Merge pull request #269 from TheBlueMatt/2018-12-198-review
[rust-lightning] / src / ln / channelmanager.rs
index e0d2b9aaaa37222a17f5b134a994bf1080ed4f2b..ccfb9f776973a217b812fbdf59eb8058bee0c96a 100644 (file)
@@ -22,7 +22,7 @@ use secp256k1;
 use chain::chaininterface::{BroadcasterInterface,ChainListener,ChainWatchInterface,FeeEstimator};
 use chain::transaction::OutPoint;
 use ln::channel::{Channel, ChannelError};
-use ln::channelmonitor::{ChannelMonitor, ChannelMonitorUpdateErr, ManyChannelMonitor, CLTV_CLAIM_BUFFER, HTLC_FAIL_TIMEOUT_BLOCKS};
+use ln::channelmonitor::{ChannelMonitor, ChannelMonitorUpdateErr, ManyChannelMonitor, CLTV_CLAIM_BUFFER, HTLC_FAIL_TIMEOUT_BLOCKS, HTLC_FAIL_ANTI_REORG_DELAY};
 use ln::router::{Route,RouteHop};
 use ln::msgs;
 use ln::msgs::{ChannelMessageHandler, DecodeError, HandleError};
@@ -63,6 +63,7 @@ use std::time::{Instant,Duration};
 mod channel_held_info {
        use ln::msgs;
        use ln::router::Route;
+       use ln::channelmanager::PaymentHash;
        use secp256k1::key::SecretKey;
 
        /// Stores the info we will need to send when we want to forward an HTLC onwards
@@ -70,7 +71,7 @@ mod channel_held_info {
        pub struct PendingForwardHTLCInfo {
                pub(super) onion_packet: Option<msgs::OnionPacket>,
                pub(super) incoming_shared_secret: [u8; 32],
-               pub(super) payment_hash: [u8; 32],
+               pub(super) payment_hash: PaymentHash,
                pub(super) short_channel_id: u64,
                pub(super) amt_to_forward: u64,
                pub(super) outgoing_cltv_value: u32,
@@ -90,7 +91,7 @@ mod channel_held_info {
        }
 
        /// Tracks the inbound corresponding to an outbound HTLC
-       #[derive(Clone)]
+       #[derive(Clone, PartialEq)]
        pub struct HTLCPreviousHopData {
                pub(super) short_channel_id: u64,
                pub(super) htlc_id: u64,
@@ -98,7 +99,7 @@ mod channel_held_info {
        }
 
        /// Tracks the inbound corresponding to an outbound HTLC
-       #[derive(Clone)]
+       #[derive(Clone, PartialEq)]
        pub enum HTLCSource {
                PreviousHopData(HTLCPreviousHopData),
                OutboundRoute {
@@ -133,13 +134,21 @@ mod channel_held_info {
 }
 pub(super) use self::channel_held_info::*;
 
-type ShutdownResult = (Vec<Transaction>, Vec<(HTLCSource, [u8; 32])>);
+/// payment_hash type, use to cross-lock hop
+#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
+pub struct PaymentHash(pub [u8;32]);
+/// payment_preimage type, use to route payment between hop
+#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
+pub struct PaymentPreimage(pub [u8;32]);
+
+type ShutdownResult = (Vec<Transaction>, Vec<(HTLCSource, PaymentHash)>);
 
 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
 /// channel_state lock. We then return the set of things that need to be done outside the lock in
 /// this struct and call handle_error!() on it.
+
 struct MsgHandleErrInternal {
        err: msgs::HandleError,
        shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
@@ -248,7 +257,7 @@ struct ChannelHolder {
        /// Note that while this is held in the same mutex as the channels themselves, no consistency
        /// guarantees are made about the channels given here actually existing anymore by the time you
        /// go to read them!
-       claimable_htlcs: HashMap<[u8; 32], Vec<HTLCPreviousHopData>>,
+       claimable_htlcs: HashMap<PaymentHash, Vec<HTLCPreviousHopData>>,
        /// Messages to send to peers - pushed to in the same lock that they are generated in (except
        /// for broadcast messages, where ordering isn't as strict).
        pending_msg_events: Vec<events::MessageSendEvent>,
@@ -258,7 +267,7 @@ struct MutChannelHolder<'a> {
        short_to_id: &'a mut HashMap<u64, [u8; 32]>,
        next_forward: &'a mut Instant,
        forward_htlcs: &'a mut HashMap<u64, Vec<HTLCForwardInfo>>,
-       claimable_htlcs: &'a mut HashMap<[u8; 32], Vec<HTLCPreviousHopData>>,
+       claimable_htlcs: &'a mut HashMap<PaymentHash, Vec<HTLCPreviousHopData>>,
        pending_msg_events: &'a mut Vec<events::MessageSendEvent>,
 }
 impl ChannelHolder {
@@ -332,16 +341,17 @@ pub struct ChannelManager {
 /// ie the node we forwarded the payment on to should always have enough room to reliably time out
 /// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
 /// CLTV_CLAIM_BUFFER point (we static assert that its at least 3 blocks more).
-const CLTV_EXPIRY_DELTA: u16 = 6 * 24 * 2; //TODO?
+const CLTV_EXPIRY_DELTA: u16 = 6 * 12; //TODO?
 const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
 
-// Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + 2*HTLC_FAIL_TIMEOUT_BLOCKS, ie that
-// if the next-hop peer fails the HTLC within HTLC_FAIL_TIMEOUT_BLOCKS then we'll still have
-// HTLC_FAIL_TIMEOUT_BLOCKS left to fail it backwards ourselves before hitting the
-// CLTV_CLAIM_BUFFER point and failing the channel on-chain to time out the HTLC.
+// Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + 2*HTLC_FAIL_TIMEOUT_BLOCKS +
+// HTLC_FAIL_ANTI_REORG_DELAY, ie that if the next-hop peer fails the HTLC within
+// HTLC_FAIL_TIMEOUT_BLOCKS then we'll still have HTLC_FAIL_TIMEOUT_BLOCKS left to fail it
+// backwards ourselves before hitting the CLTV_CLAIM_BUFFER point and failing the channel
+// on-chain to time out the HTLC.
 #[deny(const_err)]
 #[allow(dead_code)]
-const CHECK_CLTV_EXPIRY_SANITY: u32 = CLTV_EXPIRY_DELTA as u32 - 2*HTLC_FAIL_TIMEOUT_BLOCKS - CLTV_CLAIM_BUFFER;
+const CHECK_CLTV_EXPIRY_SANITY: u32 = CLTV_EXPIRY_DELTA as u32 - 2*HTLC_FAIL_TIMEOUT_BLOCKS - CLTV_CLAIM_BUFFER - HTLC_FAIL_ANTI_REORG_DELAY;
 
 // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
@@ -414,6 +424,7 @@ macro_rules! break_chan_entry {
                                break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
                        },
                        Err(ChannelError::Close(msg)) => {
+                               log_trace!($self, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
                                let (channel_id, mut chan) = $entry.remove_entry();
                                if let Some(short_id) = chan.get_short_channel_id() {
                                        $channel_state.short_to_id.remove(&short_id);
@@ -432,6 +443,7 @@ macro_rules! try_chan_entry {
                                return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
                        },
                        Err(ChannelError::Close(msg)) => {
+                               log_trace!($self, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
                                let (channel_id, mut chan) = $entry.remove_entry();
                                if let Some(short_id) = chan.get_short_channel_id() {
                                        $channel_state.short_to_id.remove(&short_id);
@@ -672,6 +684,7 @@ impl ChannelManager {
        #[inline]
        fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
                let (local_txn, mut failed_htlcs) = shutdown_res;
+               log_trace!(self, "Finishing force-closure of channel with {} transactions to broadcast and {} HTLCs to fail", local_txn.len(), failed_htlcs.len());
                for htlc_source in failed_htlcs.drain(..) {
                        // unknown_next_peer...I dunno who that is anymore....
                        self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() });
@@ -679,13 +692,6 @@ impl ChannelManager {
                for tx in local_txn {
                        self.tx_broadcaster.broadcast_transaction(&tx);
                }
-               //TODO: We need to have a way where outbound HTLC claims can result in us claiming the
-               //now-on-chain HTLC output for ourselves (and, thereafter, passing the HTLC backwards).
-               //TODO: We need to handle monitoring of pending offered HTLCs which just hit the chain and
-               //may be claimed, resulting in us claiming the inbound HTLCs (and back-failing after
-               //timeouts are hit and our claims confirm).
-               //TODO: In any case, we need to make sure we remove any pending htlc tracking (via
-               //fail_backwards or claim_funds) eventually for all HTLCs that were in the channel
        }
 
        /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
@@ -705,6 +711,7 @@ impl ChannelManager {
                                return;
                        }
                };
+               log_trace!(self, "Force-closing channel {}", log_bytes!(channel_id[..]));
                self.finish_force_close_channel(chan.force_shutdown());
                if let Ok(update) = self.get_channel_update(&chan) {
                        let mut channel_state = self.channel_state.lock().unwrap();
@@ -865,7 +872,7 @@ impl ChannelManager {
        }
 
        const ZERO:[u8; 21*65] = [0; 21*65];
-       fn construct_onion_packet(mut payloads: Vec<msgs::OnionHopData>, onion_keys: Vec<OnionKeys>, associated_data: &[u8; 32]) -> msgs::OnionPacket {
+       fn construct_onion_packet(mut payloads: Vec<msgs::OnionHopData>, onion_keys: Vec<OnionKeys>, associated_data: &PaymentHash) -> msgs::OnionPacket {
                let mut buf = Vec::with_capacity(21*65);
                buf.resize(21*65, 0);
 
@@ -902,7 +909,7 @@ impl ChannelManager {
 
                        let mut hmac = Hmac::new(Sha256::new(), &keys.mu);
                        hmac.input(&packet_data);
-                       hmac.input(&associated_data[..]);
+                       hmac.input(&associated_data.0[..]);
                        hmac.raw_result(&mut hmac_res);
                }
 
@@ -1024,7 +1031,7 @@ impl ChannelManager {
 
                let mut hmac = Hmac::new(Sha256::new(), &mu);
                hmac.input(&msg.onion_routing_packet.hop_data);
-               hmac.input(&msg.payment_hash);
+               hmac.input(&msg.payment_hash.0[..]);
                if hmac.result() != MacResult::new(&msg.onion_routing_packet.hmac) {
                        return_err!("HMAC Check failed", 0x8000 | 0x4000 | 5, &get_onion_hash!());
                }
@@ -1232,7 +1239,7 @@ impl ChannelManager {
        /// In case of APIError::MonitorUpdateFailed, the commitment update has been irrevocably
        /// committed on our end and we're just waiting for a monitor update to send it. Do NOT retry
        /// the payment via a different route unless you intend to pay twice!
-       pub fn send_payment(&self, route: Route, payment_hash: [u8; 32]) -> Result<(), APIError> {
+       pub fn send_payment(&self, route: Route, payment_hash: PaymentHash) -> Result<(), APIError> {
                if route.hops.len() < 1 || route.hops.len() > 20 {
                        return Err(APIError::RouteError{err: "Route didn't go anywhere/had bogus size"});
                }
@@ -1527,7 +1534,7 @@ impl ChannelManager {
        }
 
        /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect after a PaymentReceived event.
-       pub fn fail_htlc_backwards(&self, payment_hash: &[u8; 32], reason: PaymentFailReason) -> bool {
+       pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash, reason: PaymentFailReason) -> bool {
                let _ = self.total_consistency_lock.read().unwrap();
 
                let mut channel_state = Some(self.channel_state.lock().unwrap());
@@ -1547,9 +1554,10 @@ impl ChannelManager {
        /// to fail and take the channel_state lock for each iteration (as we take ownership and may
        /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
        /// still-available channels.
-       fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder>, source: HTLCSource, payment_hash: &[u8; 32], onion_error: HTLCFailReason) {
+       fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
                match source {
                        HTLCSource::OutboundRoute { .. } => {
+                               log_trace!(self, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
                                mem::drop(channel_state_lock);
                                if let &HTLCFailReason::ErrorPacket { ref err } = &onion_error {
                                        let (channel_update, payment_retryable) = self.process_onion_failure(&source, err.data.clone());
@@ -1565,16 +1573,22 @@ impl ChannelManager {
                                                rejected_by_dest: !payment_retryable,
                                        });
                                } else {
-                                       panic!("should have onion error packet here");
+                                       //TODO: Pass this back (see GH #243)
+                                       self.pending_events.lock().unwrap().push(events::Event::PaymentFailed {
+                                               payment_hash: payment_hash.clone(),
+                                               rejected_by_dest: false, // We failed it ourselves, can't blame them
+                                       });
                                }
                        },
                        HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret }) => {
                                let err_packet = match onion_error {
                                        HTLCFailReason::Reason { failure_code, data } => {
+                                               log_trace!(self, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
                                                let packet = ChannelManager::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
                                                ChannelManager::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
                                        },
                                        HTLCFailReason::ErrorPacket { err } => {
+                                               log_trace!(self, "Failing HTLC with payment_hash {} backwards with pre-built ErrorPacket", log_bytes!(payment_hash.0));
                                                ChannelManager::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
                                        }
                                };
@@ -1619,11 +1633,11 @@ impl ChannelManager {
        /// should probably kick the net layer to go send messages if this returns true!
        ///
        /// May panic if called except in response to a PaymentReceived event.
-       pub fn claim_funds(&self, payment_preimage: [u8; 32]) -> bool {
+       pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
                let mut sha = Sha256::new();
-               sha.input(&payment_preimage);
-               let mut payment_hash = [0; 32];
-               sha.result(&mut payment_hash);
+               sha.input(&payment_preimage.0[..]);
+               let mut payment_hash = PaymentHash([0; 32]);
+               sha.result(&mut payment_hash.0[..]);
 
                let _ = self.total_consistency_lock.read().unwrap();
 
@@ -1637,7 +1651,7 @@ impl ChannelManager {
                        true
                } else { false }
        }
-       fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder>, source: HTLCSource, payment_preimage: [u8; 32]) {
+       fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder>, source: HTLCSource, payment_preimage: PaymentPreimage) {
                match source {
                        HTLCSource::OutboundRoute { .. } => {
                                mem::drop(channel_state_lock);
@@ -2629,6 +2643,22 @@ impl ChannelManager {
 
 impl events::MessageSendEventsProvider for ChannelManager {
        fn get_and_clear_pending_msg_events(&self) -> Vec<events::MessageSendEvent> {
+               // TODO: Event release to users and serialization is currently race-y: its very easy for a
+               // user to serialize a ChannelManager with pending events in it and lose those events on
+               // restart. This is doubly true for the fail/fulfill-backs from monitor events!
+               {
+                       //TODO: This behavior should be documented.
+                       for htlc_update in self.monitor.fetch_pending_htlc_updated() {
+                               if let Some(preimage) = htlc_update.payment_preimage {
+                                       log_trace!(self, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
+                                       self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
+                               } else {
+                                       log_trace!(self, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
+                                       self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() });
+                               }
+                       }
+               }
+
                let mut ret = Vec::new();
                let mut channel_state = self.channel_state.lock().unwrap();
                mem::swap(&mut ret, &mut channel_state.pending_msg_events);
@@ -2638,6 +2668,22 @@ impl events::MessageSendEventsProvider for ChannelManager {
 
 impl events::EventsProvider for ChannelManager {
        fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
+               // TODO: Event release to users and serialization is currently race-y: its very easy for a
+               // user to serialize a ChannelManager with pending events in it and lose those events on
+               // restart. This is doubly true for the fail/fulfill-backs from monitor events!
+               {
+                       //TODO: This behavior should be documented.
+                       for htlc_update in self.monitor.fetch_pending_htlc_updated() {
+                               if let Some(preimage) = htlc_update.payment_preimage {
+                                       log_trace!(self, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
+                                       self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
+                               } else {
+                                       log_trace!(self, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
+                                       self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() });
+                               }
+                       }
+               }
+
                let mut ret = Vec::new();
                let mut pending_events = self.pending_events.lock().unwrap();
                mem::swap(&mut ret, &mut *pending_events);
@@ -2647,6 +2693,8 @@ impl events::EventsProvider for ChannelManager {
 
 impl ChainListener for ChannelManager {
        fn block_connected(&self, header: &BlockHeader, height: u32, txn_matched: &[&Transaction], indexes_of_txn_matched: &[u32]) {
+               let header_hash = header.bitcoin_hash();
+               log_trace!(self, "Block {} at height {} connected with {} txn matched", header_hash, height, txn_matched.len());
                let _ = self.total_consistency_lock.read().unwrap();
                let mut failed_channels = Vec::new();
                {
@@ -2679,6 +2727,7 @@ impl ChainListener for ChannelManager {
                                        for tx in txn_matched {
                                                for inp in tx.input.iter() {
                                                        if inp.previous_output == funding_txo.into_bitcoin_outpoint() {
+                                                               log_trace!(self, "Detected channel-closing tx {} spending {}:{}, closing channel {}", tx.txid(), inp.previous_output.txid, inp.previous_output.vout, log_bytes!(channel.channel_id()));
                                                                if let Some(short_id) = channel.get_short_channel_id() {
                                                                        short_to_id.remove(&short_id);
                                                                }
@@ -2719,7 +2768,7 @@ impl ChainListener for ChannelManager {
                        self.finish_force_close_channel(failure);
                }
                self.latest_block_height.store(height as usize, Ordering::Release);
-               *self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header.bitcoin_hash();
+               *self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header_hash;
        }
 
        /// We force-close the channel without letting our counterparty participate in the shutdown
@@ -3328,8 +3377,9 @@ mod tests {
        use chain::keysinterface::{KeysInterface, SpendableOutputDescriptor};
        use chain::keysinterface;
        use ln::channel::{COMMITMENT_TX_BASE_WEIGHT, COMMITMENT_TX_WEIGHT_PER_HTLC};
-       use ln::channelmanager::{ChannelManager,ChannelManagerReadArgs,OnionKeys,PaymentFailReason,RAACommitmentOrder};
+       use ln::channelmanager::{ChannelManager,ChannelManagerReadArgs,OnionKeys,PaymentFailReason,RAACommitmentOrder, PaymentPreimage, PaymentHash};
        use ln::channelmonitor::{ChannelMonitor, ChannelMonitorUpdateErr, CLTV_CLAIM_BUFFER, HTLC_FAIL_TIMEOUT_BLOCKS, ManyChannelMonitor};
+       use ln::channel::{ACCEPTED_HTLC_SCRIPT_WEIGHT, OFFERED_HTLC_SCRIPT_WEIGHT};
        use ln::router::{Route, RouteHop, Router};
        use ln::msgs;
        use ln::msgs::{ChannelMessageHandler,RoutingMessageHandler};
@@ -3362,7 +3412,7 @@ mod tests {
        use rand::{thread_rng,Rng};
 
        use std::cell::RefCell;
-       use std::collections::{BTreeSet, HashMap};
+       use std::collections::{BTreeSet, HashMap, HashSet};
        use std::default::Default;
        use std::rc::Rc;
        use std::sync::{Arc, Mutex};
@@ -3490,7 +3540,7 @@ mod tests {
                        },
                );
 
-               let packet = ChannelManager::construct_onion_packet(payloads, onion_keys, &[0x42; 32]);
+               let packet = ChannelManager::construct_onion_packet(payloads, onion_keys, &PaymentHash([0x42; 32]));
                // Just check the final packet encoding, as it includes all the per-hop vectors in it
                // anyway...
                assert_eq!(packet.encode(), hex::decode("0002eec7245d6b7d2ccb30380bfbe2a3648cd7a942653f5aa340edcea1f283686619e5f14350c2a76fc232b5e46d421e9615471ab9e0bc887beff8c95fdb878f7b3a716a996c7845c93d90e4ecbb9bde4ece2f69425c99e4bc820e44485455f135edc0d10f7d61ab590531cf08000179a333a347f8b4072f216400406bdf3bf038659793d4a1fd7b246979e3150a0a4cb052c9ec69acf0f48c3d39cd55675fe717cb7d80ce721caad69320c3a469a202f1e468c67eaf7a7cd8226d0fd32f7b48084dca885d56047694762b67021713ca673929c163ec36e04e40ca8e1c6d17569419d3039d9a1ec866abe044a9ad635778b961fc0776dc832b3a451bd5d35072d2269cf9b040f6b7a7dad84fb114ed413b1426cb96ceaf83825665ed5a1d002c1687f92465b49ed4c7f0218ff8c6c7dd7221d589c65b3b9aaa71a41484b122846c7c7b57e02e679ea8469b70e14fe4f70fee4d87b910cf144be6fe48eef24da475c0b0bcc6565ae82cd3f4e3b24c76eaa5616c6111343306ab35c1fe5ca4a77c0e314ed7dba39d6f1e0de791719c241a939cc493bea2bae1c1e932679ea94d29084278513c77b899cc98059d06a27d171b0dbdf6bee13ddc4fc17a0c4d2827d488436b57baa167544138ca2e64a11b43ac8a06cd0c2fba2d4d900ed2d9205305e2d7383cc98dacb078133de5f6fb6bed2ef26ba92cea28aafc3b9948dd9ae5559e8bd6920b8cea462aa445ca6a95e0e7ba52961b181c79e73bd581821df2b10173727a810c92b83b5ba4a0403eb710d2ca10689a35bec6c3a708e9e92f7d78ff3c5d9989574b00c6736f84c199256e76e19e78f0c98a9d580b4a658c84fc8f2096c2fbea8f5f8c59d0fdacb3be2802ef802abbecb3aba4acaac69a0e965abd8981e9896b1f6ef9d60f7a164b371af869fd0e48073742825e9434fc54da837e120266d53302954843538ea7c6c3dbfb4ff3b2fdbe244437f2a153ccf7bdb4c92aa08102d4f3cff2ae5ef86fab4653595e6a5837fa2f3e29f27a9cde5966843fb847a4a61f1e76c281fe8bb2b0a181d096100db5a1a5ce7a910238251a43ca556712eaadea167fb4d7d75825e440f3ecd782036d7574df8bceacb397abefc5f5254d2722215c53ff54af8299aaaad642c6d72a14d27882d9bbd539e1cc7a527526ba89b8c037ad09120e98ab042d3e8652b31ae0e478516bfaf88efca9f3676ffe99d2819dcaeb7610a626695f53117665d267d3f7abebd6bbd6733f645c72c389f03855bdf1e4b8075b516569b118233a0f0971d24b83113c0b096f5216a207ca99a7cddc81c130923fe3d91e7508c9ac5f2e914ff5dccab9e558566fa14efb34ac98d878580814b94b73acbfde9072f30b881f7f0fff42d4045d1ace6322d86a97d164aa84d93a60498065cc7c20e636f5862dc81531a88c60305a2e59a985be327a6902e4bed986dbf4a0b50c217af0ea7fdf9ab37f9ea1a1aaa72f54cf40154ea9b269f1a7c09f9f43245109431a175d50e2db0132337baa0ef97eed0fcf20489da36b79a1172faccc2f7ded7c60e00694282d93359c4682135642bc81f433574aa8ef0c97b4ade7ca372c5ffc23c7eddd839bab4e0f14d6df15c9dbeab176bec8b5701cf054eb3072f6dadc98f88819042bf10c407516ee58bce33fbe3b3d86a54255e577db4598e30a135361528c101683a5fcde7e8ba53f3456254be8f45fe3a56120ae96ea3773631fcb3873aa3abd91bcff00bd38bd43697a2e789e00da6077482e7b1b1a677b5afae4c54e6cbdf7377b694eb7d7a5b913476a5be923322d3de06060fd5e819635232a2cf4f0731da13b8546d1d6d4f8d75b9fce6c2341a71b0ea6f780df54bfdb0dd5cd9855179f602f9172307c7268724c3618e6817abd793adc214a0dc0bc616816632f27ea336fb56dfd").unwrap());
@@ -3994,18 +4044,18 @@ mod tests {
        macro_rules! get_payment_preimage_hash {
                ($node: expr) => {
                        {
-                               let payment_preimage = [*$node.network_payment_count.borrow(); 32];
+                               let payment_preimage = PaymentPreimage([*$node.network_payment_count.borrow(); 32]);
                                *$node.network_payment_count.borrow_mut() += 1;
-                               let mut payment_hash = [0; 32];
+                               let mut payment_hash = PaymentHash([0; 32]);
                                let mut sha = Sha256::new();
-                               sha.input(&payment_preimage[..]);
-                               sha.result(&mut payment_hash);
+                               sha.input(&payment_preimage.0[..]);
+                               sha.result(&mut payment_hash.0[..]);
                                (payment_preimage, payment_hash)
                        }
                }
        }
 
-       fn send_along_route(origin_node: &Node, route: Route, expected_route: &[&Node], recv_value: u64) -> ([u8; 32], [u8; 32]) {
+       fn send_along_route(origin_node: &Node, route: Route, expected_route: &[&Node], recv_value: u64) -> (PaymentPreimage, PaymentHash) {
                let (our_payment_preimage, our_payment_hash) = get_payment_preimage_hash!(origin_node);
 
                let mut payment_event = {
@@ -4059,7 +4109,7 @@ mod tests {
                (our_payment_preimage, our_payment_hash)
        }
 
-       fn claim_payment_along_route(origin_node: &Node, expected_route: &[&Node], skip_last: bool, our_payment_preimage: [u8; 32]) {
+       fn claim_payment_along_route(origin_node: &Node, expected_route: &[&Node], skip_last: bool, our_payment_preimage: PaymentPreimage) {
                assert!(expected_route.last().unwrap().node.claim_funds(our_payment_preimage));
                check_added_monitors!(expected_route.last().unwrap(), 1);
 
@@ -4144,13 +4194,13 @@ mod tests {
                }
        }
 
-       fn claim_payment(origin_node: &Node, expected_route: &[&Node], our_payment_preimage: [u8; 32]) {
+       fn claim_payment(origin_node: &Node, expected_route: &[&Node], our_payment_preimage: PaymentPreimage) {
                claim_payment_along_route(origin_node, expected_route, false, our_payment_preimage);
        }
 
        const TEST_FINAL_CLTV: u32 = 32;
 
-       fn route_payment(origin_node: &Node, expected_route: &[&Node], recv_value: u64) -> ([u8; 32], [u8; 32]) {
+       fn route_payment(origin_node: &Node, expected_route: &[&Node], recv_value: u64) -> (PaymentPreimage, PaymentHash) {
                let route = origin_node.router.get_route(&expected_route.last().unwrap().node.get_our_node_id(), None, &Vec::new(), recv_value, TEST_FINAL_CLTV).unwrap();
                assert_eq!(route.hops.len(), expected_route.len());
                for (node, hop) in expected_route.iter().zip(route.hops.iter()) {
@@ -4181,7 +4231,7 @@ mod tests {
                claim_payment(&origin, expected_route, our_payment_preimage);
        }
 
-       fn fail_payment_along_route(origin_node: &Node, expected_route: &[&Node], skip_last: bool, our_payment_hash: [u8; 32]) {
+       fn fail_payment_along_route(origin_node: &Node, expected_route: &[&Node], skip_last: bool, our_payment_hash: PaymentHash) {
                assert!(expected_route.last().unwrap().node.fail_htlc_backwards(&our_payment_hash, PaymentFailReason::PreimageUnknown));
                check_added_monitors!(expected_route.last().unwrap(), 1);
 
@@ -4246,7 +4296,7 @@ mod tests {
                }
        }
 
-       fn fail_payment(origin_node: &Node, expected_route: &[&Node], our_payment_hash: [u8; 32]) {
+       fn fail_payment(origin_node: &Node, expected_route: &[&Node], our_payment_hash: PaymentHash) {
                fail_payment_along_route(origin_node, expected_route, false, our_payment_hash);
        }
 
@@ -4254,12 +4304,12 @@ mod tests {
                let mut nodes = Vec::new();
                let mut rng = thread_rng();
                let secp_ctx = Secp256k1::new();
-               let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
 
                let chan_count = Rc::new(RefCell::new(0));
                let payment_count = Rc::new(RefCell::new(0));
 
-               for _ in 0..node_count {
+               for i in 0..node_count {
+                       let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::with_id(format!("node {}", i)));
                        let feeest = Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 });
                        let chain_monitor = Arc::new(chaininterface::ChainWatchInterfaceUtil::new(Network::Testnet, Arc::clone(&logger)));
                        let tx_broadcaster = Arc::new(test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())});
@@ -5344,7 +5394,10 @@ mod tests {
                                        false
                                } else { true }
                        });
-                       assert_eq!(res.len(), 2);
+                       assert!(res.len() == 2 || res.len() == 3);
+                       if res.len() == 3 {
+                               assert_eq!(res[1], res[2]);
+                       }
                }
 
                assert!(node_txn.is_empty());
@@ -5859,7 +5912,7 @@ mod tests {
                assert_eq!(revoked_local_txn[0].output.len(), 2); // Only HTLC and output back to 0 are present
                assert_eq!(revoked_local_txn[1].input.len(), 1);
                assert_eq!(revoked_local_txn[1].input[0].previous_output.txid, revoked_local_txn[0].txid());
-               assert_eq!(revoked_local_txn[1].input[0].witness.last().unwrap().len(), 133); // HTLC-Timeout
+               assert_eq!(revoked_local_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); // HTLC-Timeout
                // Revoke the old state
                claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_3);
 
@@ -5969,7 +6022,7 @@ mod tests {
                send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
                // node[0] is gonna to revoke an old state thus node[1] should be able to claim both offered/received HTLC outputs on top of commitment tx
                let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0;
-               let _payment_preimage_2 = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000).0;
+               let (_payment_preimage_2, payment_hash_2) = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000);
 
                // Get the will-be-revoked local txn from node[0]
                let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone();
@@ -5978,7 +6031,7 @@ mod tests {
                assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_1.3.txid());
                assert_eq!(revoked_local_txn[1].input.len(), 1);
                assert_eq!(revoked_local_txn[1].input[0].previous_output.txid, revoked_local_txn[0].txid());
-               assert_eq!(revoked_local_txn[1].input[0].witness.last().unwrap().len(), 133); // HTLC-Timeout
+               assert_eq!(revoked_local_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); // HTLC-Timeout
                check_spends!(revoked_local_txn[1], revoked_local_txn[0].clone());
 
                //Revoke the old state
@@ -5986,10 +6039,18 @@ mod tests {
 
                {
                        let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
-
                        nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1);
-
                        nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1);
+
+                       let events = nodes[1].node.get_and_clear_pending_events();
+                       assert_eq!(events.len(), 1);
+                       match events[0] {
+                               Event::PaymentFailed { payment_hash, .. } => {
+                                       assert_eq!(payment_hash, payment_hash_2);
+                               },
+                               _ => panic!("Unexpected event"),
+                       }
+
                        let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap();
                        assert_eq!(node_txn.len(), 4);
 
@@ -6004,8 +6065,8 @@ mod tests {
                        witness_lens.insert(node_txn[0].input[2].witness.last().unwrap().len());
                        assert_eq!(witness_lens.len(), 3);
                        assert_eq!(*witness_lens.iter().skip(0).next().unwrap(), 77); // revoked to_local
-                       assert_eq!(*witness_lens.iter().skip(1).next().unwrap(), 133); // revoked offered HTLC
-                       assert_eq!(*witness_lens.iter().skip(2).next().unwrap(), 138); // revoked received HTLC
+                       assert_eq!(*witness_lens.iter().skip(1).next().unwrap(), OFFERED_HTLC_SCRIPT_WEIGHT); // revoked offered HTLC
+                       assert_eq!(*witness_lens.iter().skip(2).next().unwrap(), ACCEPTED_HTLC_SCRIPT_WEIGHT); // revoked received HTLC
 
                        // Next nodes[1] broadcasts its current local tx state:
                        assert_eq!(node_txn[1].input.len(), 1);
@@ -6013,7 +6074,7 @@ mod tests {
 
                        assert_eq!(node_txn[2].input.len(), 1);
                        let witness_script = node_txn[2].clone().input[0].witness.pop().unwrap();
-                       assert_eq!(witness_script.len(), 133); //Spending an offered htlc output
+                       assert_eq!(witness_script.len(), OFFERED_HTLC_SCRIPT_WEIGHT); //Spending an offered htlc output
                        assert_eq!(node_txn[2].input[0].previous_output.txid, node_txn[1].txid());
                        assert_ne!(node_txn[2].input[0].previous_output.txid, node_txn[0].input[0].previous_output.txid);
                        assert_ne!(node_txn[2].input[0].previous_output.txid, node_txn[0].input[1].previous_output.txid);
@@ -6035,7 +6096,7 @@ mod tests {
                // node[0] is gonna to revoke an old state thus node[1] should be able to claim both offered/received HTLC outputs on top of commitment tx, but this
                // time as two different claim transactions as we're gonna to timeout htlc with given a high current height
                let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0;
-               let _payment_preimage_2 = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000).0;
+               let (_payment_preimage_2, payment_hash_2) = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000);
 
                // Get the will-be-revoked local txn from node[0]
                let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone();
@@ -6045,10 +6106,18 @@ mod tests {
 
                {
                        let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
-
                        nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 200);
-
                        nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 200);
+
+                       let events = nodes[1].node.get_and_clear_pending_events();
+                       assert_eq!(events.len(), 1);
+                       match events[0] {
+                               Event::PaymentFailed { payment_hash, .. } => {
+                                       assert_eq!(payment_hash, payment_hash_2);
+                               },
+                               _ => panic!("Unexpected event"),
+                       }
+
                        let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap();
                        assert_eq!(node_txn.len(), 12); // ChannelManager : 2, ChannelMontitor: 8 (1 standard revoked output, 2 revocation htlc tx, 1 local commitment tx + 1 htlc timeout tx) * 2 (block-rescan)
 
@@ -6076,15 +6145,15 @@ mod tests {
                        witness_lens.insert(node_txn[2].input[0].witness.last().unwrap().len());
                        assert_eq!(witness_lens.len(), 3);
                        assert_eq!(*witness_lens.iter().skip(0).next().unwrap(), 77); // revoked to_local
-                       assert_eq!(*witness_lens.iter().skip(1).next().unwrap(), 133); // revoked offered HTLC
-                       assert_eq!(*witness_lens.iter().skip(2).next().unwrap(), 138); // revoked received HTLC
+                       assert_eq!(*witness_lens.iter().skip(1).next().unwrap(), OFFERED_HTLC_SCRIPT_WEIGHT); // revoked offered HTLC
+                       assert_eq!(*witness_lens.iter().skip(2).next().unwrap(), ACCEPTED_HTLC_SCRIPT_WEIGHT); // revoked received HTLC
 
                        assert_eq!(node_txn[3].input.len(), 1);
                        check_spends!(node_txn[3], chan_1.3.clone());
 
                        assert_eq!(node_txn[4].input.len(), 1);
                        let witness_script = node_txn[4].input[0].witness.last().unwrap();
-                       assert_eq!(witness_script.len(), 133); //Spending an offered htlc output
+                       assert_eq!(witness_script.len(), OFFERED_HTLC_SCRIPT_WEIGHT); //Spending an offered htlc output
                        assert_eq!(node_txn[4].input[0].previous_output.txid, node_txn[3].txid());
                        assert_ne!(node_txn[4].input[0].previous_output.txid, node_txn[0].input[0].previous_output.txid);
                        assert_ne!(node_txn[4].input[0].previous_output.txid, node_txn[1].input[0].previous_output.txid);
@@ -6094,6 +6163,561 @@ mod tests {
                assert_eq!(nodes[1].node.list_channels().len(), 0);
        }
 
