Add ChannelKeys to ChannelMonitor
[rust-lightning] / lightning / src / ln / chan_utils.rs
index 1d8dd30760f4b7384ec247a5bfae1f6482d523a7..e7bea90914ebf3fc834f909a84dc7c9bee84217f 100644 (file)
@@ -1,6 +1,12 @@
+//! Various utilities for building scripts and deriving keys related to channels. These are
+//! largely of interest for those implementing chain::keysinterface::ChannelKeys message signing
+//! by hand.
+
 use bitcoin::blockdata::script::{Script,Builder};
 use bitcoin::blockdata::opcodes;
-use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction};
+use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, SigHashType};
+use bitcoin::consensus::encode::{self, Decodable, Encodable};
+use bitcoin::util::bip143;
 
 use bitcoin_hashes::{Hash, HashEngine};
 use bitcoin_hashes::sha256::Hash as Sha256;
@@ -8,20 +14,41 @@ use bitcoin_hashes::ripemd160::Hash as Ripemd160;
 use bitcoin_hashes::hash160::Hash as Hash160;
 use bitcoin_hashes::sha256d::Hash as Sha256dHash;
 
-use ln::channelmanager::PaymentHash;
+use ln::channelmanager::{PaymentHash, PaymentPreimage};
+use ln::msgs::DecodeError;
+use util::ser::{Readable, Writeable, Writer, WriterWriteAdaptor};
 
-use secp256k1::key::{PublicKey,SecretKey};
-use secp256k1::Secp256k1;
+use secp256k1::key::{SecretKey, PublicKey};
+use secp256k1::{Secp256k1, Signature};
 use secp256k1;
 
-pub const HTLC_SUCCESS_TX_WEIGHT: u64 = 703;
-pub const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663;
+pub(super) const HTLC_SUCCESS_TX_WEIGHT: u64 = 703;
+pub(super) const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663;
+
+#[derive(PartialEq)]
+pub(crate) enum HTLCType {
+       AcceptedHTLC,
+       OfferedHTLC
+}
+
+impl HTLCType {
+       /// Check if a given tx witnessScript len matchs one of a pre-signed HTLC
+       pub(crate) fn scriptlen_to_htlctype(witness_script_len: usize) ->  Option<HTLCType> {
+               if witness_script_len == 133 {
+                       Some(HTLCType::OfferedHTLC)
+               } else if witness_script_len >= 136 && witness_script_len <= 139 {
+                       Some(HTLCType::AcceptedHTLC)
+               } else {
+                       None
+               }
+       }
+}
 
 // Various functions for key derivation and transaction creation for use within channels. Primarily
 // used in Channel and ChannelMonitor.
 
-pub fn build_commitment_secret(commitment_seed: [u8; 32], idx: u64) -> [u8; 32] {
-       let mut res: [u8; 32] = commitment_seed;
+pub(super) fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] {
+       let mut res: [u8; 32] = commitment_seed.clone();
        for i in 0..48 {
                let bitpos = 47 - i;
                if idx & (1 << bitpos) == (1 << bitpos) {
@@ -32,6 +59,8 @@ pub fn build_commitment_secret(commitment_seed: [u8; 32], idx: u64) -> [u8; 32]
        res
 }
 
+/// Derives a per-commitment-transaction private key (eg an htlc key or payment key) from the base
+/// private key for that type of key and the per_commitment_point (available in TxCreationKeys)
 pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
        let mut sha = Sha256::engine();
        sha.input(&per_commitment_point.serialize());
@@ -43,7 +72,7 @@ pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_co
        Ok(key)
 }
 
-pub fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
+pub(super) fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
        let mut sha = Sha256::engine();
        sha.input(&per_commitment_point.serialize());
        sha.input(&base_point.serialize());
@@ -53,8 +82,10 @@ pub fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_com
        base_point.combine(&hashkey)
 }
 
-/// Derives a revocation key from its constituent parts
-pub fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_secret: &SecretKey, revocation_base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
+/// Derives a revocation key from its constituent parts.
+/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
+/// generated (ie our own).
+pub(super) fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_secret: &SecretKey, revocation_base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
        let revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &revocation_base_secret);
        let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret);
 
@@ -81,7 +112,7 @@ pub fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1
        Ok(part_a)
 }
 
-pub fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, revocation_base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
+pub(super) fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, revocation_base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
        let rev_append_commit_hash_key = {
                let mut sha = Sha256::engine();
                sha.input(&revocation_base_point.serialize());
@@ -104,17 +135,59 @@ pub fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp2
        part_a.combine(&part_b)
 }
 
