Merge pull request #1286 from tnull/add_random_cltv_offsets
[rust-lightning] / lightning / src / chain / keysinterface.rs
index b36694eb126cded8b5048dd1a2f28461eb5c25f6..1daeec4ef62354a1fb9f4a5597ad7678a270ffe3 100644 (file)
@@ -18,6 +18,7 @@ use bitcoin::network::constants::Network;
 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
 use bitcoin::util::bip143;
 
+use bitcoin::bech32::u5;
 use bitcoin::hashes::{Hash, HashEngine};
 use bitcoin::hashes::sha256::HashEngine as Sha256State;
 use bitcoin::hashes::sha256::Hash as Sha256;
@@ -30,10 +31,11 @@ use bitcoin::secp256k1::recovery::RecoverableSignature;
 use bitcoin::secp256k1;
 
 use util::{byte_utils, transaction_utils};
-use util::ser::{Writeable, Writer, Readable};
+use util::crypto::hkdf_extract_expand_twice;
+use util::ser::{Writeable, Writer, Readable, ReadableArgs};
 
 use chain::transaction::OutPoint;
-use ln::chan_utils;
+use ln::{chan_utils, PaymentPreimage};
 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
 use ln::msgs::UnsignedChannelAnnouncement;
 use ln::script::ShutdownScript;
@@ -42,6 +44,13 @@ use prelude::*;
 use core::sync::atomic::{AtomicUsize, Ordering};
 use io::{self, Error};
 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
+use util::invoice::construct_invoice_preimage;
+
+/// Used as initial key material, to be expanded into multiple secret keys (but not to be used
+/// directly). This is used within LDK to encrypt/decrypt inbound payment data.
+/// (C-not exported) as we just use [u8; 32] directly
+#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
+pub struct KeyMaterial(pub [u8; 32]);
 
 /// Information about a spendable output to a P2WSH script. See
 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
@@ -218,7 +227,14 @@ pub trait BaseSign {
        /// secret won't leave us without a broadcastable holder transaction.
        /// Policy checks should be implemented in this function, including checking the amount
        /// sent to us and checking the HTLCs.
-       fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction) -> Result<(), ()>;
+       ///
+       /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
+       /// A validating signer should ensure that an HTLC output is removed only when the matching
+       /// preimage is provided, or when the value to holder is restored.
+       ///
+       /// NOTE: all the relevant preimages will be provided, but there may also be additional
+       /// irrelevant or duplicate preimages.
+       fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
        /// Gets the holder's channel public keys and basepoints
        fn pubkeys(&self) -> &ChannelPublicKeys;
        /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
@@ -232,9 +248,16 @@ pub trait BaseSign {
        ///
        /// Policy checks should be implemented in this function, including checking the amount
        /// sent to us and checking the HTLCs.
+       ///
+       /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
+       /// A validating signer should ensure that an HTLC output is removed only when the matching
+       /// preimage is provided, or when the value to holder is restored.
+       ///
+       /// NOTE: all the relevant preimages will be provided, but there may also be additional
+       /// irrelevant or duplicate preimages.
        //
        // TODO: Document the things someone using this interface should enforce before signing.
-       fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
+       fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
        /// Validate the counterparty's revocation.
        ///
        /// This is required in order for the signer to make sure that the state has moved
@@ -324,13 +347,17 @@ pub trait BaseSign {
        /// chosen to forgo their output as dust.
        fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
 
-       /// Signs a channel announcement message with our funding key, proving it comes from one
-       /// of the channel participants.
+       /// Signs a channel announcement message with our funding key and our node secret key (aka
+       /// node_id or network_key), proving it comes from one of the channel participants.
+       ///
+       /// The first returned signature should be from our node secret key, the second from our
+       /// funding key.
        ///
        /// Note that if this fails or is rejected, the channel will not be publicly announced and
        /// our counterparty may (though likely will not) close the channel on us for violating the
        /// protocol.
-       fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
+       fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
+               -> Result<(Signature, Signature), ()>;
 
        /// Set the counterparty static channel data, including basepoints,
        /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
@@ -353,15 +380,28 @@ pub trait BaseSign {
 pub trait Sign: BaseSign + Writeable + Clone {
 }
 
+/// Specifies the recipient of an invoice, to indicate to [`KeysInterface::sign_invoice`] what node
+/// secret key should be used to sign the invoice.
+pub enum Recipient {
+       /// The invoice should be signed with the local node secret key.
+       Node,
+       /// The invoice should be signed with the phantom node secret key. This secret key must be the
+       /// same for all nodes participating in the [phantom node payment].
+       ///
+       /// [phantom node payment]: PhantomKeysManager
+       PhantomNode,
+}
+
 /// A trait to describe an object which can get user secrets and key material.
 pub trait KeysInterface {
        /// A type which implements Sign which will be returned by get_channel_signer.
        type Signer : Sign;
 