+       #[test]
+       fn test_htlc_on_chain_success() {
+               // Test that in case of an unilateral close onchain, we detect the state of output thanks to
+               // ChainWatchInterface and pass the preimage backward accordingly. So here we test that ChannelManager is
+               // broadcasting the right event to other nodes in payment path.
+               // A --------------------> B ----------------------> C (preimage)
+               // First, C should claim the HTLC output via HTLC-Success when its own latest local
+               // commitment transaction was broadcast.
+               // Then, B should learn the preimage from said transactions, attempting to claim backwards
+               // towards B.
+               // B should be able to claim via preimage if A then broadcasts its local tx.
+               // Finally, when A sees B's latest local commitment transaction it should be able to claim
+               // the HTLC output via the preimage it learned (which, once confirmed should generate a
+               // PaymentSent event).
+
+               let nodes = create_network(3);
+
+               // Create some initial channels
+               let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1);
+               let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2);
+
+               // Rebalance the network a bit by relaying one payment through all the channels...
+               send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000);
+               send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000);
+
+               let (our_payment_preimage, _payment_hash) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000);
+               let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42};
+
+               // Broadcast legit commitment tx from C on B's chain
+               // Broadcast HTLC Success transation by C on received output from C's commitment tx on B's chain
+               let commitment_tx = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone();
+               assert_eq!(commitment_tx.len(), 1);
+               check_spends!(commitment_tx[0], chan_2.3.clone());
+               nodes[2].node.claim_funds(our_payment_preimage);
+               check_added_monitors!(nodes[2], 1);
+               let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
+               assert!(updates.update_add_htlcs.is_empty());
+               assert!(updates.update_fail_htlcs.is_empty());
+               assert!(updates.update_fail_malformed_htlcs.is_empty());
+               assert_eq!(updates.update_fulfill_htlcs.len(), 1);
+
+               nodes[2].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 1);
+               let events = nodes[2].node.get_and_clear_pending_msg_events();
+               assert_eq!(events.len(), 1);
+               match events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate { .. } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               let node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 1 (commitment tx), ChannelMonitor : 2 (2 * HTLC-Success tx)
+               assert_eq!(node_txn.len(), 3);
+               assert_eq!(node_txn[1], commitment_tx[0]);
+               assert_eq!(node_txn[0], node_txn[2]);
+               check_spends!(node_txn[0], commitment_tx[0].clone());
+               assert_eq!(node_txn[0].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT);
+               assert!(node_txn[0].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output
+               assert_eq!(node_txn[0].lock_time, 0);
+
+               // Verify that B's ChannelManager is able to extract preimage from HTLC Success tx and pass it backward
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: node_txn}, 1);
+               let events = nodes[1].node.get_and_clear_pending_msg_events();
+               {
+                       let mut added_monitors = nodes[1].chan_monitor.added_monitors.lock().unwrap();
+                       assert_eq!(added_monitors.len(), 1);
+                       assert_eq!(added_monitors[0].0.txid, chan_1.3.txid());
+                       added_monitors.clear();
+               }
+               assert_eq!(events.len(), 2);
+               match events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate { .. } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               match events[1] {
+                       MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, .. } } => {
+                               assert!(update_add_htlcs.is_empty());
+                               assert!(update_fail_htlcs.is_empty());
+                               assert_eq!(update_fulfill_htlcs.len(), 1);
+                               assert!(update_fail_malformed_htlcs.is_empty());
+                               assert_eq!(nodes[0].node.get_our_node_id(), *node_id);
+                       },
+                       _ => panic!("Unexpected event"),
+               };
+               {
+                       // nodes[1] now broadcasts its own local state as a fallback, suggesting an alternate
+                       // commitment transaction with a corresponding HTLC-Timeout transaction, as well as a
+                       // timeout-claim of the output that nodes[2] just claimed via success.
+                       let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); // ChannelManager : 2 (commitment tx, HTLC-Timeout tx), ChannelMonitor : 1 (timeout tx) * 2 (block-rescan)
+                       assert_eq!(node_txn.len(), 4);
+                       assert_eq!(node_txn[0], node_txn[3]);
+                       check_spends!(node_txn[0], commitment_tx[0].clone());
+                       assert_eq!(node_txn[0].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT);
+                       assert_ne!(node_txn[0].lock_time, 0);
+                       assert!(node_txn[0].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment
+                       check_spends!(node_txn[1], chan_2.3.clone());
+                       check_spends!(node_txn[2], node_txn[1].clone());
+                       assert_eq!(node_txn[1].input[0].witness.clone().last().unwrap().len(), 71);
+                       assert_eq!(node_txn[2].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
+                       assert!(node_txn[2].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output
+                       assert_ne!(node_txn[2].lock_time, 0);
+                       node_txn.clear();
+               }
+
+               // Broadcast legit commitment tx from A on B's chain
+               // Broadcast preimage tx by B on offered output from A commitment tx  on A's chain
+               let commitment_tx = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone();
+               check_spends!(commitment_tx[0], chan_1.3.clone());
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 1);
+               let events = nodes[1].node.get_and_clear_pending_msg_events();
+               assert_eq!(events.len(), 1);
+               match events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate { .. } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 1 (commitment tx), ChannelMonitor : 1 (HTLC-Success) * 2 (block-rescan)
+               assert_eq!(node_txn.len(), 3);
+               assert_eq!(node_txn[0], node_txn[2]);
+               check_spends!(node_txn[0], commitment_tx[0].clone());
+               assert_eq!(node_txn[0].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
+               assert_eq!(node_txn[0].lock_time, 0);
+               assert!(node_txn[0].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment
+               check_spends!(node_txn[1], chan_1.3.clone());
+               assert_eq!(node_txn[1].input[0].witness.clone().last().unwrap().len(), 71);
+               // We don't bother to check that B can claim the HTLC output on its commitment tx here as
+               // we already checked the same situation with A.
+
+               // Verify that A's ChannelManager is able to extract preimage from preimage tx and generate PaymentSent
+               nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone(), node_txn[0].clone()] }, 1);
+               let events = nodes[0].node.get_and_clear_pending_msg_events();
+               assert_eq!(events.len(), 1);
+               match events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate { .. } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               let events = nodes[0].node.get_and_clear_pending_events();
+               assert_eq!(events.len(), 1);
+               match events[0] {
+                       Event::PaymentSent { payment_preimage } => {
+                               assert_eq!(payment_preimage, our_payment_preimage);
+                       },
+                       _ => panic!("Unexpected event"),
+               }
+               let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 2 (commitment tx, HTLC-Timeout tx), ChannelMonitor : 1 (HTLC-Timeout tx) * 2 (block-rescan)
+               assert_eq!(node_txn.len(), 4);
+               assert_eq!(node_txn[0], node_txn[3]);
+               check_spends!(node_txn[0], commitment_tx[0].clone());
+               assert_eq!(node_txn[0].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
+               assert_ne!(node_txn[0].lock_time, 0);
+               assert!(node_txn[0].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output
+               check_spends!(node_txn[1], chan_1.3.clone());
+               check_spends!(node_txn[2], node_txn[1].clone());
+               assert_eq!(node_txn[1].input[0].witness.clone().last().unwrap().len(), 71);
+               assert_eq!(node_txn[2].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
+               assert!(node_txn[2].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output
+               assert_ne!(node_txn[2].lock_time, 0);
+       }
+
+       #[test]
+       fn test_htlc_on_chain_timeout() {
+               // Test that in case of an unilateral close onchain, we detect the state of output thanks to
+               // ChainWatchInterface and timeout the HTLC  bacward accordingly. So here we test that ChannelManager is
+               // broadcasting the right event to other nodes in payment path.
+               // A ------------------> B ----------------------> C (timeout)
+               //    B's commitment tx                 C's commitment tx
+               //            \                                  \
+               //         B's HTLC timeout tx               B's timeout tx
+
+               let nodes = create_network(3);
+
+               // Create some intial channels
+               let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1);
+               let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2);
+
+               // Rebalance the network a bit by relaying one payment thorugh all the channels...
+               send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000);
+               send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000);
+
+               let (_payment_preimage, payment_hash) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000);
+               let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42};
+
+               // Brodacast legit commitment tx from C on B's chain
+               let commitment_tx = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone();
+               check_spends!(commitment_tx[0], chan_2.3.clone());
+               nodes[2].node.fail_htlc_backwards(&payment_hash, PaymentFailReason::PreimageUnknown);
+               {
+                       let mut added_monitors = nodes[2].chan_monitor.added_monitors.lock().unwrap();
+                       assert_eq!(added_monitors.len(), 1);
+                       added_monitors.clear();
+               }
+               let events = nodes[2].node.get_and_clear_pending_msg_events();
+               assert_eq!(events.len(), 1);
+               match events[0] {
+                       MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, .. } } => {
+                               assert!(update_add_htlcs.is_empty());
+                               assert!(!update_fail_htlcs.is_empty());
+                               assert!(update_fulfill_htlcs.is_empty());
+                               assert!(update_fail_malformed_htlcs.is_empty());
+                               assert_eq!(nodes[1].node.get_our_node_id(), *node_id);
+                       },
+                       _ => panic!("Unexpected event"),
+               };
+               nodes[2].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 1);
+               let events = nodes[2].node.get_and_clear_pending_msg_events();
+               assert_eq!(events.len(), 1);
+               match events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { .. } } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               let node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 1 (commitment tx)
+               assert_eq!(node_txn.len(), 1);
+               check_spends!(node_txn[0], chan_2.3.clone());
+               assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), 71);
+
+               // Broadcast timeout transaction by B on received output fron C's commitment tx on B's chain
+               // Verify that B's ChannelManager is able to detect that HTLC is timeout by its own tx and react backward in consequence
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 200);
+               let timeout_tx;
+               {
+                       let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap();
+                       assert_eq!(node_txn.len(), 8); // ChannelManager : 2 (commitment tx, HTLC-Timeout tx), ChannelMonitor : 6 (HTLC-Timeout tx, commitment tx, timeout tx) * 2 (block-rescan)
+                       assert_eq!(node_txn[0], node_txn[5]);
+                       assert_eq!(node_txn[1], node_txn[6]);
+                       assert_eq!(node_txn[2], node_txn[7]);
+                       check_spends!(node_txn[0], commitment_tx[0].clone());
+                       assert_eq!(node_txn[0].clone().input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT);
+                       check_spends!(node_txn[1], chan_2.3.clone());
+                       check_spends!(node_txn[2], node_txn[1].clone());
+                       assert_eq!(node_txn[1].clone().input[0].witness.last().unwrap().len(), 71);
+                       assert_eq!(node_txn[2].clone().input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
+                       check_spends!(node_txn[3], chan_2.3.clone());
+                       check_spends!(node_txn[4], node_txn[3].clone());
+                       assert_eq!(node_txn[3].input[0].witness.clone().last().unwrap().len(), 71);
+                       assert_eq!(node_txn[4].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
+                       timeout_tx = node_txn[0].clone();
+                       node_txn.clear();
+               }
+
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![timeout_tx]}, 1);
+               let events = nodes[1].node.get_and_clear_pending_msg_events();
+               check_added_monitors!(nodes[1], 1);
+               assert_eq!(events.len(), 2);
+               match events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { .. } } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               match events[1] {
+                       MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, .. } } => {
+                               assert!(update_add_htlcs.is_empty());
+                               assert!(!update_fail_htlcs.is_empty());
+                               assert!(update_fulfill_htlcs.is_empty());
+                               assert!(update_fail_malformed_htlcs.is_empty());
+                               assert_eq!(nodes[0].node.get_our_node_id(), *node_id);
+                       },
+                       _ => panic!("Unexpected event"),
+               };
+               let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // Well... here we detect our own htlc_timeout_tx so no tx to be generated
+               assert_eq!(node_txn.len(), 0);
+
+               // Broadcast legit commitment tx from B on A's chain
+               let commitment_tx = nodes[1].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone();
+               check_spends!(commitment_tx[0], chan_1.3.clone());
+
+               nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 200);
+               let events = nodes[0].node.get_and_clear_pending_msg_events();
+               assert_eq!(events.len(), 1);
+               match events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { .. } } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 2 (commitment tx, HTLC-Timeout tx), ChannelMonitor : 2 (timeout tx) * 2 block-rescan
+               assert_eq!(node_txn.len(), 4);
+               assert_eq!(node_txn[0], node_txn[3]);
+               check_spends!(node_txn[0], commitment_tx[0].clone());
+               assert_eq!(node_txn[0].clone().input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT);
+               check_spends!(node_txn[1], chan_1.3.clone());
+               check_spends!(node_txn[2], node_txn[1].clone());
+               assert_eq!(node_txn[1].clone().input[0].witness.last().unwrap().len(), 71);
+               assert_eq!(node_txn[2].clone().input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
+       }
+
+       #[test]
+       fn test_simple_commitment_revoked_fail_backward() {
