Move ln/channelmonitor.rs to chain/chainmonitor.rs
[rust-lightning] / lightning / src / ln / chan_utils.rs
index a57fafcd99216a03b6de02f3a56c0b56bb2a873d..a9be581b8f18935eaccbeb42374eea2fee70eb79 100644 (file)
@@ -1,3 +1,12 @@
+// This file is Copyright its original authors, visible in version control
+// history.
+//
+// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
+// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
+// You may not use this file except in accordance with one or both of these
+// licenses.
+
 //! Various utilities for building scripts and deriving keys related to channels. These are
 //! largely of interest for those implementing chain::keysinterface::ChannelKeys message signing
 //! by hand.
@@ -5,7 +14,8 @@
 use bitcoin::blockdata::script::{Script,Builder};
 use bitcoin::blockdata::opcodes;
 use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, SigHashType};
-use bitcoin::consensus::encode::{self, Decodable, Encodable};
+use bitcoin::consensus::encode::{Decodable, Encodable};
+use bitcoin::consensus::encode;
 use bitcoin::util::bip143;
 
 use bitcoin::hashes::{Hash, HashEngine};
@@ -20,6 +30,7 @@ use util::byte_utils;
 
 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
 use bitcoin::secp256k1::{Secp256k1, Signature};
+use bitcoin::secp256k1::Error as SecpError;
 use bitcoin::secp256k1;
 
 use std::{cmp, mem};
@@ -51,7 +62,8 @@ impl HTLCType {
 // Various functions for key derivation and transaction creation for use within channels. Primarily
 // used in Channel and ChannelMonitor.
 
-pub(super) fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] {
+/// Build the commitment secret from the seed and the commitment number
+pub fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] {
        let mut res: [u8; 32] = commitment_seed.clone();
        for i in 0..48 {
                let bitpos = 47 - i;
@@ -69,7 +81,7 @@ pub(super) fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [
 /// Allows us to keep track of all of the revocation secrets of counterarties in just 50*32 bytes
 /// or so.
 #[derive(Clone)]
-pub(super) struct CounterpartyCommitmentSecrets {
+pub(crate) struct CounterpartyCommitmentSecrets {
        old_secrets: [([u8; 32], u64); 49],
 }
 
@@ -85,7 +97,7 @@ impl PartialEq for CounterpartyCommitmentSecrets {
 }
 
 impl CounterpartyCommitmentSecrets {
-       pub(super) fn new() -> Self {
+       pub(crate) fn new() -> Self {
                Self { old_secrets: [([0; 32], 1 << 48); 49], }
        }
 
@@ -99,7 +111,7 @@ impl CounterpartyCommitmentSecrets {
                48
        }
 
-       pub(super) fn get_min_seen_secret(&self) -> u64 {
+       pub(crate) fn get_min_seen_secret(&self) -> u64 {
                //TODO This can be optimized?
                let mut min = 1 << 48;
                for &(_, idx) in self.old_secrets.iter() {
@@ -123,7 +135,7 @@ impl CounterpartyCommitmentSecrets {
                res
        }
 
-       pub(super) fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), ()> {
+       pub(crate) fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), ()> {
                let pos = Self::place_secret(idx);
                for i in 0..pos {
                        let (old_secret, old_idx) = self.old_secrets[i as usize];
@@ -139,7 +151,7 @@ impl CounterpartyCommitmentSecrets {
        }
 
        /// Can only fail if idx is < get_min_seen_secret
-       pub(super) fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
+       pub(crate) fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
                for i in 0..self.old_secrets.len() {
                        if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 {
                                return Some(Self::derive_secret(self.old_secrets[i].0, i as u8, idx))
@@ -171,9 +183,12 @@ impl Readable for CounterpartyCommitmentSecrets {
        }
 }
 
-/// Derives a per-commitment-transaction private key (eg an htlc key or payment key) from the base
-/// private key for that type of key and the per_commitment_point (available in TxCreationKeys)
-pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
+/// Derives a per-commitment-transaction private key (eg an htlc key or delayed_payment key)
+/// from the base secret and the per_commitment_point.
+///
+/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
+/// generated (ie our own).
+pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> Result<SecretKey, SecpError> {
        let mut sha = Sha256::engine();
        sha.input(&per_commitment_point.serialize());
        sha.input(&PublicKey::from_secret_key(&secp_ctx, &base_secret).serialize());
@@ -184,7 +199,13 @@ pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_co
        Ok(key)
 }
 
-pub(super) fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
+/// Derives a per-commitment-transaction public key (eg an htlc key or a delayed_payment key)
+/// from the base point and the per_commitment_key. This is the public equivalent of
+/// derive_private_key - using only public keys to derive a public key instead of private keys.
+///
+/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
+/// generated (ie our own).
+pub fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result<PublicKey, SecpError> {
        let mut sha = Sha256::engine();
        sha.input(&per_commitment_point.serialize());
        sha.input(&base_point.serialize());
@@ -194,16 +215,22 @@ pub(super) fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>,
        base_point.combine(&hashkey)
 }
 
