Correct payment resolution after on chain failure of dust HTLCs
[rust-lightning] / lightning / src / ln / payment_tests.rs
index cc8f4ee27e8372922109e7e4268f244aba764a7d..315f76635c2bc77a4cafc8350aefa7cf7cd4dfd1 100644 (file)
@@ -16,7 +16,7 @@ use chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor, LATENCY_GRACE_PERI
 use chain::transaction::OutPoint;
 use chain::keysinterface::KeysInterface;
 use ln::channel::EXPIRE_PREV_CONFIG_TICKS;
-use ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, MPP_TIMEOUT_TICKS, PaymentId, PaymentSendFailure};
+use ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure};
 use ln::features::{InitFeatures, InvoiceFeatures};
 use ln::msgs;
 use ln::msgs::ChannelMessageHandler;
@@ -563,6 +563,231 @@ fn retry_with_no_persist() {
        do_retry_with_no_persist(false);
 }
 
+fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
+       // Test that an off-chain completed payment is not retryable on restart. This was previously
+       // broken for dust payments, but we test for both dust and non-dust payments.
+       //
+       // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
+       // output at all.
+       let chanmon_cfgs = create_chanmon_cfgs(3);
+       let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
+
+       let mut manually_accept_config = test_default_channel_config();
+       manually_accept_config.manually_accept_inbound_channels = true;
+
+       let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
+
+       let first_persister: test_utils::TestPersister;
+       let first_new_chain_monitor: test_utils::TestChainMonitor;
+       let first_nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
+       let second_persister: test_utils::TestPersister;
+       let second_new_chain_monitor: test_utils::TestChainMonitor;
+       let second_nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
+       let third_persister: test_utils::TestPersister;
+       let third_new_chain_monitor: test_utils::TestChainMonitor;
+       let third_nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
+
+       let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
+
+       // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
+       let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
+       confirm_transaction(&nodes[0], &funding_tx);
+       confirm_transaction(&nodes[1], &funding_tx);
+       // Ignore the announcement_signatures messages
+       nodes[0].node.get_and_clear_pending_msg_events();
+       nodes[1].node.get_and_clear_pending_msg_events();
+       let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()).2;
+
+       // Serialize the ChannelManager prior to sending payments
+       let mut nodes_0_serialized = nodes[0].node.encode();
+
+       let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
+       let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
+
+       // The ChannelMonitor should always be the latest version, as we're required to persist it
+       // during the `commitment_signed_dance!()`.
+       let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
+       get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
+
+       let mut chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
+
+       macro_rules! reload_node {
+               ($chain_monitor: ident, $chan_manager: ident, $persister: ident) => { {
+                       $persister = test_utils::TestPersister::new();
+                       let keys_manager = &chanmon_cfgs[0].keys_manager;
+                       $chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &$persister, keys_manager);
+                       nodes[0].chain_monitor = &$chain_monitor;
+                       let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
+                       let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
+                               &mut chan_0_monitor_read, keys_manager).unwrap();
+                       assert!(chan_0_monitor_read.is_empty());
+
+                       let mut chan_1_monitor = None;
+                       let mut channel_monitors = HashMap::new();
+                       channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
+
+                       if !chan_1_monitor_serialized.0.is_empty() {
+                               let mut chan_1_monitor_read = &chan_1_monitor_serialized.0[..];
+                               chan_1_monitor = Some(<(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
+                                       &mut chan_1_monitor_read, keys_manager).unwrap().1);
+                               assert!(chan_1_monitor_read.is_empty());
+                               channel_monitors.insert(chan_1_monitor.as_ref().unwrap().get_funding_txo().0, chan_1_monitor.as_mut().unwrap());
+                       }
+
+                       let mut nodes_0_read = &nodes_0_serialized[..];
+                       let (_, nodes_0_deserialized_tmp) = {
+                               <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
+                                       default_config: test_default_channel_config(),
+                                       keys_manager,
+                                       fee_estimator: node_cfgs[0].fee_estimator,
+                                       chain_monitor: nodes[0].chain_monitor,
+                                       tx_broadcaster: nodes[0].tx_broadcaster.clone(),
+                                       logger: nodes[0].logger,
+                                       channel_monitors,
+                               }).unwrap()
+                       };
+                       $chan_manager = nodes_0_deserialized_tmp;
+                       assert!(nodes_0_read.is_empty());
+
+                       assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
+                       if !chan_1_monitor_serialized.0.is_empty() {
+                               let funding_txo = chan_1_monitor.as_ref().unwrap().get_funding_txo().0;
+                               assert!(nodes[0].chain_monitor.watch_channel(funding_txo, chan_1_monitor.unwrap()).is_ok());
+                       }
+                       nodes[0].node = &$chan_manager;
+                       check_added_monitors!(nodes[0], if !chan_1_monitor_serialized.0.is_empty() { 2 } else { 1 });
+
+                       nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
+               } }
+       }
+
+       reload_node!(first_new_chain_monitor, first_nodes_0_deserialized, first_persister);
+
+       // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
+       // force-close the channel.
