1 //! Top level peer message handling and socket handling logic lives here.
3 //! Instead of actually servicing sockets ourselves we require that you implement the
4 //! SocketDescriptor interface and use that to receive actions which you should perform on the
5 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
6 //! call into the provided message handlers (probably a ChannelManager and Router) with messages
7 //! they should handle, and encoding/sending response messages.
9 use secp256k1::key::{SecretKey,PublicKey};
12 use util::ser::{Writeable, Writer, Readable};
13 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
15 use util::events::{EventsProvider,Event};
16 use util::logger::Logger;
18 use std::collections::{HashMap,hash_map,LinkedList};
19 use std::sync::{Arc, Mutex};
20 use std::sync::atomic::{AtomicUsize, Ordering};
21 use std::{cmp,error,mem,hash,fmt};
23 /// Provides references to trait impls which handle different types of messages.
24 pub struct MessageHandler {
25 /// A message handler which handles messages specific to channels. Usually this is just a
26 /// ChannelManager object.
27 pub chan_handler: Arc<msgs::ChannelMessageHandler>,
28 /// A message handler which handles messages updating our knowledge of the network channel
29 /// graph. Usually this is just a Router object.
30 pub route_handler: Arc<msgs::RoutingMessageHandler>,
33 /// Provides an object which can be used to send data to and which uniquely identifies a connection
34 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
35 /// implement Hash to meet the PeerManager API.
37 /// For efficiency, Clone should be relatively cheap for this type.
39 /// You probably want to just extend an int and put a file descriptor in a struct and implement
40 /// send_data. Note that if you are using a higher-level net library that may close() itself, be
41 /// careful to ensure you don't have races whereby you might register a new connection with an fd
42 /// the same as a yet-to-be-disconnect_event()-ed.
43 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
44 /// Attempts to send some data from the given Vec starting at the given offset to the peer.
45 /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
46 /// Note that in the disconnected case, a disconnect_event must still fire and further write
47 /// attempts may occur until that time.
49 /// If the returned size is smaller than data.len() - write_offset, a write_available event must
50 /// trigger the next time more data can be written. Additionally, until the a send_data event
51 /// completes fully, no further read_events should trigger on the same peer!
53 /// If a read_event on this descriptor had previously returned true (indicating that read
54 /// events should be paused to prevent DoS in the send buffer), resume_read may be set
55 /// indicating that read events on this descriptor should resume. A resume_read of false does
56 /// *not* imply that further read events should be paused.
57 fn send_data(&mut self, data: &Vec<u8>, write_offset: usize, resume_read: bool) -> usize;
58 /// Disconnect the socket pointed to by this SocketDescriptor. Once this function returns, no
59 /// more calls to write_event, read_event or disconnect_event may be made with this descriptor.
60 /// No disconnect_event should be generated as a result of this call, though obviously races
61 /// may occur whereby disconnect_socket is called after a call to disconnect_event but prior to
62 /// that event completing.
63 fn disconnect_socket(&mut self);
66 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
67 /// generate no further read/write_events for the descriptor, only triggering a single
68 /// disconnect_event (unless it was provided in response to a new_*_connection event, in which case
69 /// no such disconnect_event must be generated and the socket be silently disconencted).
70 pub struct PeerHandleError {
71 /// Used to indicate that we probably can't make any future connections to this peer, implying
72 /// we should go ahead and force-close any channels we have with it.
73 no_connection_possible: bool,
75 impl fmt::Debug for PeerHandleError {
76 fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
77 formatter.write_str("Peer Sent Invalid Data")
80 impl fmt::Display for PeerHandleError {
81 fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
82 formatter.write_str("Peer Sent Invalid Data")
85 impl error::Error for PeerHandleError {
86 fn description(&self) -> &str {
87 "Peer Sent Invalid Data"
92 channel_encryptor: PeerChannelEncryptor,
94 their_node_id: Option<PublicKey>,
95 their_global_features: Option<msgs::GlobalFeatures>,
96 their_local_features: Option<msgs::LocalFeatures>,
98 pending_outbound_buffer: LinkedList<Vec<u8>>,
99 pending_outbound_buffer_first_msg_offset: usize,
100 awaiting_write_event: bool,
102 pending_read_buffer: Vec<u8>,
103 pending_read_buffer_pos: usize,
104 pending_read_is_header: bool,
107 struct PeerHolder<Descriptor: SocketDescriptor> {
108 peers: HashMap<Descriptor, Peer>,
109 /// Only add to this set when noise completes:
110 node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
112 struct MutPeerHolder<'a, Descriptor: SocketDescriptor + 'a> {
113 peers: &'a mut HashMap<Descriptor, Peer>,
114 node_id_to_descriptor: &'a mut HashMap<PublicKey, Descriptor>,
116 impl<Descriptor: SocketDescriptor> PeerHolder<Descriptor> {
117 fn borrow_parts(&mut self) -> MutPeerHolder<Descriptor> {
119 peers: &mut self.peers,
120 node_id_to_descriptor: &mut self.node_id_to_descriptor,
125 /// A PeerManager manages a set of peers, described by their SocketDescriptor and marshalls socket
126 /// events into messages which it passes on to its MessageHandlers.
127 pub struct PeerManager<Descriptor: SocketDescriptor> {
128 message_handler: MessageHandler,
129 peers: Mutex<PeerHolder<Descriptor>>,
130 pending_events: Mutex<Vec<Event>>,
131 our_node_secret: SecretKey,
132 initial_syncs_sent: AtomicUsize,
136 struct VecWriter(Vec<u8>);
137 impl Writer for VecWriter {
138 fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
139 self.0.extend_from_slice(buf);
142 fn size_hint(&mut self, size: usize) {
143 self.0.reserve_exact(size);
147 macro_rules! encode_msg {
148 ($msg: expr, $msg_code: expr) => {{
149 let mut msg = VecWriter(Vec::new());
150 ($msg_code as u16).write(&mut msg).unwrap();
151 $msg.write(&mut msg).unwrap();
156 //TODO: Really should do something smarter for this
157 const INITIAL_SYNCS_TO_SEND: usize = 5;
159 /// Manages and reacts to connection events. You probably want to use file descriptors as PeerIds.
160 /// PeerIds may repeat, but only after disconnect_event() has been called.
161 impl<Descriptor: SocketDescriptor> PeerManager<Descriptor> {
162 /// Constructs a new PeerManager with the given message handlers and node_id secret key
163 pub fn new(message_handler: MessageHandler, our_node_secret: SecretKey, logger: Arc<Logger>) -> PeerManager<Descriptor> {
165 message_handler: message_handler,
166 peers: Mutex::new(PeerHolder { peers: HashMap::new(), node_id_to_descriptor: HashMap::new() }),
167 pending_events: Mutex::new(Vec::new()),
168 our_node_secret: our_node_secret,
169 initial_syncs_sent: AtomicUsize::new(0),
174 /// Get the list of node ids for peers which have completed the initial handshake.
176 /// For outbound connections, this will be the same as the their_node_id parameter passed in to
177 /// new_outbound_connection, however entries will only appear once the initial handshake has
178 /// completed and we are sure the remote peer has the private key for the given node_id.
179 pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
180 let peers = self.peers.lock().unwrap();
181 peers.peers.values().filter_map(|p| {
182 if !p.channel_encryptor.is_ready_for_encryption() || p.their_global_features.is_none() {
189 /// Indicates a new outbound connection has been established to a node with the given node_id.
190 /// Note that if an Err is returned here you MUST NOT call disconnect_event for the new
191 /// descriptor but must disconnect the connection immediately.
193 /// Returns some bytes to send to the remote node.
195 /// Panics if descriptor is duplicative with some other descriptor which has not yet has a
196 /// disconnect_event.
197 pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
198 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone());
199 let res = peer_encryptor.get_act_one().to_vec();
200 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
202 let mut peers = self.peers.lock().unwrap();
203 if peers.peers.insert(descriptor, Peer {
204 channel_encryptor: peer_encryptor,
206 their_node_id: Some(their_node_id),
207 their_global_features: None,
208 their_local_features: None,
210 pending_outbound_buffer: LinkedList::new(),
211 pending_outbound_buffer_first_msg_offset: 0,
212 awaiting_write_event: false,
214 pending_read_buffer: pending_read_buffer,
215 pending_read_buffer_pos: 0,
216 pending_read_is_header: false,
218 panic!("PeerManager driver duplicated descriptors!");
223 /// Indicates a new inbound connection has been established.
225 /// May refuse the connection by returning an Err, but will never write bytes to the remote end
226 /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
227 /// call disconnect_event for the new descriptor but must disconnect the connection
230 /// Panics if descriptor is duplicative with some other descriptor which has not yet has a
231 /// disconnect_event.