+               // Test that in case of a revoked commitment tx, we detect the resolution of output by justice tx
+               // and fail backward accordingly.
+
+               let nodes = create_network(3);
+
+               // Create some initial channels
+               create_announced_chan_between_nodes(&nodes, 0, 1);
+               let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2);
+
+               let (payment_preimage, _payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 3000000);
+               // Get the will-be-revoked local txn from nodes[2]
+               let revoked_local_txn = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone();
+               // Revoke the old state
+               claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
+
+               route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 3000000);
+
+               let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42};
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1);
+               let events = nodes[1].node.get_and_clear_pending_msg_events();
+               check_added_monitors!(nodes[1], 1);
+               assert_eq!(events.len(), 2);
+               match events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { .. } } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               match events[1] {
+                       MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, ref commitment_signed, .. } } => {
+                               assert!(update_add_htlcs.is_empty());
+                               assert_eq!(update_fail_htlcs.len(), 1);
+                               assert!(update_fulfill_htlcs.is_empty());
+                               assert!(update_fail_malformed_htlcs.is_empty());
+                               assert_eq!(nodes[0].node.get_our_node_id(), *node_id);
+
+                               nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]).unwrap();
+                               commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false, true);
+
+                               let events = nodes[0].node.get_and_clear_pending_msg_events();
+                               assert_eq!(events.len(), 1);
+                               match events[0] {
+                                       MessageSendEvent::PaymentFailureNetworkUpdate { .. } => {},
+                                       _ => panic!("Unexpected event"),
+                               }
+                               let events = nodes[0].node.get_and_clear_pending_events();
+                               assert_eq!(events.len(), 1);
+                               match events[0] {
+                                       Event::PaymentFailed { .. } => {},
+                                       _ => panic!("Unexpected event"),
+                               }
+                       },
+                       _ => panic!("Unexpected event"),
+               }
+       }
+
+       fn do_test_commitment_revoked_fail_backward_exhaustive(deliver_bs_raa: bool) {
+               // Test that if our counterparty broadcasts a revoked commitment transaction we fail all
+               // pending HTLCs on that channel backwards even if the HTLCs aren't present in our latest
+               // commitment transaction anymore.
+               // To do this, we have the peer which will broadcast a revoked commitment transaction send
+               // a number of update_fail/commitment_signed updates without ever sending the RAA in
+               // response to our commitment_signed. This is somewhat misbehavior-y, though not
+               // technically disallowed and we should probably handle it reasonably.
+               // Note that this is pretty exhaustive as an outbound HTLC which we haven't yet
+               // failed/fulfilled backwards must be in at least one of the latest two remote commitment
+               // transactions:
+               // * Once we move it out of our holding cell/add it, we will immediately include it in a
+               //   commitment_signed (implying it will be in the latest remote commitment transaction).
+               // * Once they remove it, we will send a (the first) commitment_signed without the HTLC,
+               //   and once they revoke the previous commitment transaction (allowing us to send a new
+               //   commitment_signed) we will be free to fail/fulfill the HTLC backwards.
+               let mut nodes = create_network(3);
+
+               // Create some initial channels
+               create_announced_chan_between_nodes(&nodes, 0, 1);
+               let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2);
+
+               let (payment_preimage, _payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 3000000);
+               // Get the will-be-revoked local txn from nodes[2]
+               let revoked_local_txn = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone();
+               // Revoke the old state
+               claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
+
+               let (_, first_payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 3000000);
+               let (_, second_payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 3000000);
+               let (_, third_payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 3000000);
+
+               assert!(nodes[2].node.fail_htlc_backwards(&first_payment_hash, PaymentFailReason::PreimageUnknown));
+               check_added_monitors!(nodes[2], 1);
+               let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
+               assert!(updates.update_add_htlcs.is_empty());
+               assert!(updates.update_fulfill_htlcs.is_empty());
+               assert!(updates.update_fail_malformed_htlcs.is_empty());
+               assert_eq!(updates.update_fail_htlcs.len(), 1);
+               assert!(updates.update_fee.is_none());
+               nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]).unwrap();
+               let bs_raa = commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, false, true, false, true);
+               // Drop the last RAA from 3 -> 2
+
+               assert!(nodes[2].node.fail_htlc_backwards(&second_payment_hash, PaymentFailReason::PreimageUnknown));
+               check_added_monitors!(nodes[2], 1);
+               let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
+               assert!(updates.update_add_htlcs.is_empty());
+               assert!(updates.update_fulfill_htlcs.is_empty());
+               assert!(updates.update_fail_malformed_htlcs.is_empty());
+               assert_eq!(updates.update_fail_htlcs.len(), 1);
+               assert!(updates.update_fee.is_none());
+               nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]).unwrap();
+               nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &updates.commitment_signed).unwrap();
+               check_added_monitors!(nodes[1], 1);
+               // Note that nodes[1] is in AwaitingRAA, so won't send a CS
+               let as_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[2].node.get_our_node_id());
+               nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_raa).unwrap();
+               check_added_monitors!(nodes[2], 1);
+
+               assert!(nodes[2].node.fail_htlc_backwards(&third_payment_hash, PaymentFailReason::PreimageUnknown));
+               check_added_monitors!(nodes[2], 1);
+               let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
+               assert!(updates.update_add_htlcs.is_empty());
+               assert!(updates.update_fulfill_htlcs.is_empty());
+               assert!(updates.update_fail_malformed_htlcs.is_empty());
+               assert_eq!(updates.update_fail_htlcs.len(), 1);
+               assert!(updates.update_fee.is_none());
+               nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]).unwrap();
+               // At this point first_payment_hash has dropped out of the latest two commitment
+               // transactions that nodes[1] is tracking...
+               nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &updates.commitment_signed).unwrap();
+               check_added_monitors!(nodes[1], 1);
+               // Note that nodes[1] is (still) in AwaitingRAA, so won't send a CS
+               let as_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[2].node.get_our_node_id());
+               nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_raa).unwrap();
+               check_added_monitors!(nodes[2], 1);
+
+               // Add a fourth HTLC, this one will get sequestered away in nodes[1]'s holding cell waiting
+               // on nodes[2]'s RAA.
+               let route = nodes[1].router.get_route(&nodes[2].node.get_our_node_id(), None, &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap();
+               let (_, fourth_payment_hash) = get_payment_preimage_hash!(nodes[0]);
+               nodes[1].node.send_payment(route, fourth_payment_hash).unwrap();
+               assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
+               assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
+               check_added_monitors!(nodes[1], 0);
+
+               if deliver_bs_raa {
+                       nodes[1].node.handle_revoke_and_ack(&nodes[2].node.get_our_node_id(), &bs_raa).unwrap();
+                       // One monitor for the new revocation preimage, one as we generate a commitment for
+                       // nodes[0] to fail first_payment_hash backwards.
+                       check_added_monitors!(nodes[1], 2);
+               }
+
+               let mut failed_htlcs = HashSet::new();
+               assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
+
+               let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42};
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1);
+
+               let events = nodes[1].node.get_and_clear_pending_events();
+               assert_eq!(events.len(), 1);
+               match events[0] {
+                       Event::PaymentFailed { ref payment_hash, .. } => {
+                               assert_eq!(*payment_hash, fourth_payment_hash);
+                       },
+                       _ => panic!("Unexpected event"),
+               }
+
+               if !deliver_bs_raa {
+                       // If we delivered the RAA already then we already failed first_payment_hash backwards.
+                       check_added_monitors!(nodes[1], 1);
+               }
+
+               let events = nodes[1].node.get_and_clear_pending_msg_events();
+               assert_eq!(events.len(), if deliver_bs_raa { 3 } else { 2 });
+               match events[if deliver_bs_raa { 2 } else { 0 }] {
+                       MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { .. } } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               if deliver_bs_raa {
+                       match events[0] {
+                               MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, .. } } => {
+                                       assert_eq!(nodes[2].node.get_our_node_id(), *node_id);
+                                       assert_eq!(update_add_htlcs.len(), 1);
+                                       assert!(update_fulfill_htlcs.is_empty());
+                                       assert!(update_fail_htlcs.is_empty());
+                                       assert!(update_fail_malformed_htlcs.is_empty());
+                               },
+                               _ => panic!("Unexpected event"),
+                       }
+               }
+               // Due to the way backwards-failing occurs we do the updates in two steps.
+               let updates = match events[1] {
+                       MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, ref commitment_signed, .. } } => {
+                               assert!(update_add_htlcs.is_empty());
+                               assert_eq!(update_fail_htlcs.len(), 1);
+                               assert!(update_fulfill_htlcs.is_empty());
+                               assert!(update_fail_malformed_htlcs.is_empty());
+                               assert_eq!(nodes[0].node.get_our_node_id(), *node_id);
+
+                               nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]).unwrap();
+                               nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), commitment_signed).unwrap();
+                               check_added_monitors!(nodes[0], 1);
+                               let (as_revoke_and_ack, as_commitment_signed) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
+                               nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack).unwrap();
+                               check_added_monitors!(nodes[1], 1);
+                               let bs_second_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
+                               nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_commitment_signed).unwrap();
+                               check_added_monitors!(nodes[1], 1);
+                               let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
+                               nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap();
+                               check_added_monitors!(nodes[0], 1);
+
+                               if !deliver_bs_raa {
+                                       // If we delievered B's RAA we got an unknown preimage error, not something
+                                       // that we should update our routing table for.
+                                       let events = nodes[0].node.get_and_clear_pending_msg_events();
+                                       assert_eq!(events.len(), 1);
+                                       match events[0] {
+                                               MessageSendEvent::PaymentFailureNetworkUpdate { .. } => {},
+                                               _ => panic!("Unexpected event"),
+                                       }
+                               }
+                               let events = nodes[0].node.get_and_clear_pending_events();
+                               assert_eq!(events.len(), 1);
+                               match events[0] {
+                                       Event::PaymentFailed { ref payment_hash, .. } => {
+                                               assert!(failed_htlcs.insert(payment_hash.0));
+                                       },
+                                       _ => panic!("Unexpected event"),
+                               }
+
+                               bs_second_update
+                       },
+                       _ => panic!("Unexpected event"),
+               };
+
+               assert!(updates.update_add_htlcs.is_empty());
+               assert_eq!(updates.update_fail_htlcs.len(), 2);
+               assert!(updates.update_fulfill_htlcs.is_empty());
+               assert!(updates.update_fail_malformed_htlcs.is_empty());
+               nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]).unwrap();
+               nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[1]).unwrap();
+               commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false, true);
+
+               let events = nodes[0].node.get_and_clear_pending_msg_events();
+               assert_eq!(events.len(), 2);
+               for event in events {
+                       match event {
+                               MessageSendEvent::PaymentFailureNetworkUpdate { .. } => {},
+                               _ => panic!("Unexpected event"),
+                       }
+               }
+
+               let events = nodes[0].node.get_and_clear_pending_events();
+               assert_eq!(events.len(), 2);
+               match events[0] {
+                       Event::PaymentFailed { ref payment_hash, .. } => {
+                               assert!(failed_htlcs.insert(payment_hash.0));
+                       },
+                       _ => panic!("Unexpected event"),
+               }
+               match events[1] {
+                       Event::PaymentFailed { ref payment_hash, .. } => {
+                               assert!(failed_htlcs.insert(payment_hash.0));
+                       },
+                       _ => panic!("Unexpected event"),
+               }
+
+               assert!(failed_htlcs.contains(&first_payment_hash.0));
+               assert!(failed_htlcs.contains(&second_payment_hash.0));
+               assert!(failed_htlcs.contains(&third_payment_hash.0));
+       }
+
+       #[test]
+       fn test_commitment_revoked_fail_backward_exhaustive() {
+               do_test_commitment_revoked_fail_backward_exhaustive(false);
+               do_test_commitment_revoked_fail_backward_exhaustive(true);
+       }
+
        #[test]
        fn test_htlc_ignore_latest_remote_commitment() {
                // Test that HTLC transactions spending the latest remote commitment transaction are simply
@@ -8364,7 +8988,7 @@ mod tests {
                let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); // ChannelManager : 1 (local commitment tx), ChannelMonitor: 2 (1 preimage tx) * 2 (block-rescan)
                check_spends!(node_txn[0], commitment_tx[0].clone());
                assert_eq!(node_txn[0], node_txn[2]);
-               assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), 133);
+               assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
                check_spends!(node_txn[1], chan_1.3.clone());
 