-/// Derives a revocation key from its constituent parts.
+/// Derives a per-commitment-transaction revocation key from its constituent parts.
+///
+/// Only the cheating participant owns a valid witness to propagate a revoked 
+/// commitment transaction, thus per_commitment_secret always come from cheater
+/// and revocation_base_secret always come from punisher, which is the broadcaster
+/// of the transaction spending with this key knowledge.
+///
 /// Note that this is infallible iff we trust that at least one of the two input keys are randomly
 /// generated (ie our own).
-pub(super) fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_secret: &SecretKey, revocation_base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
-       let revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &revocation_base_secret);
+pub fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_secret: &SecretKey, countersignatory_revocation_base_secret: &SecretKey) -> Result<SecretKey, SecpError> {
+       let countersignatory_revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &countersignatory_revocation_base_secret);
        let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret);
 
        let rev_append_commit_hash_key = {
                let mut sha = Sha256::engine();
-               sha.input(&revocation_base_point.serialize());
+               sha.input(&countersignatory_revocation_base_point.serialize());
                sha.input(&per_commitment_point.serialize());
 
                Sha256::from_engine(sha).into_inner()
@@ -211,23 +238,34 @@ pub(super) fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Se
        let commit_append_rev_hash_key = {
                let mut sha = Sha256::engine();
                sha.input(&per_commitment_point.serialize());
-               sha.input(&revocation_base_point.serialize());
+               sha.input(&countersignatory_revocation_base_point.serialize());
 
                Sha256::from_engine(sha).into_inner()
        };
 
-       let mut part_a = revocation_base_secret.clone();
-       part_a.mul_assign(&rev_append_commit_hash_key)?;
-       let mut part_b = per_commitment_secret.clone();
-       part_b.mul_assign(&commit_append_rev_hash_key)?;
-       part_a.add_assign(&part_b[..])?;
-       Ok(part_a)
+       let mut countersignatory_contrib = countersignatory_revocation_base_secret.clone();
+       countersignatory_contrib.mul_assign(&rev_append_commit_hash_key)?;
+       let mut broadcaster_contrib = per_commitment_secret.clone();
+       broadcaster_contrib.mul_assign(&commit_append_rev_hash_key)?;
+       countersignatory_contrib.add_assign(&broadcaster_contrib[..])?;
+       Ok(countersignatory_contrib)
 }
 
-pub(super) fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, revocation_base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
+/// Derives a per-commitment-transaction revocation public key from its constituent parts. This is
+/// the public equivalend of derive_private_revocation_key - using only public keys to derive a
+/// public key instead of private keys.
+///
+/// Only the cheating participant owns a valid witness to propagate a revoked 
+/// commitment transaction, thus per_commitment_point always come from cheater
+/// and revocation_base_point always come from punisher, which is the broadcaster
+/// of the transaction spending with this key knowledge.
+///
+/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
+/// generated (ie our own).
+pub fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, countersignatory_revocation_base_point: &PublicKey) -> Result<PublicKey, SecpError> {
        let rev_append_commit_hash_key = {
                let mut sha = Sha256::engine();
-               sha.input(&revocation_base_point.serialize());
+               sha.input(&countersignatory_revocation_base_point.serialize());
                sha.input(&per_commitment_point.serialize());
 
                Sha256::from_engine(sha).into_inner()
@@ -235,36 +273,70 @@ pub(super) fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx:
        let commit_append_rev_hash_key = {
                let mut sha = Sha256::engine();
                sha.input(&per_commitment_point.serialize());
-               sha.input(&revocation_base_point.serialize());
+               sha.input(&countersignatory_revocation_base_point.serialize());
 
                Sha256::from_engine(sha).into_inner()
        };
 
-       let mut part_a = revocation_base_point.clone();
-       part_a.mul_assign(&secp_ctx, &rev_append_commit_hash_key)?;
-       let mut part_b = per_commitment_point.clone();
-       part_b.mul_assign(&secp_ctx, &commit_append_rev_hash_key)?;
-       part_a.combine(&part_b)
+       let mut countersignatory_contrib = countersignatory_revocation_base_point.clone();
+       countersignatory_contrib.mul_assign(&secp_ctx, &rev_append_commit_hash_key)?;
+       let mut broadcaster_contrib = per_commitment_point.clone();
+       broadcaster_contrib.mul_assign(&secp_ctx, &commit_append_rev_hash_key)?;
+       countersignatory_contrib.combine(&broadcaster_contrib)
 }
 