+/// The set of public keys which are used in the creation of one commitment transaction.
+/// These are derived from the channel base keys and per-commitment data.
+#[derive(PartialEq)]
 pub struct TxCreationKeys {
+       /// The per-commitment public key which was used to derive the other keys.
        pub per_commitment_point: PublicKey,
-       pub revocation_key: PublicKey,
-       pub a_htlc_key: PublicKey,
-       pub b_htlc_key: PublicKey,
-       pub a_delayed_payment_key: PublicKey,
-       pub b_payment_key: PublicKey,
+       /// The revocation key which is used to allow the owner of the commitment transaction to
+       /// provide their counterparty the ability to punish them if they broadcast an old state.
+       pub(crate) revocation_key: PublicKey,
+       /// A's HTLC Key
+       pub(crate) a_htlc_key: PublicKey,
+       /// B's HTLC Key
+       pub(crate) b_htlc_key: PublicKey,
+       /// A's Payment Key (which isn't allowed to be spent from for some delay)
+       pub(crate) a_delayed_payment_key: PublicKey,
+       /// B's Payment Key
+       pub(crate) b_payment_key: PublicKey,
 }
 
+/// One counterparty's public keys which do not change over the life of a channel.
+#[derive(Clone, PartialEq)]
+pub struct ChannelPublicKeys {
+       /// The public key which is used to sign all commitment transactions, as it appears in the
+       /// on-chain channel lock-in 2-of-2 multisig output.
+       pub funding_pubkey: PublicKey,
+       /// The base point which is used (with derive_public_revocation_key) to derive per-commitment
+       /// revocation keys. The per-commitment revocation private key is then revealed by the owner of
+       /// a commitment transaction so that their counterparty can claim all available funds if they
+       /// broadcast an old state.
+       pub revocation_basepoint: PublicKey,
+       /// The base point which is used (with derive_public_key) to derive a per-commitment payment
+       /// public key which receives immediately-spendable non-HTLC-encumbered funds.
+       pub payment_basepoint: PublicKey,
+       /// The base point which is used (with derive_public_key) to derive a per-commitment payment
+       /// public key which receives non-HTLC-encumbered funds which are only available for spending
+       /// after some delay (or can be claimed via the revocation path).
+       pub delayed_payment_basepoint: PublicKey,
+       /// The base point which is used (with derive_public_key) to derive a per-commitment public key
+       /// which is used to encumber HTLC-in-flight outputs.
+       pub htlc_basepoint: PublicKey,
+}
+
+impl_writeable!(ChannelPublicKeys, 33*5, {
+       funding_pubkey,
+       revocation_basepoint,
+       payment_basepoint,
+       delayed_payment_basepoint,
+       htlc_basepoint
+});
+
+
 impl TxCreationKeys {
-       pub fn new<T: secp256k1::Signing + secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, a_delayed_payment_base: &PublicKey, a_htlc_base: &PublicKey, b_revocation_base: &PublicKey, b_payment_base: &PublicKey, b_htlc_base: &PublicKey) -> Result<TxCreationKeys, secp256k1::Error> {
+       pub(crate) fn new<T: secp256k1::Signing + secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, a_delayed_payment_base: &PublicKey, a_htlc_base: &PublicKey, b_revocation_base: &PublicKey, b_payment_base: &PublicKey, b_htlc_base: &PublicKey) -> Result<TxCreationKeys, secp256k1::Error> {
                Ok(TxCreationKeys {
                        per_commitment_point: per_commitment_point.clone(),
                        revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &b_revocation_base)?,
@@ -128,7 +201,7 @@ impl TxCreationKeys {
 
 /// Gets the "to_local" output redeemscript, ie the script which is time-locked or spendable by
 /// the revocation key
-pub fn get_revokeable_redeemscript(revocation_key: &PublicKey, to_self_delay: u16, delayed_payment_key: &PublicKey) -> Script {
+pub(super) fn get_revokeable_redeemscript(revocation_key: &PublicKey, to_self_delay: u16, delayed_payment_key: &PublicKey) -> Script {
        Builder::new().push_opcode(opcodes::all::OP_IF)
                      .push_slice(&revocation_key.serialize())
                      .push_opcode(opcodes::all::OP_ELSE)
@@ -142,16 +215,28 @@ pub fn get_revokeable_redeemscript(revocation_key: &PublicKey, to_self_delay: u1
 }
 