232 pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
233 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
234 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
236 let mut peers = self.peers.lock().unwrap();
237 if peers.peers.insert(descriptor, Peer {
238 channel_encryptor: peer_encryptor,
241 their_global_features: None,
242 their_local_features: None,
244 pending_outbound_buffer: LinkedList::new(),
245 pending_outbound_buffer_first_msg_offset: 0,
246 awaiting_write_event: false,
248 pending_read_buffer: pending_read_buffer,
249 pending_read_buffer_pos: 0,
250 pending_read_is_header: false,
252 panic!("PeerManager driver duplicated descriptors!");
257 fn do_attempt_write_data(descriptor: &mut Descriptor, peer: &mut Peer) {
258 while !peer.awaiting_write_event {
260 let next_buff = match peer.pending_outbound_buffer.front() {
264 let should_be_reading = peer.pending_outbound_buffer.len() < 10;
266 let data_sent = descriptor.send_data(next_buff, peer.pending_outbound_buffer_first_msg_offset, should_be_reading);
267 peer.pending_outbound_buffer_first_msg_offset += data_sent;
268 if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
270 peer.pending_outbound_buffer_first_msg_offset = 0;
271 peer.pending_outbound_buffer.pop_front();
273 peer.awaiting_write_event = true;
278 /// Indicates that there is room to write data to the given socket descriptor.
280 /// May return an Err to indicate that the connection should be closed.
282 /// Will most likely call send_data on the descriptor passed in (or the descriptor handed into
283 /// new_*\_connection) before returning. Thus, be very careful with reentrancy issues! The
284 /// invariants around calling write_event in case a write did not fully complete must still
285 /// hold - be ready to call write_event again if a write call generated here isn't sufficient!
286 /// Panics if the descriptor was not previously registered in a new_\*_connection event.
287 pub fn write_event(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
288 let mut peers = self.peers.lock().unwrap();
289 match peers.peers.get_mut(descriptor) {
290 None => panic!("Descriptor for write_event is not already known to PeerManager"),
292 peer.awaiting_write_event = false;
293 Self::do_attempt_write_data(descriptor, peer);
299 /// Indicates that data was read from the given socket descriptor.
301 /// May return an Err to indicate that the connection should be closed.
303 /// Will very likely call send_data on the descriptor passed in (or a descriptor handed into
304 /// new_*_connection) before returning. Thus, be very careful with reentrancy issues! The
305 /// invariants around calling write_event in case a write did not fully complete must still
306 /// hold. Note that this function will often call send_data on many peers before returning, not
309 /// If Ok(true) is returned, further read_events should not be triggered until a write_event on
310 /// this file descriptor has resume_read set (preventing DoS issues in the send buffer). Note
311 /// that this must be true even if a send_data call with resume_read=true was made during the
312 /// course of this function!
314 /// Panics if the descriptor was not previously registered in a new_*_connection event.
315 pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: Vec<u8>) -> Result<bool, PeerHandleError> {
316 match self.do_read_event(peer_descriptor, data) {
319 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
325 fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: Vec<u8>) -> Result<bool, PeerHandleError> {
327 let mut peers_lock = self.peers.lock().unwrap();
328 let peers = peers_lock.borrow_parts();
329 let pause_read = match peers.peers.get_mut(peer_descriptor) {
330 None => panic!("Descriptor for read_event is not already known to PeerManager"),
332 assert!(peer.pending_read_buffer.len() > 0);
333 assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
335 let mut read_pos = 0;
336 while read_pos < data.len() {
338 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
339 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
340 read_pos += data_to_copy;
341 peer.pending_read_buffer_pos += data_to_copy;
344 if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
345 peer.pending_read_buffer_pos = 0;
347 macro_rules! encode_and_send_msg {
348 ($msg: expr, $msg_code: expr) => {
