test_preimages_exist!(&preimages[0..10], monitor);
2657 test_preimages_exist!(&preimages[15..20], monitor);
2659 // Now provide a further secret, pruning preimages 15-17
2660 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2661 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
2662 assert_eq!(monitor.payment_preimages.len(), 13);
2663 test_preimages_exist!(&preimages[0..10], monitor);
2664 test_preimages_exist!(&preimages[17..20], monitor);
2666 // Now update local commitment tx info, pruning only element 18 as we still care about the
2667 // previous commitment tx's preimages too
2668 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..5]));
2669 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2670 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
2671 assert_eq!(monitor.payment_preimages.len(), 12);
2672 test_preimages_exist!(&preimages[0..10], monitor);
2673 test_preimages_exist!(&preimages[18..20], monitor);
2675 // But if we do it again, we'll prune 5-10
2676 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..3]));
2677 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2678 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
2679 assert_eq!(monitor.payment_preimages.len(), 5);
2680 test_preimages_exist!(&preimages[0..5], monitor);
2683 // Further testing is done in the ChannelManager integration tests.