 #[derive(Clone, PartialEq)]
+/// Information about an HTLC as it appears in a commitment transaction
 pub struct HTLCOutputInCommitment {
+       /// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction).
+       /// Note that this is not the same as whether it is ountbound *from us*. To determine that you
+       /// need to compare this value to whether the commitment transaction in question is that of
+       /// the remote party or our own.
        pub offered: bool,
+       /// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is
+       /// this divided by 1000.
        pub amount_msat: u64,
+       /// The CLTV lock-time at which this HTLC expires.
        pub cltv_expiry: u32,
+       /// The hash of the preimage which unlocks this HTLC.
        pub payment_hash: PaymentHash,
+       /// The position within the commitment transactions' outputs. This may be None if the value is
+       /// below the dust limit (in which case no output appears in the commitment transaction and the
+       /// value is spent to additional transaction fees).
        pub transaction_output_index: Option<u32>,
 }
 
 #[inline]
-pub fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
+pub(super) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
        let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner();
        if htlc.offered {
                Builder::new().push_opcode(opcodes::all::OP_DUP)
@@ -222,6 +307,22 @@ pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, keys: &TxCreationKey
        get_htlc_redeemscript_with_explicit_keys(htlc, &keys.a_htlc_key, &keys.b_htlc_key, &keys.revocation_key)
 }
 