 /// The set of public keys which are used in the creation of one commitment transaction.
 /// These are derived from the channel base keys and per-commitment data.
+///
+/// A broadcaster key is provided from potential broadcaster of the computed transaction.
+/// A countersignatory key is coming from a protocol participant unable to broadcast the
+/// transaction.
+///
+/// These keys are assumed to be good, either because the code derived them from
+/// channel basepoints via the new function, or they were obtained via
+/// PreCalculatedTxCreationKeys.trust_key_derivation because we trusted the source of the
+/// pre-calculated keys.
 #[derive(PartialEq, Clone)]
 pub struct TxCreationKeys {
-       /// The per-commitment public key which was used to derive the other keys.
+       /// The broadcaster's per-commitment public key which was used to derive the other keys.
        pub per_commitment_point: PublicKey,
-       /// The revocation key which is used to allow the owner of the commitment transaction to
-       /// provide their counterparty the ability to punish them if they broadcast an old state.
-       pub(crate) revocation_key: PublicKey,
-       /// A's HTLC Key
-       pub(crate) a_htlc_key: PublicKey,
-       /// B's HTLC Key
-       pub(crate) b_htlc_key: PublicKey,
-       /// A's Payment Key (which isn't allowed to be spent from for some delay)
-       pub(crate) a_delayed_payment_key: PublicKey,
+       /// The revocation key which is used to allow the broadcaster of the commitment
+       /// transaction to provide their counterparty the ability to punish them if they broadcast
+       /// an old state.
+       pub revocation_key: PublicKey,
+       /// Broadcaster's HTLC Key
+       pub broadcaster_htlc_key: PublicKey,
+       /// Countersignatory's HTLC Key
+       pub countersignatory_htlc_key: PublicKey,
+       /// Broadcaster's Payment Key (which isn't allowed to be spent from for some delay)
+       pub broadcaster_delayed_payment_key: PublicKey,
 }
 impl_writeable!(TxCreationKeys, 33*6,
-       { per_commitment_point, revocation_key, a_htlc_key, b_htlc_key, a_delayed_payment_key });
+       { per_commitment_point, revocation_key, broadcaster_htlc_key, countersignatory_htlc_key, broadcaster_delayed_payment_key });
+
+/// The per-commitment point and a set of pre-calculated public keys used for transaction creation
+/// in the signer.
+/// The pre-calculated keys are an optimization, because ChannelKeys has enough
+/// information to re-derive them.
+pub struct PreCalculatedTxCreationKeys(TxCreationKeys);
+
+impl PreCalculatedTxCreationKeys {
+       /// Create a new PreCalculatedTxCreationKeys from TxCreationKeys
+       pub fn new(keys: TxCreationKeys) -> Self {
+               PreCalculatedTxCreationKeys(keys)
+       }
+
+       /// The pre-calculated transaction creation public keys.
+       /// An external validating signer should not trust these keys.
+       pub fn trust_key_derivation(&self) -> &TxCreationKeys {
+               &self.0
+       }
+
+       /// The transaction per-commitment point
+       pub fn per_commitment_point(&self) -> &PublicKey {
+               &self.0.per_commitment_point
+       }
+}
 
 /// One counterparty's public keys which do not change over the life of a channel.
 #[derive(Clone, PartialEq)]
@@ -273,13 +345,14 @@ pub struct ChannelPublicKeys {
        /// on-chain channel lock-in 2-of-2 multisig output.
        pub funding_pubkey: PublicKey,
        /// The base point which is used (with derive_public_revocation_key) to derive per-commitment
-       /// revocation keys. The per-commitment revocation private key is then revealed by the owner of
-       /// a commitment transaction so that their counterparty can claim all available funds if they
-       /// broadcast an old state.
+       /// revocation keys. This is combined with the per-commitment-secret generated by the
+       /// counterparty to create a secret which the counterparty can reveal to revoke previous
+       /// states.
        pub revocation_basepoint: PublicKey,
-       /// The base point which is used (with derive_public_key) to derive a per-commitment payment
-       /// public key which receives immediately-spendable non-HTLC-encumbered funds.
-       pub payment_basepoint: PublicKey,
+       /// The public key on which the non-broadcaster (ie the countersignatory) receives an immediately
+       /// spendable primary channel balance on the broadcaster's commitment transaction. This key is
+       /// static across every commitment transaction.
+       pub payment_point: PublicKey,
        /// The base point which is used (with derive_public_key) to derive a per-commitment payment
        /// public key which receives non-HTLC-encumbered funds which are only available for spending
        /// after some delay (or can be claimed via the revocation path).
@@ -292,34 +365,36 @@ pub struct ChannelPublicKeys {
 impl_writeable!(ChannelPublicKeys, 33*5, {
        funding_pubkey,
        revocation_basepoint,
-       payment_basepoint,
+       payment_point,
        delayed_payment_basepoint,
        htlc_basepoint
 });
 