-       /// Get node secret key (aka node_id or network_key).
+       /// Get node secret key (aka node_id or network_key) based on the provided [`Recipient`].
        ///
-       /// This method must return the same value each time it is called.
-       fn get_node_secret(&self) -> SecretKey;
+       /// This method must return the same value each time it is called with a given `Recipient`
+       /// parameter.
+       fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()>;
        /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
        ///
        /// This method should return a different value each time it is called, to avoid linking
@@ -392,11 +432,28 @@ pub trait KeysInterface {
        /// you've read all of the provided bytes to ensure no corruption occurred.
        fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
 
-       /// Sign an invoice's preimage (note that this is the preimage of the invoice, not the HTLC's
-       /// preimage). By parameterizing by the preimage instead of the hash, we allow implementors of
+       /// Sign an invoice.
+       /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
        /// this trait to parse the invoice and make sure they're signing what they expect, rather than
        /// blindly signing the hash.
-       fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()>;
+       /// The hrp is ascii bytes, while the invoice data is base32.
+       ///
+       /// The secret key used to sign the invoice is dependent on the [`Recipient`].
+       fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], receipient: Recipient) -> Result<RecoverableSignature, ()>;
+
+       /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
+       ///
+       /// If the implementor of this trait supports [phantom node payments], then every node that is
+       /// intended to be included in the phantom invoice route hints must return the same value from
+       /// this method.
+       //  This is because LDK avoids storing inbound payment data by encrypting payment data in the
+       //  payment hash and/or payment secret, therefore for a payment to be receivable by multiple
+       //  nodes, they must share the key that encrypts this payment data.
+       ///
+       /// This method must return the same value each time it is called.
+       ///
+       /// [phantom node payments]: PhantomKeysManager
+       fn get_inbound_payment_key_material(&self) -> KeyMaterial;
 }
 
 #[derive(Clone)]
@@ -419,6 +476,8 @@ pub struct InMemorySigner {
        pub commitment_seed: [u8; 32],
        /// Holder public keys and basepoints
        pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
+       /// Private key of our node secret, used for signing channel announcements
+       node_secret: SecretKey,
        /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
        channel_parameters: Option<ChannelTransactionParameters>,
        /// The total value of this channel
@@ -431,6 +490,7 @@ impl InMemorySigner {
        /// Create a new InMemorySigner
        pub fn new<C: Signing>(
                secp_ctx: &Secp256k1<C>,
+               node_secret: SecretKey,
                funding_key: SecretKey,
                revocation_base_key: SecretKey,
                payment_key: SecretKey,
@@ -450,6 +510,7 @@ impl InMemorySigner {
                        delayed_payment_base_key,
                        htlc_base_key,
                        commitment_seed,
+                       node_secret,
                        channel_value_satoshis,
                        holder_channel_pubkeys,
                        channel_parameters: None,
@@ -505,11 +566,18 @@ impl InMemorySigner {
                self.channel_parameters.as_ref().unwrap()
        }
 
+       /// Whether anchors should be used.
+       /// Will panic if ready_channel wasn't called.
+       pub fn opt_anchors(&self) -> bool {
+               self.get_channel_parameters().opt_anchors.is_some()
+       }
+
        /// Sign the single input of spend_tx at index `input_idx` which spends the output
        /// described by descriptor, returning the witness stack for the input.
        ///
        /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
-       /// or is not spending the outpoint described by `descriptor.outpoint`.
+       /// is not spending the outpoint described by `descriptor.outpoint`,
+       /// or if an output descriptor script_pubkey does not match the one we can spend.
        pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
                // TODO: We really should be taking the SigHashCache as a parameter here instead of
                // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
@@ -523,6 +591,9 @@ impl InMemorySigner {
                let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
                let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
                let remotesig = secp_ctx.sign(&sighash, &self.payment_key);
+               let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
+
+               if payment_script != descriptor.output.script_pubkey  { return Err(()); }
 
                let mut witness = Vec::with_capacity(2);
                witness.push(remotesig.serialize_der().to_vec());
@@ -535,8 +606,9 @@ impl InMemorySigner {
        /// described by descriptor, returning the witness stack for the input.
        ///
        /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
-       /// is not spending the outpoint described by `descriptor.outpoint`, or does not have a
-       /// sequence set to `descriptor.to_self_delay`.
+       /// is not spending the outpoint described by `descriptor.outpoint`, does not have a
+       /// sequence set to `descriptor.to_self_delay`, or if an output descriptor
+       /// script_pubkey does not match the one we can spend.
        pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
                // TODO: We really should be taking the SigHashCache as a parameter here instead of
                // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
@@ -553,6 +625,9 @@ impl InMemorySigner {
                let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
                let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
                let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);
+               let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
+
+               if descriptor.output.script_pubkey != payment_script { return Err(()); }
 
                let mut witness = Vec::with_capacity(3);
                witness.push(local_delayedsig.serialize_der().to_vec());
@@ -573,14 +648,14 @@ impl BaseSign for InMemorySigner {
                chan_utils::build_commitment_secret(&self.commitment_seed, idx)
        }
 
-       fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction) -> Result<(), ()> {
+       fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
                Ok(())
        }
 
        fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
        fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
 
-       fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
+       fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
                let trusted_tx = commitment_tx.trust();
                let keys = trusted_tx.keys();
 
@@ -593,9 +668,10 @@ impl BaseSign for InMemorySigner {
 
                let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
                for htlc in commitment_tx.htlcs() {
-                       let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
-                       let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
-                       let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
+                       let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
+                       let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
+                       let htlc_sighashtype = if self.opt_anchors() { SigHashType::SinglePlusAnyoneCanPay } else { SigHashType::All };
+                       let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype)[..]);
                        let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
                        htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
                }
@@ -648,7 +724,7 @@ impl BaseSign for InMemorySigner {
                let witness_script = {
                        let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
                        let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
-                       chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
+                       chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
                };
                let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
                let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
@@ -660,7 +736,7 @@ impl BaseSign for InMemorySigner {
                        let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
                                if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
                                        if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
-                                               chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
+                                               chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
                                        } else { return Err(()) }
                                } else { return Err(()) }
                        } else { return Err(()) };
@@ -677,9 +753,10 @@ impl BaseSign for InMemorySigner {
                Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
        }
 
-       fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
+       fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
+       -> Result<(Signature, Signature), ()> {
                let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
-               Ok(secp_ctx.sign(&msghash, &self.funding_key))
+               Ok((secp_ctx.sign(&msghash, &self.node_secret), secp_ctx.sign(&msghash, &self.funding_key)))
        }
 
        fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
@@ -714,8 +791,8 @@ impl Writeable for InMemorySigner {
        }
 }
 
-impl Readable for InMemorySigner {
-       fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
+impl ReadableArgs<SecretKey> for InMemorySigner {
+       fn read<R: io::Read>(reader: &mut R, node_secret: SecretKey) -> Result<Self, DecodeError> {
                let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
 
                let funding_key = Readable::read(reader)?;
@@ -741,6 +818,7 @@ impl Readable for InMemorySigner {
                        payment_key,
                        delayed_payment_base_key,
                        htlc_base_key,
+                       node_secret,
                        commitment_seed,
                        channel_value_satoshis,
                        holder_channel_pubkeys,
@@ -757,9 +835,16 @@ impl Readable for InMemorySigner {
 /// ChannelMonitor closes may use seed/1'
 /// Cooperative closes may use seed/2'
 /// The two close keys may be needed to claim on-chain funds!
+///
+/// This struct cannot be used for nodes that wish to support receiving phantom payments;
+/// [`PhantomKeysManager`] must be used instead.
+///
+/// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
+/// previously issued invoices and attempts to pay previous invoices will fail.
 pub struct KeysManager {
        secp_ctx: Secp256k1<secp256k1::All>,
        node_secret: SecretKey,
+       inbound_payment_key: KeyMaterial,
        destination_script: Script,
        shutdown_pubkey: PublicKey,
        channel_master_key: ExtendedPrivKey,
@@ -815,6 +900,9 @@ impl KeysManager {
                                };
                                let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
                                let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
+                               let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key.key;
+                               let mut inbound_pmt_key_bytes = [0; 32];
+                               inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
 
                                let mut rand_bytes_unique_start = Sha256::engine();
                                rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
@@ -824,6 +912,7 @@ impl KeysManager {
                                let mut res = KeysManager {
                                        secp_ctx,
                                        node_secret,
+                                       inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
 
                                        destination_script,
                                        shutdown_pubkey,
@@ -889,6 +978,7 @@ impl KeysManager {
 