+/// Gets the redeemscript for a funding output from the two funding public keys.
+/// Note that the order of funding public keys does not matter.
+pub fn make_funding_redeemscript(a: &PublicKey, b: &PublicKey) -> Script {
+       let our_funding_key = a.serialize();
+       let their_funding_key = b.serialize();
+
+       let builder = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2);
+       if our_funding_key[..] < their_funding_key[..] {
+               builder.push_slice(&our_funding_key)
+                       .push_slice(&their_funding_key)
+       } else {
+               builder.push_slice(&their_funding_key)
+                       .push_slice(&our_funding_key)
+       }.push_opcode(opcodes::all::OP_PUSHNUM_2).push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
+}
+
 /// panics if htlc.transaction_output_index.is_none()!
 pub fn build_htlc_transaction(prev_hash: &Sha256dHash, feerate_per_kw: u64, to_self_delay: u16, htlc: &HTLCOutputInCommitment, a_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction {
        let mut txins: Vec<TxIn> = Vec::new();
@@ -254,3 +355,153 @@ pub fn build_htlc_transaction(prev_hash: &Sha256dHash, feerate_per_kw: u64, to_s
                output: txouts,
        }
 }
+
+/// Signs a transaction created by build_htlc_transaction. If the transaction is an
+/// HTLC-Success transaction (ie htlc.offered is false), preimage must be set!
+pub(crate) fn sign_htlc_transaction<T: secp256k1::Signing>(tx: &mut Transaction, their_sig: &Signature, preimage: &Option<PaymentPreimage>, htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey, per_commitment_point: &PublicKey, htlc_base_key: &SecretKey, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Script), ()> {
+       if tx.input.len() != 1 { return Err(()); }
+       if tx.input[0].witness.len() != 0 { return Err(()); }
+
+       let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&htlc, a_htlc_key, b_htlc_key, revocation_key);
+
+       let our_htlc_key = derive_private_key(secp_ctx, per_commitment_point, htlc_base_key).map_err(|_| ())?;
+       let sighash = hash_to_message!(&bip143::SighashComponents::new(&tx).sighash_all(&tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
+       let local_tx = PublicKey::from_secret_key(&secp_ctx, &our_htlc_key) == *a_htlc_key;
+       let our_sig = secp_ctx.sign(&sighash, &our_htlc_key);
+
+       tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
+
+       if local_tx { // b, then a
+               tx.input[0].witness.push(their_sig.serialize_der().to_vec());
+               tx.input[0].witness.push(our_sig.serialize_der().to_vec());
+       } else {
+               tx.input[0].witness.push(our_sig.serialize_der().to_vec());
+               tx.input[0].witness.push(their_sig.serialize_der().to_vec());
+       }
+       tx.input[0].witness[1].push(SigHashType::All as u8);
+       tx.input[0].witness[2].push(SigHashType::All as u8);
+
+       if htlc.offered {
+               tx.input[0].witness.push(Vec::new());
+               assert!(preimage.is_none());
+       } else {
+               tx.input[0].witness.push(preimage.unwrap().0.to_vec());
+       }
+
+       tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec());
+
+       Ok((our_sig, htlc_redeemscript))
+}
+
+#[derive(Clone)]
+/// We use this to track local commitment transactions and put off signing them until we are ready
+/// to broadcast. Eventually this will require a signer which is possibly external, but for now we
+/// just pass in the SecretKeys required.
+pub(crate) struct LocalCommitmentTransaction {
+       tx: Transaction
+}
+impl LocalCommitmentTransaction {
+       #[cfg(test)]
+       pub fn dummy() -> Self {
+               Self { tx: Transaction {
+                       version: 2,
+                       input: Vec::new(),
+                       output: Vec::new(),
+                       lock_time: 0,
+               } }
+       }
+
+       pub fn new_missing_local_sig(mut tx: Transaction, their_sig: &Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey) -> LocalCommitmentTransaction {
+               if tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); }
+               if tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); }
+
+               tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
+
+               if our_funding_key.serialize()[..] < their_funding_key.serialize()[..] {
+                       tx.input[0].witness.push(Vec::new());
+                       tx.input[0].witness.push(their_sig.serialize_der().to_vec());
+                       tx.input[0].witness[2].push(SigHashType::All as u8);
+               } else {
+                       tx.input[0].witness.push(their_sig.serialize_der().to_vec());
+                       tx.input[0].witness[1].push(SigHashType::All as u8);
+                       tx.input[0].witness.push(Vec::new());
+               }
+
+               Self { tx }
+       }
+
+       pub fn txid(&self) -> Sha256dHash {
+               self.tx.txid()
+       }
+
+       pub fn has_local_sig(&self) -> bool {
+               if self.tx.input.len() != 1 { panic!("Commitment transactions must have input count == 1!"); }
+               if self.tx.input[0].witness.len() == 4 {
+                       assert!(!self.tx.input[0].witness[1].is_empty());
+                       assert!(!self.tx.input[0].witness[2].is_empty());
+                       true
+               } else {
+                       assert_eq!(self.tx.input[0].witness.len(), 3);
+                       assert!(self.tx.input[0].witness[0].is_empty());
+                       assert!(self.tx.input[0].witness[1].is_empty() || self.tx.input[0].witness[2].is_empty());
+                       false
+               }
+       }
+
+       pub fn add_local_sig<T: secp256k1::Signing>(&mut self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) {
+               if self.has_local_sig() { return; }
+               let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.tx)
+                       .sighash_all(&self.tx.input[0], funding_redeemscript, channel_value_satoshis)[..]);
+               let our_sig = secp_ctx.sign(&sighash, funding_key);
+
+               if self.tx.input[0].witness[1].is_empty() {
+                       self.tx.input[0].witness[1] = our_sig.serialize_der().to_vec();
+                       self.tx.input[0].witness[1].push(SigHashType::All as u8);
+               } else {
+                       self.tx.input[0].witness[2] = our_sig.serialize_der().to_vec();
+                       self.tx.input[0].witness[2].push(SigHashType::All as u8);
+               }
+
+               self.tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec());
+       }
+
+       pub fn without_valid_witness(&self) -> &Transaction { &self.tx }
+       pub fn with_valid_witness(&self) -> &Transaction {
+               assert!(self.has_local_sig());
+               &self.tx
+       }
+}
+impl PartialEq for LocalCommitmentTransaction {
+       // We dont care whether we are signed in equality comparison
+       fn eq(&self, o: &Self) -> bool {
+               self.txid() == o.txid()
+       }
+}
+impl Writeable for LocalCommitmentTransaction {
+       fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
+               if let Err(e) = self.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) {
+                       match e {
+                               encode::Error::Io(e) => return Err(e),
+                               _ => panic!("local tx must have been well-formed!"),
+                       }
+               }
+               Ok(())
+       }
+}
+impl<R: ::std::io::Read> Readable<R> for LocalCommitmentTransaction {
+       fn read(reader: &mut R) -> Result<Self, DecodeError> {
+               let tx = match Transaction::consensus_decode(reader.by_ref()) {
+                       Ok(tx) => tx,
+                       Err(e) => match e {
+                               encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)),
+                               _ => return Err(DecodeError::InvalidValue),
+                       },
+               };
+
+               if tx.input.len() != 1 {
+                       // Ensure tx didn't hit the 0-input ambiguity case.
+                       return Err(DecodeError::InvalidValue);
+               }
+               Ok(Self { tx })
+       }
+}