                let spend_txn = check_spendable_outputs!(nodes[1], 1); // , 0, 0, 1, 1);
@@ -8429,10 +9053,12 @@ mod tests {
                        _ => panic!("Unexpected event"),
                }
                let revoked_htlc_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
-               assert_eq!(revoked_htlc_txn.len(), 2);
+               assert_eq!(revoked_htlc_txn.len(), 3);
+               assert_eq!(revoked_htlc_txn[0], revoked_htlc_txn[2]);
                assert_eq!(revoked_htlc_txn[0].input.len(), 1);
-               assert_eq!(revoked_htlc_txn[0].input[0].witness.last().unwrap().len(), 133);
+               assert_eq!(revoked_htlc_txn[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
                check_spends!(revoked_htlc_txn[0], revoked_local_txn[0].clone());
+               check_spends!(revoked_htlc_txn[1], chan_1.3.clone());
 
                // B will generate justice tx from A's revoked commitment/HTLC tx
                nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone(), revoked_htlc_txn[0].clone()] }, 1);
@@ -8479,9 +9105,10 @@ mod tests {
                }
                let revoked_htlc_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap();
 
-               assert_eq!(revoked_htlc_txn.len(), 2);
+               assert_eq!(revoked_htlc_txn.len(), 3);
+               assert_eq!(revoked_htlc_txn[0], revoked_htlc_txn[2]);
                assert_eq!(revoked_htlc_txn[0].input.len(), 1);
-               assert_eq!(revoked_htlc_txn[0].input[0].witness.last().unwrap().len(), 138);
+               assert_eq!(revoked_htlc_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT);
                check_spends!(revoked_htlc_txn[0], revoked_local_txn[0].clone());
 
                // A will generate justice tx from B's revoked commitment/HTLC tx
@@ -8507,6 +9134,226 @@ mod tests {
                check_spends!(spend_txn[4], node_txn[3].clone()); // spending justice tx output on htlc success tx
        }
 