350 log_trace!(self, "Encoding and sending message of type {} to {}", $msg_code, log_pubkey!(peer.their_node_id.unwrap()));
351 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!($msg, $msg_code)[..]));
356 macro_rules! try_potential_handleerror {
361 if let Some(action) = e.action {
363 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
364 //TODO: Try to push msg
365 log_trace!(self, "Got Err handling message, disconnecting peer because {}", e.err);
366 return Err(PeerHandleError{ no_connection_possible: false });
368 msgs::ErrorAction::IgnoreError => {
369 log_trace!(self, "Got Err handling message, ignoring because {}", e.err);
372 msgs::ErrorAction::SendErrorMessage { msg } => {
373 log_trace!(self, "Got Err handling message, sending Error message because {}", e.err);
374 encode_and_send_msg!(msg, 17);
379 log_debug!(self, "Got Err handling message, action not yet filled in: {}", e.err);
380 return Err(PeerHandleError{ no_connection_possible: false });
387 macro_rules! try_potential_decodeerror {
393 msgs::DecodeError::UnknownVersion => return Err(PeerHandleError{ no_connection_possible: false }),
394 msgs::DecodeError::UnknownRequiredFeature => {
395 log_debug!(self, "Got a channel/node announcement with an known required feature flag, you may want to udpate!");
398 msgs::DecodeError::InvalidValue => return Err(PeerHandleError{ no_connection_possible: false }),
399 msgs::DecodeError::ShortRead => return Err(PeerHandleError{ no_connection_possible: false }),
400 msgs::DecodeError::ExtraAddressesPerType => {
401 log_debug!(self, "Error decoding message, ignoring due to lnd spec incompatibility. See https://github.com/lightningnetwork/lnd/issues/1407");
404 msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError{ no_connection_possible: false }),
405 msgs::DecodeError::Io(_) => return Err(PeerHandleError{ no_connection_possible: false }),
412 macro_rules! insert_node_id {
414 match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
415 hash_map::Entry::Occupied(_) => {
416 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
417 return Err(PeerHandleError{ no_connection_possible: false })
419 hash_map::Entry::Vacant(entry) => entry.insert(peer_descriptor.clone()),
424 let next_step = peer.channel_encryptor.get_noise_step();
426 NextNoiseStep::ActOne => {
427 let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_key(&peer.pending_read_buffer[..], &self.our_node_secret)).to_vec();
428 peer.pending_outbound_buffer.push_back(act_two);
429 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
431 NextNoiseStep::ActTwo => {
432 let act_three = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret)).to_vec();
433 peer.pending_outbound_buffer.push_back(act_three);
434 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
435 peer.pending_read_is_header = true;
438 let mut local_features = msgs::LocalFeatures::new();
439 if self.initial_syncs_sent.load(Ordering::Acquire) < INITIAL_SYNCS_TO_SEND {
440 self.initial_syncs_sent.fetch_add(1, Ordering::AcqRel);
441 local_features.set_initial_routing_sync();
443 encode_and_send_msg!(msgs::Init {
444 global_features: msgs::GlobalFeatures::new(),
448 NextNoiseStep::ActThree => {
449 let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
450 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
451 peer.pending_read_is_header = true;
452 peer.their_node_id = Some(their_node_id);
455 NextNoiseStep::NoiseComplete => {
456 if peer.pending_read_is_header {
457 let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
458 peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
459 peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
460 if msg_len < 2 { // Need at least the message type tag
461 return Err(PeerHandleError{ no_connection_possible: false });
463 peer.pending_read_is_header = false;
465 let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
466 assert!(msg_data.len() >= 2);
469 peer.pending_read_buffer = [0; 18].to_vec();
470 peer.pending_read_is_header = true;
472 let msg_type = byte_utils::slice_to_be16(&msg_data[0..2]);
473 log_trace!(self, "Received message of type {} from {}", msg_type, log_pubkey!(peer.their_node_id.unwrap()));
474 if msg_type != 16 && peer.their_global_features.is_none() {
475 // Need an init message as first message
476 return Err(PeerHandleError{ no_connection_possible: false });
478 let mut reader = ::std::io::Cursor::new(&msg_data[2..]);
480 // Connection control:
482 let msg = try_potential_decodeerror!(msgs::Init::read(&mut reader));
483 if msg.global_features.requires_unknown_bits() {
484 log_info!(self, "Peer global features required unknown version bits");
485 return Err(PeerHandleError{ no_connection_possible: true });
487 if msg.local_features.requires_unknown_bits() {
488 log_info!(self, "Peer local features required unknown version bits");
489 return Err(PeerHandleError{ no_connection_possible: true });
491 if msg.local_features.requires_data_loss_protect() {
492 log_info!(self, "Peer local features required data_loss_protect");
493 return Err(PeerHandleError{ no_connection_possible: true });
495 if msg.local_features.requires_upfront_shutdown_script() {
496 log_info!(self, "Peer local features required upfront_shutdown_script");
497 return Err(PeerHandleError{ no_connection_possible: true });
499 if peer.their_global_features.is_some() {
500 return Err(PeerHandleError{ no_connection_possible: false });
503 log_info!(self, "Received peer Init message: data_loss_protect: {}, initial_routing_sync: {}, upfront_shutdown_script: {}, unkown local flags: {}, unknown global flags: {}",
504 if msg.local_features.supports_data_loss_protect() { "supported" } else { "not supported"},
505 if msg.local_features.initial_routing_sync() { "requested" } else { "not requested" },
506 if msg.local_features.supports_upfront_shutdown_script() { "supported" } else { "not supported"},
507 if msg.local_features.supports_unknown_bits() { "present" } else { "none" },
508 if msg.global_features.supports_unknown_bits() { "present" } else { "none" });
510 peer.their_global_features = Some(msg.global_features);
511 peer.their_local_features = Some(msg.local_features);
514 let mut local_features = msgs::LocalFeatures::new();
515 if self.initial_syncs_sent.load(Ordering::Acquire) < INITIAL_SYNCS_TO_SEND {
516 self.initial_syncs_sent.fetch_add(1, Ordering::AcqRel);
517 local_features.set_initial_routing_sync();
519 encode_and_send_msg!(msgs::Init {
520 global_features: msgs::GlobalFeatures::new(),
525 for msg in self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap()) {
526 encode_and_send_msg!(msg, 136);
530 let msg = try_potential_decodeerror!(msgs::ErrorMessage::read(&mut reader));
531 let mut data_is_printable = true;
532 for b in msg.data.bytes() {
533 if b < 32 || b > 126 {
534 data_is_printable = false;
539 if data_is_printable {
540 log_debug!(self, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
542 log_debug!(self, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
544 self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
545 if msg.channel_id == [0; 32] {
546 return Err(PeerHandleError{ no_connection_possible: true });
551 let msg = try_potential_decodeerror!(msgs::Ping::read(&mut reader));
552 if msg.ponglen < 65532 {
553 let resp = msgs::Pong { byteslen: msg.ponglen };
554 encode_and_send_msg!(resp, 19);
558 try_potential_decodeerror!(msgs::Pong::read(&mut reader));
563 let msg = try_potential_decodeerror!(msgs::OpenChannel::read(&mut reader));
564 let resp = try_potential_handleerror!(self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), &msg));
565 encode_and_send_msg!(resp, 33);
568 let msg = try_potential_decodeerror!(msgs::AcceptChannel::read(&mut reader));
569 try_potential_handleerror!(self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), &msg));
573 let msg = try_potential_decodeerror!(msgs::FundingCreated::read(&mut reader));
574 let resp = try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg));
575 encode_and_send_msg!(resp, 35);
578 let msg = try_potential_decodeerror!(msgs::FundingSigned::read(&mut reader));
579 try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg));
582 let msg = try_potential_decodeerror!(msgs::FundingLocked::read(&mut reader));
583 let resp_option = try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg));
585 Some(resp) => encode_and_send_msg!(resp, 259),
591 let msg = try_potential_decodeerror!(msgs::Shutdown::read(&mut reader));
592 let resp_options = try_potential_handleerror!(self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), &msg));
593 if let Some(resp) = resp_options.0 {
594 encode_and_send_msg!(resp, 38);
596 if let Some(resp) = resp_options.1 {
597 encode_and_send_msg!(resp, 39);
601 let msg = try_potential_decodeerror!(msgs::ClosingSigned::read(&mut reader));
602 let resp_option = try_potential_handleerror!(self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg));
603 if let Some(resp) = resp_option {
604 encode_and_send_msg!(resp, 39);
609 let msg = try_potential_decodeerror!(msgs::UpdateAddHTLC::read(&mut reader));
610 try_potential_handleerror!(self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg));
613 let msg = try_potential_decodeerror!(msgs::UpdateFulfillHTLC::read(&mut reader));
614 try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg));
617 let msg = try_potential_decodeerror!(msgs::UpdateFailHTLC::read(&mut reader));
618 let chan_update = try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg));
619 if let Some(update) = chan_update {
620 self.message_handler.route_handler.handle_htlc_fail_channel_update(&update);
624 let msg = try_potential_decodeerror!(msgs::UpdateFailMalformedHTLC::read(&mut reader));
625 try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg));
629 let msg = try_potential_decodeerror!(msgs::CommitmentSigned::read(&mut reader));
630 let resps = try_potential_handleerror!(self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg));
631 encode_and_send_msg!(resps.0, 133);
632 if let Some(resp) = resps.1 {
633 encode_and_send_msg!(resp, 132);
637 let msg = try_potential_decodeerror!(msgs::RevokeAndACK::read(&mut reader));
638 let resp_option = try_potential_handleerror!(self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg));
641 for resp in resps.update_add_htlcs {
642 encode_and_send_msg!(resp, 128);
644 for resp in resps.update_fulfill_htlcs {
645 encode_and_send_msg!(resp, 130);
647 for resp in resps.update_fail_htlcs {
648 encode_and_send_msg!(resp, 131);
650 encode_and_send_msg!(resps.commitment_signed, 132);
656 let msg = try_potential_decodeerror!(msgs::UpdateFee::read(&mut reader));
657 try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg));
660 let msg = try_potential_decodeerror!(msgs::ChannelReestablish::read(&mut reader));
661 let (funding_locked, revoke_and_ack, commitment_update) = try_potential_handleerror!(self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg));
662 if let Some(lock_msg) = funding_locked {
663 encode_and_send_msg!(lock_msg, 36);
665 if let Some(revoke_msg) = revoke_and_ack {
666 encode_and_send_msg!(revoke_msg, 133);
668 match commitment_update {
670 for resp in resps.update_add_htlcs {
671 encode_and_send_msg!(resp, 128);
673 for resp in resps.update_fulfill_htlcs {
674 encode_and_send_msg!(resp, 130);
676 for resp in resps.update_fail_htlcs {
677 encode_and_send_msg!(resp, 131);
679 encode_and_send_msg!(resps.commitment_signed, 132);
687 let msg = try_potential_decodeerror!(msgs::AnnouncementSignatures::read(&mut reader));
688 try_potential_handleerror!(self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg));
691 let msg = try_potential_decodeerror!(msgs::ChannelAnnouncement::read(&mut reader));
692 let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_channel_announcement(&msg));
695 // TODO: forward msg along to all our other peers!
699 let msg = try_potential_decodeerror!(msgs::NodeAnnouncement::read(&mut reader));
700 let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_node_announcement(&msg));
703 // TODO: forward msg along to all our other peers!
707 let msg = try_potential_decodeerror!(msgs::ChannelUpdate::read(&mut reader));
708 let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_channel_update(&msg));
711 // TODO: forward msg along to all our other peers!
715 if (msg_type & 1) == 0 {
716 return Err(PeerHandleError{ no_connection_possible: true });
726 Self::do_attempt_write_data(peer_descriptor, peer);
728 peer.pending_outbound_buffer.len() > 10 // pause_read
735 self.process_events();
740 /// Checks for any events generated by our handlers and processes them. May be needed after eg
741 /// calls to ChannelManager::process_pending_htlc_forward.
742 pub fn process_events(&self) {
743 let mut upstream_events = Vec::new();
745 // TODO: There are some DoS attacks here where you can flood someone's outbound send
746 // buffer by doing things like announcing channels on another node. We should be willing to
747 // drop optional-ish messages when send buffers get full!
749 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_events();
750 let mut peers = self.peers.lock().unwrap();
751 for event in events_generated.drain(..) {
752 macro_rules! get_peer_for_forwarding {
753 ($node_id: expr, $handle_no_such_peer: block) => {
755 let descriptor = match peers.node_id_to_descriptor.get($node_id) {
756 Some(descriptor) => descriptor.clone(),
758 $handle_no_such_peer;
762 match peers.peers.get_mut(&descriptor) {
764 if peer.their_global_features.is_none() {
765 $handle_no_such_peer;
770 None => panic!("Inconsistent peers set state!"),
776 Event::FundingGenerationReady {..} => { /* Hand upstream */ },
777 Event::FundingBroadcastSafe {..} => { /* Hand upstream */ },
778 Event::PaymentReceived {..} => { /* Hand upstream */ },
779 Event::PaymentSent {..} => { /* Hand upstream */ },
780 Event::PaymentFailed {..} => { /* Hand upstream */ },
781 Event::PendingHTLCsForwardable {..} => { /* Hand upstream */ },
783 Event::SendOpenChannel { ref node_id, ref msg } => {
784 log_trace!(self, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
785 log_pubkey!(node_id),
786 log_bytes!(msg.temporary_channel_id));
787 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
788 //TODO: Drop the pending channel? (or just let it timeout, but that sucks)
790 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 32)));
791 Self::do_attempt_write_data(&mut descriptor, peer);
794 Event::SendFundingCreated { ref node_id, ref msg } => {
795 log_trace!(self, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
796 log_pubkey!(node_id),
797 log_bytes!(msg.temporary_channel_id),
798 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
799 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
800 //TODO: generate a DiscardFunding event indicating to the wallet that
801 //they should just throw away this funding transaction
803 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 34)));
804 Self::do_attempt_write_data(&mut descriptor, peer);
807 Event::SendFundingLocked { ref node_id, ref msg, ref announcement_sigs } => {
808 log_trace!(self, "Handling SendFundingLocked event in peer_handler for node {}{} for channel {}",
809 log_pubkey!(node_id),
810 if announcement_sigs.is_some() { " with announcement sigs" } else { "" },
811 log_bytes!(msg.channel_id));
812 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
813 //TODO: Do whatever we're gonna do for handling dropped messages
815 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 36)));
816 match announcement_sigs {
817 &Some(ref announce_msg) => peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(announce_msg, 259))),
820 Self::do_attempt_write_data(&mut descriptor, peer);
823 Event::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref commitment_signed } } => {
824 log_trace!(self, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
825 log_pubkey!(node_id),
826 update_add_htlcs.len(),
827 update_fulfill_htlcs.len(),
828 update_fail_htlcs.len(),
829 log_bytes!(commitment_signed.channel_id));
830 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
831 //TODO: Do whatever we're gonna do for handling dropped messages
833 for msg in update_add_htlcs {
834 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 128)));
836 for msg in update_fulfill_htlcs {
837 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 130)));
839 for msg in update_fail_htlcs {
840 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 131)));
842 for msg in update_fail_malformed_htlcs {
843 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 135)));
845 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(commitment_signed, 132)));
846 Self::do_attempt_write_data(&mut descriptor, peer);
849 Event::SendShutdown { ref node_id, ref msg } => {
850 log_trace!(self, "Handling Shutdown event in peer_handler for node {} for channel {}",
851 log_pubkey!(node_id),
852 log_bytes!(msg.channel_id));
853 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
854 //TODO: Do whatever we're gonna do for handling dropped messages
856 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 38)));
857 Self::do_attempt_write_data(&mut descriptor, peer);
860 Event::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
861 log_trace!(self, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
862 if self.message_handler.route_handler.handle_channel_announcement(msg).is_ok() && self.message_handler.route_handler.handle_channel_update(update_msg).is_ok() {
863 let encoded_msg = encode_msg!(msg, 256);
864 let encoded_update_msg = encode_msg!(update_msg, 258);
866 for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
867 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_global_features.is_none() {
870 match peer.their_node_id {
872 Some(their_node_id) => {
873 if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
878 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
879 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_update_msg[..]));
880 Self::do_attempt_write_data(&mut (*descriptor).clone(), peer);
885 Event::BroadcastChannelUpdate { ref msg } => {
886 log_trace!(self, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
887 if self.message_handler.route_handler.handle_channel_update(msg).is_ok() {
888 let encoded_msg = encode_msg!(msg, 258);
890 for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
891 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_global_features.is_none() {
894 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
895 Self::do_attempt_write_data(&mut (*descriptor).clone(), peer);
900 Event::HandleError { ref node_id, ref action } => {
901 if let Some(ref action) = *action {
903 msgs::ErrorAction::DisconnectPeer { ref msg } => {
904 if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
905 if let Some(mut peer) = peers.peers.remove(&descriptor) {
906 if let Some(ref msg) = *msg {
907 log_trace!(self, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
908 log_pubkey!(node_id),
910 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 17)));
911 // This isn't guaranteed to work, but if there is enough free
912 // room in the send buffer, put the error message there...