 
 impl TxCreationKeys {
-       pub(crate) fn new<T: secp256k1::Signing + secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, a_delayed_payment_base: &PublicKey, a_htlc_base: &PublicKey, b_revocation_base: &PublicKey, b_htlc_base: &PublicKey) -> Result<TxCreationKeys, secp256k1::Error> {
+       /// Create a new TxCreationKeys from channel base points and the per-commitment point
+       pub fn derive_new<T: secp256k1::Signing + secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, broadcaster_delayed_payment_base: &PublicKey, broadcaster_htlc_base: &PublicKey, countersignatory_revocation_base: &PublicKey, countersignatory_htlc_base: &PublicKey) -> Result<TxCreationKeys, SecpError> {
                Ok(TxCreationKeys {
                        per_commitment_point: per_commitment_point.clone(),
-                       revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &b_revocation_base)?,
-                       a_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_htlc_base)?,
-                       b_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_htlc_base)?,
-                       a_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_delayed_payment_base)?,
+                       revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &countersignatory_revocation_base)?,
+                       broadcaster_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_htlc_base)?,
+                       countersignatory_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &countersignatory_htlc_base)?,
+                       broadcaster_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_delayed_payment_base)?,
                })
        }
 }
 
-/// Gets the "to_local" output redeemscript, ie the script which is time-locked or spendable by
-/// the revocation key
-pub(super) fn get_revokeable_redeemscript(revocation_key: &PublicKey, to_self_delay: u16, delayed_payment_key: &PublicKey) -> Script {
+/// A script either spendable by the revocation
+/// key or the broadcaster_delayed_payment_key and satisfying the relative-locktime OP_CSV constrain.
+/// Encumbering a `to_holder` output on a commitment transaction or 2nd-stage HTLC transactions.
+pub fn get_revokeable_redeemscript(revocation_key: &PublicKey, contest_delay: u16, broadcaster_delayed_payment_key: &PublicKey) -> Script {
        Builder::new().push_opcode(opcodes::all::OP_IF)
                      .push_slice(&revocation_key.serialize())
                      .push_opcode(opcodes::all::OP_ELSE)
-                     .push_int(to_self_delay as i64)
+                     .push_int(contest_delay as i64)
                      .push_opcode(opcodes::all::OP_CSV)
                      .push_opcode(opcodes::all::OP_DROP)
-                     .push_slice(&delayed_payment_key.serialize())
+                     .push_slice(&broadcaster_delayed_payment_key.serialize())
                      .push_opcode(opcodes::all::OP_ENDIF)
                      .push_opcode(opcodes::all::OP_CHECKSIG)
                      .into_script()
@@ -331,7 +406,7 @@ pub struct HTLCOutputInCommitment {
        /// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction).
        /// Note that this is not the same as whether it is ountbound *from us*. To determine that you
        /// need to compare this value to whether the commitment transaction in question is that of
-       /// the remote party or our own.
+       /// the counterparty or our own.
        pub offered: bool,
        /// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is
        /// this divided by 1000.
@@ -355,7 +430,7 @@ impl_writeable!(HTLCOutputInCommitment, 1 + 8 + 4 + 32 + 5, {
 });
 
 #[inline]
-pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
+pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, broadcaster_htlc_key: &PublicKey, countersignatory_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
        let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner();
        if htlc.offered {
                Builder::new().push_opcode(opcodes::all::OP_DUP)
@@ -365,7 +440,7 @@ pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommit
                              .push_opcode(opcodes::all::OP_IF)
                              .push_opcode(opcodes::all::OP_CHECKSIG)
                              .push_opcode(opcodes::all::OP_ELSE)
-                             .push_slice(&b_htlc_key.serialize()[..])
+                             .push_slice(&countersignatory_htlc_key.serialize()[..])
                              .push_opcode(opcodes::all::OP_SWAP)
                              .push_opcode(opcodes::all::OP_SIZE)
                              .push_int(32)
@@ -374,7 +449,7 @@ pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommit
                              .push_opcode(opcodes::all::OP_DROP)
                              .push_int(2)
                              .push_opcode(opcodes::all::OP_SWAP)
-                             .push_slice(&a_htlc_key.serialize()[..])
+                             .push_slice(&broadcaster_htlc_key.serialize()[..])
                              .push_int(2)
                              .push_opcode(opcodes::all::OP_CHECKMULTISIG)
                              .push_opcode(opcodes::all::OP_ELSE)
@@ -393,7 +468,7 @@ pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommit
                              .push_opcode(opcodes::all::OP_IF)
                              .push_opcode(opcodes::all::OP_CHECKSIG)
                              .push_opcode(opcodes::all::OP_ELSE)
-                             .push_slice(&b_htlc_key.serialize()[..])
+                             .push_slice(&countersignatory_htlc_key.serialize()[..])
                              .push_opcode(opcodes::all::OP_SWAP)
                              .push_opcode(opcodes::all::OP_SIZE)
                              .push_int(32)
@@ -404,7 +479,7 @@ pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommit
                              .push_opcode(opcodes::all::OP_EQUALVERIFY)
                              .push_int(2)
                              .push_opcode(opcodes::all::OP_SWAP)
-                             .push_slice(&a_htlc_key.serialize()[..])
+                             .push_slice(&broadcaster_htlc_key.serialize()[..])
                              .push_int(2)
                              .push_opcode(opcodes::all::OP_CHECKMULTISIG)
                              .push_opcode(opcodes::all::OP_ELSE)
@@ -419,31 +494,31 @@ pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommit
        }
 }
 
-/// note here that 'a_revocation_key' is generated using b_revocation_basepoint and a's
-/// commitment secret. 'htlc' does *not* need to have its previous_output_index filled.
+/// Gets the witness redeemscript for an HTLC output in a commitment transaction. Note that htlc
+/// does not need to have its previous_output_index filled.
 #[inline]
 pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, keys: &TxCreationKeys) -> Script {
-       get_htlc_redeemscript_with_explicit_keys(htlc, &keys.a_htlc_key, &keys.b_htlc_key, &keys.revocation_key)
+       get_htlc_redeemscript_with_explicit_keys(htlc, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key)
 }
 
 /// Gets the redeemscript for a funding output from the two funding public keys.
 /// Note that the order of funding public keys does not matter.
-pub fn make_funding_redeemscript(a: &PublicKey, b: &PublicKey) -> Script {
-       let our_funding_key = a.serialize();
-       let their_funding_key = b.serialize();
+pub fn make_funding_redeemscript(broadcaster: &PublicKey, countersignatory: &PublicKey) -> Script {
+       let broadcaster_funding_key = broadcaster.serialize();
+       let countersignatory_funding_key = countersignatory.serialize();
 
        let builder = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2);
-       if our_funding_key[..] < their_funding_key[..] {
-               builder.push_slice(&our_funding_key)
-                       .push_slice(&their_funding_key)
+       if broadcaster_funding_key[..] < countersignatory_funding_key[..] {
+               builder.push_slice(&broadcaster_funding_key)
+                       .push_slice(&countersignatory_funding_key)
        } else {
-               builder.push_slice(&their_funding_key)
-                       .push_slice(&our_funding_key)
+               builder.push_slice(&countersignatory_funding_key)
+                       .push_slice(&broadcaster_funding_key)
        }.push_opcode(opcodes::all::OP_PUSHNUM_2).push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
 }
 
 /// panics if htlc.transaction_output_index.is_none()!
-pub fn build_htlc_transaction(prev_hash: &Txid, feerate_per_kw: u64, to_self_delay: u16, htlc: &HTLCOutputInCommitment, a_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction {
+pub fn build_htlc_transaction(prev_hash: &Txid, feerate_per_kw: u32, contest_delay: u16, htlc: &HTLCOutputInCommitment, broadcaster_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction {
        let mut txins: Vec<TxIn> = Vec::new();
        txins.push(TxIn {
                previous_output: OutPoint {
@@ -456,14 +531,14 @@ pub fn build_htlc_transaction(prev_hash: &Txid, feerate_per_kw: u64, to_self_del
        });
 
        let total_fee = if htlc.offered {
-                       feerate_per_kw * HTLC_TIMEOUT_TX_WEIGHT / 1000
+                       feerate_per_kw as u64 * HTLC_TIMEOUT_TX_WEIGHT / 1000
                } else {
-                       feerate_per_kw * HTLC_SUCCESS_TX_WEIGHT / 1000
+                       feerate_per_kw as u64 * HTLC_SUCCESS_TX_WEIGHT / 1000
                };
 
        let mut txouts: Vec<TxOut> = Vec::new();
        txouts.push(TxOut {
-               script_pubkey: get_revokeable_redeemscript(revocation_key, to_self_delay, a_delayed_payment_key).to_v0_p2wsh(),
+               script_pubkey: get_revokeable_redeemscript(revocation_key, contest_delay, broadcaster_delayed_payment_key).to_v0_p2wsh(),
                value: htlc.amount_msat / 1000 - total_fee //TODO: BOLT 3 does not specify if we should add amount_msat before dividing or if we should divide by 1000 before subtracting (as we do here)
        });
 
@@ -476,36 +551,35 @@ pub fn build_htlc_transaction(prev_hash: &Txid, feerate_per_kw: u64, to_self_del
 }
 
 #[derive(Clone)]
-/// We use this to track local commitment transactions and put off signing them until we are ready
-/// to broadcast. Eventually this will require a signer which is possibly external, but for now we
-/// just pass in the SecretKeys required.
-pub struct LocalCommitmentTransaction {
+/// We use this to track holder commitment transactions and put off signing them until we are ready
+/// to broadcast. This class can be used inside a signer implementation to generate a signature
+/// given the relevant secret key.
+pub struct HolderCommitmentTransaction {
        // TODO: We should migrate away from providing the transaction, instead providing enough to
        // allow the ChannelKeys to construct it from scratch. Luckily we already have HTLC data here,
        // so we're probably most of the way there.
        /// The commitment transaction itself, in unsigned form.
        pub unsigned_tx: Transaction,
        /// Our counterparty's signature for the transaction, above.
-       pub their_sig: Signature,
+       pub counterparty_sig: Signature,
        // Which order the signatures should go in when constructing the final commitment tx witness.
        // The user should be able to reconstruc this themselves, so we don't bother to expose it.
-       our_sig_first: bool,
-       /// The key derivation parameters for this commitment transaction
-       pub local_keys: TxCreationKeys,
+       holder_sig_first: bool,
+       pub(crate) keys: TxCreationKeys,
        /// The feerate paid per 1000-weight-unit in this commitment transaction. This value is
        /// controlled by the channel initiator.
-       pub feerate_per_kw: u64,
-       /// The HTLCs and remote htlc signatures which were included in this commitment transaction.
+       pub feerate_per_kw: u32,
+       /// The HTLCs and counterparty htlc signatures which were included in this commitment transaction.
        ///
        /// Note that this includes all HTLCs, including ones which were considered dust and not
        /// actually included in the transaction as it appears on-chain, but who's value is burned as
-       /// fees and not included in the to_local or to_remote outputs.
+       /// fees and not included in the to_holder or to_counterparty outputs.
        ///
-       /// The remote HTLC signatures in the second element will always be set for non-dust HTLCs, ie
+       /// The counterparty HTLC signatures in the second element will always be set for non-dust HTLCs, ie
        /// those for which transaction_output_index.is_some().
        pub per_htlc: Vec<(HTLCOutputInCommitment, Option<Signature>)>,
 }
-impl LocalCommitmentTransaction {
+impl HolderCommitmentTransaction {
        #[cfg(test)]
        pub fn dummy() -> Self {
                let dummy_input = TxIn {
@@ -526,67 +600,88 @@ impl LocalCommitmentTransaction {
                                output: Vec::new(),
                                lock_time: 0,
                        },
-                       their_sig: dummy_sig,
-                       our_sig_first: false,
-                       local_keys: TxCreationKeys {
+                       counterparty_sig: dummy_sig,
+                       holder_sig_first: false,
+                       keys: TxCreationKeys {
                                        per_commitment_point: dummy_key.clone(),
                                        revocation_key: dummy_key.clone(),
-                                       a_htlc_key: dummy_key.clone(),
-                                       b_htlc_key: dummy_key.clone(),
-                                       a_delayed_payment_key: dummy_key.clone(),
+                                       broadcaster_htlc_key: dummy_key.clone(),
+                                       countersignatory_htlc_key: dummy_key.clone(),
+                                       broadcaster_delayed_payment_key: dummy_key.clone(),
                                },
                        feerate_per_kw: 0,
                        per_htlc: Vec::new()
                }
        }
 
-       /// Generate a new LocalCommitmentTransaction based on a raw commitment transaction,
-       /// remote signature and both parties keys
-       pub(crate) fn new_missing_local_sig(unsigned_tx: Transaction, their_sig: Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey, local_keys: TxCreationKeys, feerate_per_kw: u64, htlc_data: Vec<(HTLCOutputInCommitment, Option<Signature>)>) -> LocalCommitmentTransaction {
+       /// Generate a new HolderCommitmentTransaction based on a raw commitment transaction,
+       /// counterparty signature and both parties keys.
+       ///
+       /// The unsigned transaction outputs must be consistent with htlc_data.  This function
+       /// only checks that the shape and amounts are consistent, but does not check the scriptPubkey.
+       pub fn new_missing_holder_sig(unsigned_tx: Transaction, counterparty_sig: Signature, holder_funding_key: &PublicKey, counterparty_funding_key: &PublicKey, keys: TxCreationKeys, feerate_per_kw: u32, htlc_data: Vec<(HTLCOutputInCommitment, Option<Signature>)>) -> HolderCommitmentTransaction {
                if unsigned_tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); }
                if unsigned_tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); }
 
+               for htlc in &htlc_data {
+                       if let Some(index) = htlc.0.transaction_output_index {
+                               let out = &unsigned_tx.output[index as usize];
+                               if out.value != htlc.0.amount_msat / 1000 {
+                                       panic!("HTLC at index {} has incorrect amount", index);
+                               }
+                               if !out.script_pubkey.is_v0_p2wsh() {
+                                       panic!("HTLC at index {} doesn't have p2wsh scriptPubkey", index);
+                               }
+                       }
+               }
+
                Self {
                        unsigned_tx,
-                       their_sig,
-                       our_sig_first: our_funding_key.serialize()[..] < their_funding_key.serialize()[..],
-                       local_keys,
+                       counterparty_sig,
+                       holder_sig_first: holder_funding_key.serialize()[..] < counterparty_funding_key.serialize()[..],
+                       keys,
                        feerate_per_kw,
                        per_htlc: htlc_data,
                }
        }
 
-       /// Get the txid of the local commitment transaction contained in this
-       /// LocalCommitmentTransaction
+       /// The pre-calculated transaction creation public keys.
+       /// An external validating signer should not trust these keys.
+       pub fn trust_key_derivation(&self) -> &TxCreationKeys {
+               &self.keys
+       }
+
+       /// Get the txid of the holder commitment transaction contained in this
+       /// HolderCommitmentTransaction
        pub fn txid(&self) -> Txid {
                self.unsigned_tx.txid()
        }
 
-       /// Gets our signature for the contained commitment transaction given our funding private key.
+       /// Gets holder signature for the contained commitment transaction given holder funding private key.
        ///
        /// Funding key is your key included in the 2-2 funding_outpoint lock. Should be provided
        /// by your ChannelKeys.
        /// Funding redeemscript is script locking funding_outpoint. This is the mutlsig script
        /// between your own funding key and your counterparty's. Currently, this is provided in
-       /// ChannelKeys::sign_local_commitment() calls directly.
+       /// ChannelKeys::sign_holder_commitment() calls directly.
        /// Channel value is amount locked in funding_outpoint.
-       pub fn get_local_sig<T: secp256k1::Signing>(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) -> Signature {
-               let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.unsigned_tx)
-                       .sighash_all(&self.unsigned_tx.input[0], funding_redeemscript, channel_value_satoshis)[..]);
+       pub fn get_holder_sig<T: secp256k1::Signing>(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) -> Signature {
+               let sighash = hash_to_message!(&bip143::SigHashCache::new(&self.unsigned_tx)
+                       .signature_hash(0, funding_redeemscript, channel_value_satoshis, SigHashType::All)[..]);
                secp_ctx.sign(&sighash, funding_key)
        }
 
-       pub(crate) fn add_local_sig(&self, funding_redeemscript: &Script, our_sig: Signature) -> Transaction {
+       pub(crate) fn add_holder_sig(&self, funding_redeemscript: &Script, holder_sig: Signature) -> Transaction {
                let mut tx = self.unsigned_tx.clone();
                // First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element.
                tx.input[0].witness.push(Vec::new());
 
-               if self.our_sig_first {
-                       tx.input[0].witness.push(our_sig.serialize_der().to_vec());
-                       tx.input[0].witness.push(self.their_sig.serialize_der().to_vec());
+               if self.holder_sig_first {
+                       tx.input[0].witness.push(holder_sig.serialize_der().to_vec());
+                       tx.input[0].witness.push(self.counterparty_sig.serialize_der().to_vec());
                } else {
-                       tx.input[0].witness.push(self.their_sig.serialize_der().to_vec());
-                       tx.input[0].witness.push(our_sig.serialize_der().to_vec());
+                       tx.input[0].witness.push(self.counterparty_sig.serialize_der().to_vec());
+                       tx.input[0].witness.push(holder_sig.serialize_der().to_vec());
                }
                tx.input[0].witness[1].push(SigHashType::All as u8);
                tx.input[0].witness[2].push(SigHashType::All as u8);
@@ -601,19 +696,19 @@ impl LocalCommitmentTransaction {
        /// The returned Vec has one entry for each HTLC, and in the same order. For HTLCs which were
        /// considered dust and not included, a None entry exists, for all others a signature is
        /// included.
-       pub fn get_htlc_sigs<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_base_key: &SecretKey, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
+       pub fn get_htlc_sigs<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_base_key: &SecretKey, counterparty_selected_contest_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
                let txid = self.txid();
                let mut ret = Vec::with_capacity(self.per_htlc.len());
-               let our_htlc_key = derive_private_key(secp_ctx, &self.local_keys.per_commitment_point, htlc_base_key).map_err(|_| ())?;
+               let holder_htlc_key = derive_private_key(secp_ctx, &self.keys.per_commitment_point, htlc_base_key).map_err(|_| ())?;
 
                for this_htlc in self.per_htlc.iter() {
                        if this_htlc.0.transaction_output_index.is_some() {
-                               let htlc_tx = build_htlc_transaction(&txid, self.feerate_per_kw, local_csv, &this_htlc.0, &self.local_keys.a_delayed_payment_key, &self.local_keys.revocation_key);
+                               let htlc_tx = build_htlc_transaction(&txid, self.feerate_per_kw, counterparty_selected_contest_delay, &this_htlc.0, &self.keys.broadcaster_delayed_payment_key, &self.keys.revocation_key);
 
-                               let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc.0, &self.local_keys.a_htlc_key, &self.local_keys.b_htlc_key, &self.local_keys.revocation_key);
+                               let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc.0, &self.keys.broadcaster_htlc_key, &self.keys.countersignatory_htlc_key, &self.keys.revocation_key);
 
-                               let sighash = hash_to_message!(&bip143::SighashComponents::new(&htlc_tx).sighash_all(&htlc_tx.input[0], &htlc_redeemscript, this_htlc.0.amount_msat / 1000)[..]);
-                               ret.push(Some(secp_ctx.sign(&sighash, &our_htlc_key)));
+                               let sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, this_htlc.0.amount_msat / 1000, SigHashType::All)[..]);
+                               ret.push(Some(secp_ctx.sign(&sighash, &holder_htlc_key)));
                        } else {
                                ret.push(None);
                        }
@@ -621,8 +716,8 @@ impl LocalCommitmentTransaction {
                Ok(ret)
        }
 