                InMemorySigner::new(
                        &self.secp_ctx,
+                       self.node_secret,
                        funding_key,
                        revocation_base_key,
                        payment_key,
@@ -904,8 +994,9 @@ impl KeysManager {
        /// output to the given change destination (if sufficient change value remains). The
        /// transaction will have a feerate, at least, of the given value.
        ///
-       /// Returns `Err(())` if the output value is greater than the input value minus required fee or
-       /// if a descriptor was duplicated.
+       /// Returns `Err(())` if the output value is greater than the input value minus required fee,
+       /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
+       /// does not match the one we can spend.
        ///
        /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
        ///
@@ -973,7 +1064,7 @@ impl KeysManager {
                                                        self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
                                                        descriptor.channel_keys_id));
                                        }
-                                       spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
+                                       spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?;
                                },
                                SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
                                        if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
@@ -981,7 +1072,7 @@ impl KeysManager {
                                                        self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
                                                        descriptor.channel_keys_id));
                                        }
-                                       spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
+                                       spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?;
                                },
                                SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
                                        let derivation_idx = if output.script_pubkey == self.destination_script {
@@ -1006,6 +1097,10 @@ impl KeysManager {
                                                assert_eq!(pubkey.key, self.shutdown_pubkey);
                                        }
                                        let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
+                                       let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
+
+                                       if payment_script != output.script_pubkey { return Err(()); };
+
                                        let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
                                        let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
                                        spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
@@ -1028,8 +1123,15 @@ impl KeysManager {
 impl KeysInterface for KeysManager {
        type Signer = InMemorySigner;
 
-       fn get_node_secret(&self) -> SecretKey {
-               self.node_secret.clone()
+       fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
+               match recipient {
+                       Recipient::Node => Ok(self.node_secret.clone()),
+                       Recipient::PhantomNode => Err(())
+               }
+       }
+
+       fn get_inbound_payment_key_material(&self) -> KeyMaterial {
+               self.inbound_payment_key.clone()
        }
 
        fn get_destination_script(&self) -> Script {
@@ -1062,11 +1164,116 @@ impl KeysInterface for KeysManager {
        }
 
        fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
-               InMemorySigner::read(&mut io::Cursor::new(reader))
+               InMemorySigner::read(&mut io::Cursor::new(reader), self.node_secret.clone())
        }
 
-       fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()> {
-               Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&invoice_preimage)), &self.get_node_secret()))
+       fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
+               let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
+               let secret = match recipient {
+                       Recipient::Node => self.get_node_secret(Recipient::Node)?,
+                       Recipient::PhantomNode => return Err(()),
+               };
+               Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
+       }
+}
+
+/// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
+/// payments.
+///
+/// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
+/// paid to one of multiple nodes. This works because we encode the invoice route hints such that
+/// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
+/// itself without ever needing to forward to this fake node.
+///
+/// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
+/// provide some fault tolerance, because payers will automatically retry paying other provided
+/// nodes in the case that one node goes down.
+///
+/// Note that multi-path payments are not supported in phantom invoices for security reasons.
+//  In the hypothetical case that we did support MPP phantom payments, there would be no way for
+//  nodes to know when the full payment has been received (and the preimage can be released) without
+//  significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
+//  to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
+//  is released too early.
+//
+/// Switching between this struct and [`KeysManager`] will invalidate any previously issued
+/// invoices and attempts to pay previous invoices will fail.
+pub struct PhantomKeysManager {
+       inner: KeysManager,
+       inbound_payment_key: KeyMaterial,
+       phantom_secret: SecretKey,
+}
+
+impl KeysInterface for PhantomKeysManager {
+       type Signer = InMemorySigner;
+
+       fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
+               match recipient {
+                       Recipient::Node => self.inner.get_node_secret(Recipient::Node),
+                       Recipient::PhantomNode => Ok(self.phantom_secret.clone()),
+               }
+       }
+
+       fn get_inbound_payment_key_material(&self) -> KeyMaterial {
+               self.inbound_payment_key.clone()
+       }
+
+       fn get_destination_script(&self) -> Script {
+               self.inner.get_destination_script()
+       }
+
+       fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
+               self.inner.get_shutdown_scriptpubkey()
+       }
+
+       fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
+               self.inner.get_channel_signer(inbound, channel_value_satoshis)
+       }
+
+       fn get_secure_random_bytes(&self) -> [u8; 32] {
+               self.inner.get_secure_random_bytes()
+       }
+
+       fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
+               self.inner.read_chan_signer(reader)
+       }
+
+       fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
+               let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
+               let secret = self.get_node_secret(recipient)?;
+               Ok(self.inner.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
+       }
+}
+
+impl PhantomKeysManager {
+       /// Constructs a `PhantomKeysManager` given a 32-byte seed and an additional `cross_node_seed`
+       /// that is shared across all nodes that intend to participate in [phantom node payments] together.
+       ///
+       /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
+       /// `starting_time_nanos`.
+       ///
+       /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
+       /// same across restarts, or else inbound payments may fail.
+       ///
+       /// [phantom node payments]: PhantomKeysManager
+       pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
+               let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
+               let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
+               Self {
+                       inner,
+                       inbound_payment_key: KeyMaterial(inbound_key),
+                       phantom_secret: SecretKey::from_slice(&phantom_key).unwrap(),
+               }
+       }
+
+       /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
+       pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
+               self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx)
+       }
+
+       /// See [`KeysManager::derive_channel_keys`] for documentation on this method.
+       pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
+               self.inner.derive_channel_keys(channel_value_satoshis, params)
        }
 }