913 Self::do_attempt_write_data(&mut descriptor, &mut peer);
915 log_trace!(self, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
918 descriptor.disconnect_socket();
919 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
922 msgs::ErrorAction::IgnoreError => {
925 msgs::ErrorAction::SendErrorMessage { ref msg } => {
926 log_trace!(self, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
927 log_pubkey!(node_id),
929 let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
930 //TODO: Do whatever we're gonna do for handling dropped messages
932 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 17)));
933 Self::do_attempt_write_data(&mut descriptor, peer);
937 log_error!(self, "Got no-action HandleError Event in peer_handler for node {}, no such events should ever be generated!", log_pubkey!(node_id));
943 upstream_events.push(event);
947 let mut pending_events = self.pending_events.lock().unwrap();
948 for event in upstream_events.drain(..) {
949 pending_events.push(event);
953 /// Indicates that the given socket descriptor's connection is now closed.
955 /// This must be called even if a PeerHandleError was given for a read_event or write_event,
956 /// but must NOT be called if a PeerHandleError was provided out of a new_\*\_connection event!
958 /// Panics if the descriptor was not previously registered in a successful new_*_connection event.
959 pub fn disconnect_event(&self, descriptor: &Descriptor) {
960 self.disconnect_event_internal(descriptor, false);
963 fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
964 let mut peers = self.peers.lock().unwrap();
965 let peer_option = peers.peers.remove(descriptor);
967 None => panic!("Descriptor for disconnect_event is not already known to PeerManager"),
969 match peer.their_node_id {
971 peers.node_id_to_descriptor.remove(&node_id);
972 self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
981 impl<Descriptor: SocketDescriptor> EventsProvider for PeerManager<Descriptor> {
982 fn get_and_clear_pending_events(&self) -> Vec<Event> {
983 let mut pending_events = self.pending_events.lock().unwrap();
984 let mut ret = Vec::new();
985 mem::swap(&mut ret, &mut *pending_events);
992 use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor};
995 use util::test_utils;
996 use util::logger::Logger;
998 use secp256k1::Secp256k1;
999 use secp256k1::key::{SecretKey, PublicKey};
1001 use rand::{thread_rng, Rng};
1003 use std::sync::{Arc};
1005 #[derive(PartialEq, Eq, Clone, Hash)]
1006 struct FileDescriptor {
1010 impl SocketDescriptor for FileDescriptor {
1011 fn send_data(&mut self, data: &Vec<u8>, write_offset: usize, _resume_read: bool) -> usize {
1012 assert!(write_offset < data.len());
1013 data.len() - write_offset
1016 fn disconnect_socket(&mut self) {}
1019 fn create_network(peer_count: usize) -> Vec<PeerManager<FileDescriptor>> {
1020 let secp_ctx = Secp256k1::new();
1021 let mut peers = Vec::new();
1022 let mut rng = thread_rng();
1023 let logger : Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1025 for _ in 0..peer_count {
1026 let chan_handler = test_utils::TestChannelMessageHandler::new();
1027 let router = test_utils::TestRoutingMessageHandler::new();
1029 let mut key_slice = [0;32];
1030 rng.fill_bytes(&mut key_slice);
1031 SecretKey::from_slice(&secp_ctx, &key_slice).unwrap()
1033 let msg_handler = MessageHandler { chan_handler: Arc::new(chan_handler), route_handler: Arc::new(router) };
1034 let peer = PeerManager::new(msg_handler, node_id, Arc::clone(&logger));
1041 fn establish_connection(peer_a: &PeerManager<FileDescriptor>, peer_b: &PeerManager<FileDescriptor>) {
1042 let secp_ctx = Secp256k1::new();
1043 let their_id = PublicKey::from_secret_key(&secp_ctx, &peer_b.our_node_secret);
1044 let fd = FileDescriptor { fd: 1};
1045 peer_a.new_inbound_connection(fd.clone()).unwrap();
1046 peer_a.peers.lock().unwrap().node_id_to_descriptor.insert(their_id, fd.clone());
1050 fn test_disconnect_peer() {
1051 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1052 // push an DisconnectPeer event to remove the node flagged by id
1053 let mut peers = create_network(2);
1054 establish_connection(&peers[0], &peers[1]);
1055 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
1057 let secp_ctx = Secp256k1::new();
1058 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1060 let chan_handler = test_utils::TestChannelMessageHandler::new();
1061 chan_handler.pending_events.lock().unwrap().push(events::Event::HandleError {
1063 action: Some(msgs::ErrorAction::DisconnectPeer { msg: None }),
1065 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1066 peers[0].message_handler.chan_handler = Arc::new(chan_handler);
1068 peers[0].process_events();
1069 assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);