-       /// Gets a signed HTLC transaction given a preimage (for !htlc.offered) and the local HTLC transaction signature.
-       pub(crate) fn get_signed_htlc_tx(&self, htlc_index: usize, signature: &Signature, preimage: &Option<PaymentPreimage>, local_csv: u16) -> Transaction {
+       /// Gets a signed HTLC transaction given a preimage (for !htlc.offered) and the holder HTLC transaction signature.
+       pub(crate) fn get_signed_htlc_tx(&self, htlc_index: usize, signature: &Signature, preimage: &Option<PaymentPreimage>, counterparty_selected_contest_delay: u16) -> Transaction {
                let txid = self.txid();
                let this_htlc = &self.per_htlc[htlc_index];
                assert!(this_htlc.0.transaction_output_index.is_some());
@@ -631,12 +726,12 @@ impl LocalCommitmentTransaction {
                // Further, we should never be provided the preimage for an HTLC-Timeout transaction.
                if  this_htlc.0.offered && preimage.is_some() { unreachable!(); }
 
-               let mut htlc_tx = build_htlc_transaction(&txid, self.feerate_per_kw, local_csv, &this_htlc.0, &self.local_keys.a_delayed_payment_key, &self.local_keys.revocation_key);
-               // Channel should have checked that we have a remote signature for this HTLC at
+               let mut htlc_tx = build_htlc_transaction(&txid, self.feerate_per_kw, counterparty_selected_contest_delay, &this_htlc.0, &self.keys.broadcaster_delayed_payment_key, &self.keys.revocation_key);
+               // Channel should have checked that we have a counterparty signature for this HTLC at
                // creation, and we should have a sensible htlc transaction:
                assert!(this_htlc.1.is_some());
 
-               let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc.0, &self.local_keys.a_htlc_key, &self.local_keys.b_htlc_key, &self.local_keys.revocation_key);
+               let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc.0, &self.keys.broadcaster_htlc_key, &self.keys.countersignatory_htlc_key, &self.keys.revocation_key);
 
                // First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element.
                htlc_tx.input[0].witness.push(Vec::new());
@@ -657,23 +752,23 @@ impl LocalCommitmentTransaction {
                htlc_tx
        }
 }
-impl PartialEq for LocalCommitmentTransaction {
+impl PartialEq for HolderCommitmentTransaction {
        // We dont care whether we are signed in equality comparison
        fn eq(&self, o: &Self) -> bool {
                self.txid() == o.txid()
        }
 }
-impl Writeable for LocalCommitmentTransaction {
+impl Writeable for HolderCommitmentTransaction {
        fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
                if let Err(e) = self.unsigned_tx.consensus_encode(&mut WriterWriteAdaptor(writer)) {
                        match e {
                                encode::Error::Io(e) => return Err(e),
-                               _ => panic!("local tx must have been well-formed!"),
+                               _ => panic!("holder tx must have been well-formed!"),
                        }
                }
-               self.their_sig.write(writer)?;
-               self.our_sig_first.write(writer)?;
-               self.local_keys.write(writer)?;
+               self.counterparty_sig.write(writer)?;
+               self.holder_sig_first.write(writer)?;
+               self.keys.write(writer)?;
                self.feerate_per_kw.write(writer)?;
                writer.write_all(&byte_utils::be64_to_array(self.per_htlc.len() as u64))?;
                for &(ref htlc, ref sig) in self.per_htlc.iter() {
@@ -683,7 +778,7 @@ impl Writeable for LocalCommitmentTransaction {
                Ok(())
        }
 }
-impl Readable for LocalCommitmentTransaction {
+impl Readable for HolderCommitmentTransaction {
        fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
                let unsigned_tx = match Transaction::consensus_decode(reader.by_ref()) {
                        Ok(tx) => tx,
@@ -692,9 +787,9 @@ impl Readable for LocalCommitmentTransaction {
                                _ => return Err(DecodeError::InvalidValue),
                        },
                };
-               let their_sig = Readable::read(reader)?;
-               let our_sig_first = Readable::read(reader)?;
-               let local_keys = Readable::read(reader)?;
+               let counterparty_sig = Readable::read(reader)?;
+               let holder_sig_first = Readable::read(reader)?;
+               let keys = Readable::read(reader)?;
                let feerate_per_kw = Readable::read(reader)?;
                let htlcs_count: u64 = Readable::read(reader)?;
                let mut per_htlc = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / mem::size_of::<(HTLCOutputInCommitment, Option<Signature>)>()));
@@ -710,9 +805,9 @@ impl Readable for LocalCommitmentTransaction {
                }
                Ok(Self {
                        unsigned_tx,
-                       their_sig,
-                       our_sig_first,
-                       local_keys,
+                       counterparty_sig,
+                       holder_sig_first,
+                       keys,
                        feerate_per_kw,
                        per_htlc,
                })