+       #[test]
+       fn test_onchain_to_onchain_claim() {
+               // Test that in case of channel closure, we detect the state of output thanks to
+               // ChainWatchInterface and claim HTLC on downstream peer's remote commitment tx.
+               // First, have C claim an HTLC against its own latest commitment transaction.
+               // Then, broadcast these to B, which should update the monitor downstream on the A<->B
+               // channel.
+               // Finally, check that B will claim the HTLC output if A's latest commitment transaction
+               // gets broadcast.
+
+               let nodes = create_network(3);
+
+               // Create some initial channels
+               let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1);
+               let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2);
+
+               // Rebalance the network a bit by relaying one payment through all the channels ...
+               send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000);
+               send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000);
+
+               let (payment_preimage, _payment_hash) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000);
+               let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42};
+               let commitment_tx = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone();
+               check_spends!(commitment_tx[0], chan_2.3.clone());
+               nodes[2].node.claim_funds(payment_preimage);
+               check_added_monitors!(nodes[2], 1);
+               let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
+               assert!(updates.update_add_htlcs.is_empty());
+               assert!(updates.update_fail_htlcs.is_empty());
+               assert_eq!(updates.update_fulfill_htlcs.len(), 1);
+               assert!(updates.update_fail_malformed_htlcs.is_empty());
+
+               nodes[2].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 1);
+               let events = nodes[2].node.get_and_clear_pending_msg_events();
+               assert_eq!(events.len(), 1);
+               match events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate { .. } => {},
+                       _ => panic!("Unexpected event"),
+               }
+
+               let c_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 2 (commitment tx, HTLC-Success tx), ChannelMonitor : 1 (HTLC-Success tx)
+               assert_eq!(c_txn.len(), 3);
+               assert_eq!(c_txn[0], c_txn[2]);
+               assert_eq!(commitment_tx[0], c_txn[1]);
+               check_spends!(c_txn[1], chan_2.3.clone());
+               check_spends!(c_txn[2], c_txn[1].clone());
+               assert_eq!(c_txn[1].input[0].witness.clone().last().unwrap().len(), 71);
+               assert_eq!(c_txn[2].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT);
+               assert!(c_txn[0].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output
+               assert_eq!(c_txn[0].lock_time, 0); // Success tx
+
+               // So we broadcast C's commitment tx and HTLC-Success on B's chain, we should successfully be able to extract preimage and update downstream monitor
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![c_txn[1].clone(), c_txn[2].clone()]}, 1);
+               {
+                       let mut b_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap();
+                       assert_eq!(b_txn.len(), 4);
+                       assert_eq!(b_txn[0], b_txn[3]);
+                       check_spends!(b_txn[1], chan_2.3); // B local commitment tx, issued by ChannelManager
+                       check_spends!(b_txn[2], b_txn[1].clone()); // HTLC-Timeout on B local commitment tx, issued by ChannelManager
+                       assert_eq!(b_txn[2].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
+                       assert!(b_txn[2].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output
+                       assert_ne!(b_txn[2].lock_time, 0); // Timeout tx
+                       check_spends!(b_txn[0], c_txn[1].clone()); // timeout tx on C remote commitment tx, issued by ChannelMonitor, * 2 due to block rescan
+                       assert_eq!(b_txn[0].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT);
+                       assert!(b_txn[0].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment
+                       assert_ne!(b_txn[2].lock_time, 0); // Timeout tx
+                       b_txn.clear();
+               }
+               let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
+               check_added_monitors!(nodes[1], 1);
+               match msg_events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate {  .. } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               match msg_events[1] {
+                       MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, .. } } => {
+                               assert!(update_add_htlcs.is_empty());
+                               assert!(update_fail_htlcs.is_empty());
+                               assert_eq!(update_fulfill_htlcs.len(), 1);
+                               assert!(update_fail_malformed_htlcs.is_empty());
+                               assert_eq!(nodes[0].node.get_our_node_id(), *node_id);
+                       },
+                       _ => panic!("Unexpected event"),
+               };
+               // Broadcast A's commitment tx on B's chain to see if we are able to claim inbound HTLC with our HTLC-Success tx
+               let commitment_tx = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone();
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 1);
+               let b_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap();
+               assert_eq!(b_txn.len(), 3);
+               check_spends!(b_txn[1], chan_1.3); // Local commitment tx, issued by ChannelManager
+               assert_eq!(b_txn[0], b_txn[2]); // HTLC-Success tx, issued by ChannelMonitor, * 2 due to block rescan
+               check_spends!(b_txn[0], commitment_tx[0].clone());
+               assert_eq!(b_txn[0].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
+               assert!(b_txn[0].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment
+               assert_eq!(b_txn[2].lock_time, 0); // Success tx
+               let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
+               match msg_events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate {  .. } => {},
+                       _ => panic!("Unexpected event"),
+               }
+       }
+
+       #[test]
+       fn test_duplicate_payment_hash_one_failure_one_success() {
+               // Topology : A --> B --> C
+               // We route 2 payments with same hash between B and C, one will be timeout, the other successfully claim
+               let mut nodes = create_network(3);
+
+               create_announced_chan_between_nodes(&nodes, 0, 1);
+               let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2);
+
+               let (our_payment_preimage, duplicate_payment_hash) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 900000);
+               *nodes[0].network_payment_count.borrow_mut() -= 1;
+               assert_eq!(route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 900000).1, duplicate_payment_hash);
+
+               let commitment_txn = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone();
+               assert_eq!(commitment_txn[0].input.len(), 1);
+               check_spends!(commitment_txn[0], chan_2.3.clone());
+
+               let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_txn[0].clone()] }, 1);
+               let htlc_timeout_tx;
+               { // Extract one of the two HTLC-Timeout transaction
+                       let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap();
+                       assert_eq!(node_txn.len(), 7);
+                       assert_eq!(node_txn[0], node_txn[5]);
+                       assert_eq!(node_txn[1], node_txn[6]);
+                       check_spends!(node_txn[0], commitment_txn[0].clone());
+                       assert_eq!(node_txn[0].input.len(), 1);
+                       check_spends!(node_txn[1], commitment_txn[0].clone());
+                       assert_eq!(node_txn[1].input.len(), 1);
+                       assert_ne!(node_txn[0].input[0], node_txn[1].input[0]);
+                       check_spends!(node_txn[2], chan_2.3.clone());
+                       check_spends!(node_txn[3], node_txn[2].clone());
+                       check_spends!(node_txn[4], node_txn[2].clone());
+                       htlc_timeout_tx = node_txn[1].clone();
+               }
+
+               let events = nodes[1].node.get_and_clear_pending_msg_events();
+               match events[0] {
+                       MessageSendEvent::BroadcastChannelUpdate { .. } => {},
+                       _ => panic!("Unexepected event"),
+               }
+
+               nodes[2].node.claim_funds(our_payment_preimage);
+               nodes[2].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_txn[0].clone()] }, 1);
+               check_added_monitors!(nodes[2], 2);
+               let events = nodes[2].node.get_and_clear_pending_msg_events();
+               match events[0] {
+                       MessageSendEvent::UpdateHTLCs { .. } => {},
+                       _ => panic!("Unexpected event"),
+               }
+               match events[1] {
+                       MessageSendEvent::BroadcastChannelUpdate { .. } => {},
+                       _ => panic!("Unexepected event"),
+               }
+               let htlc_success_txn: Vec<_> = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone();
+               assert_eq!(htlc_success_txn.len(), 5);
+               check_spends!(htlc_success_txn[2], chan_2.3.clone());
+               assert_eq!(htlc_success_txn[0], htlc_success_txn[3]);
+               assert_eq!(htlc_success_txn[0].input.len(), 1);
+               assert_eq!(htlc_success_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT);
+               assert_eq!(htlc_success_txn[1], htlc_success_txn[4]);
+               assert_eq!(htlc_success_txn[1].input.len(), 1);
+               assert_eq!(htlc_success_txn[1].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT);
+               assert_ne!(htlc_success_txn[0].input[0], htlc_success_txn[1].input[0]);
+               check_spends!(htlc_success_txn[0], commitment_txn[0].clone());
+               check_spends!(htlc_success_txn[1], commitment_txn[0].clone());
+
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![htlc_timeout_tx] }, 200);
+               let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
+               assert!(htlc_updates.update_add_htlcs.is_empty());
+               assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
+               assert_eq!(htlc_updates.update_fail_htlcs[0].htlc_id, 1);
+               assert!(htlc_updates.update_fulfill_htlcs.is_empty());
+               assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
+               check_added_monitors!(nodes[1], 1);
+
+               nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]).unwrap();
+               assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
+               {
+                       commitment_signed_dance!(nodes[0], nodes[1], &htlc_updates.commitment_signed, false, true);
+                       let events = nodes[0].node.get_and_clear_pending_msg_events();
+                       assert_eq!(events.len(), 1);
+                       match events[0] {
+                               MessageSendEvent::PaymentFailureNetworkUpdate { update: msgs::HTLCFailChannelUpdate::ChannelClosed { .. }  } => {
+                               },
+                               _ => { panic!("Unexpected event"); }
+                       }
+               }
+               let events = nodes[0].node.get_and_clear_pending_events();
+               match events[0] {
+                       Event::PaymentFailed { ref payment_hash, .. } => {
+                               assert_eq!(*payment_hash, duplicate_payment_hash);
+                       }
+                       _ => panic!("Unexpected event"),
+               }
+
+               // Solve 2nd HTLC by broadcasting on B's chain HTLC-Success Tx from C
+               nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![htlc_success_txn[0].clone()] }, 200);
+               let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
+               assert!(updates.update_add_htlcs.is_empty());
+               assert!(updates.update_fail_htlcs.is_empty());
+               assert_eq!(updates.update_fulfill_htlcs.len(), 1);
+               assert_eq!(updates.update_fulfill_htlcs[0].htlc_id, 0);
+               assert!(updates.update_fail_malformed_htlcs.is_empty());
+               check_added_monitors!(nodes[1], 1);
+
+               nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]).unwrap();
+               commitment_signed_dance!(nodes[0], nodes[1], &updates.commitment_signed, false);
+
+               let events = nodes[0].node.get_and_clear_pending_events();
+               match events[0] {
+                       Event::PaymentSent { ref payment_preimage } => {
+                               assert_eq!(*payment_preimage, our_payment_preimage);
+                       }
+                       _ => panic!("Unexpected event"),
+               }
+       }
+
        #[test]
        fn test_dynamic_spendable_outputs_local_htlc_success_tx() {
                let nodes = create_network(2);
@@ -8535,13 +9382,14 @@ mod tests {
                }
                let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap();
                assert_eq!(node_txn[0].input.len(), 1);
-               assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), 138);
+               assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT);
                check_spends!(node_txn[0], local_txn[0].clone());
 
                // Verify that B is able to spend its own HTLC-Success tx thanks to spendable output event given back by its ChannelMonitor
                let spend_txn = check_spendable_outputs!(nodes[1], 1);
-               assert_eq!(spend_txn.len(), 1);
+               assert_eq!(spend_txn.len(), 2);
                check_spends!(spend_txn[0], node_txn[0].clone());
+               check_spends!(spend_txn[1], node_txn[2].clone());
        }
 
        #[test]
@@ -8566,14 +9414,18 @@ mod tests {
                }
                let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
                assert_eq!(node_txn[0].input.len(), 1);
-               assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), 133);
+               assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT);
                check_spends!(node_txn[0], local_txn[0].clone());
 
                // Verify that A is able to spend its own HTLC-Timeout tx thanks to spendable output event given back by its ChannelMonitor
                let spend_txn = check_spendable_outputs!(nodes[0], 1);
-               assert_eq!(spend_txn.len(), 4);
+               assert_eq!(spend_txn.len(), 8);
                assert_eq!(spend_txn[0], spend_txn[2]);
+               assert_eq!(spend_txn[0], spend_txn[4]);
+               assert_eq!(spend_txn[0], spend_txn[6]);
                assert_eq!(spend_txn[1], spend_txn[3]);
+               assert_eq!(spend_txn[1], spend_txn[5]);
+               assert_eq!(spend_txn[1], spend_txn[7]);
                check_spends!(spend_txn[0], local_txn[0].clone());
                check_spends!(spend_txn[1], node_txn[0].clone());
        }