+       check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
+       assert!(nodes[0].node.list_channels().is_empty());
+       assert!(nodes[0].node.has_pending_payments());
+       assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
+
+       nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
+       assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
+
+       // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
+       // error, as the channel has hit the chain.
+       nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
+       let bs_reestablish = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
+       nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
+       let as_err = nodes[0].node.get_and_clear_pending_msg_events();
+       assert_eq!(as_err.len(), 1);
+       let bs_commitment_tx;
+       match as_err[0] {
+               MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
+                       assert_eq!(node_id, nodes[1].node.get_our_node_id());
+                       nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
+                       check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
+                       check_added_monitors!(nodes[1], 1);
+                       bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
+               },
+               _ => panic!("Unexpected event"),
+       }
+       check_closed_broadcast!(nodes[1], false);
+
+       // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
+       // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
+       // incoming HTLCs with the same payment hash later.
+       nodes[2].node.fail_htlc_backwards(&payment_hash);
+       expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
+       check_added_monitors!(nodes[2], 1);
+
+       let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
+       nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
+       commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
+       expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
+               [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
+
+       // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
+       // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
+       // after the commitment transaction, so always connect the commitment transaction.
+       mine_transaction(&nodes[0], &bs_commitment_tx[0]);
+       mine_transaction(&nodes[1], &bs_commitment_tx[0]);
+       if !use_dust {
+               connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
+               connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
+               let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
+               check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
+               assert_eq!(as_htlc_timeout.len(), 1);
+
+               mine_transaction(&nodes[0], &as_htlc_timeout[0]);
+               // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
+               nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
+               mine_transaction(&nodes[1], &as_htlc_timeout[0]);
+       }
+
+       // Create a new channel on which to retry the payment before we fail the payment via the
+       // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
+       // connecting several blocks while creating the channel (implying time has passed).
+       // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
+       let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
+       assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
+
+       // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
+       // confirming, we will fail as it's considered still-pending...
+       let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
+       assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
+       assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
+
+       // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
+       // again. We serialize the node first as we'll then test retrying the HTLC after a restart
+       // (which should also still work).
+       connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
+       connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
+       // We set mpp_parts_remain to avoid having abandon_payment called
+       expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
+
+       chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
+       get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
+       chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
+       get_monitor!(nodes[0], chan_id_3).write(&mut chan_1_monitor_serialized).unwrap();
+       nodes_0_serialized = nodes[0].node.encode();
+
+       assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
+       assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
+
+       reload_node!(second_new_chain_monitor, second_nodes_0_deserialized, second_persister);
+       reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
+
+       // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
+       // the payment is not (spuriously) listed as still pending.
+       assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
+       check_added_monitors!(nodes[0], 1);
+       pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
+       claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
+
+       assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
+       assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
+
+       chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
+       get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
+       chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
+       get_monitor!(nodes[0], chan_id_3).write(&mut chan_1_monitor_serialized).unwrap();
+       nodes_0_serialized = nodes[0].node.encode();
+
+       // Ensure that after reload we cannot retry the payment.
+       reload_node!(third_new_chain_monitor, third_nodes_0_deserialized, third_persister);
+       reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
+
+       assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
+       assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
+}
+
+#[test]
+fn test_completed_payment_not_retryable_on_reload() {
+       do_test_completed_payment_not_retryable_on_reload(true);
+       do_test_completed_payment_not_retryable_on_reload(false);
+}
+
+
 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
        // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
        // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor