//! claim outputs on-chain.
use chain;
-use chain::{Confirm, Listen, Watch};
+use chain::{Confirm, Listen, Watch, ChannelMonitorUpdateErr};
use chain::channelmonitor;
use chain::channelmonitor::{ChannelMonitor, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY};
use chain::transaction::OutPoint;
send_payment(&nodes[0], &[&nodes[1]], 1000000);
}
-#[test]
-fn test_dup_htlc_onchain_fails_on_reload() {
+fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool) {
// When a Channel is closed, any outbound HTLCs which were relayed through it are simply
// dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
// having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
// the ChannelMonitor tells it to.
//
- // If, due to an on-chain event, an HTLC is failed/claimed, and then we serialize the
- // ChannelManager, we generally expect there not to be a duplicate HTLC fail/claim (eg via a
- // PaymentPathFailed event appearing). However, because we may not serialize the relevant
- // ChannelMonitor at the same time, this isn't strictly guaranteed. In order to provide this
- // consistency, the ChannelManager explicitly tracks pending-onchain-resolution outbound HTLCs
- // and de-duplicates ChannelMonitor events.
- //
- // This tests that explicit tracking behavior.
+ // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
+ // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
+ // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
- let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2;
+ let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
// Route a payment, but force-close the channel before the HTLC fulfill message arrives at
// nodes[0].
let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(node_txn.len(), 3);
assert_eq!(node_txn[0], node_txn[1]);
+ check_spends!(node_txn[1], funding_tx);
+ check_spends!(node_txn[2], node_txn[1]);
assert!(nodes[1].node.claim_funds(payment_preimage));
check_added_monitors!(nodes[1], 1);
let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
- connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone(), node_txn[2].clone()]});
+ connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
check_closed_broadcast!(nodes[1], true);
check_added_monitors!(nodes[1], 1);
check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
header.prev_blockhash = nodes[0].best_block_hash();
- connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone(), node_txn[2].clone()]});
+ connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
- // Serialize out the ChannelMonitor before connecting the on-chain claim transactions. This is
- // fairly normal behavior as ChannelMonitor(s) are often not re-serialized when on-chain events
- // happen, unlike ChannelManager which tends to be re-serialized after any relevant event(s).
- let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
- get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
+ // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
+ // returning TemporaryFailure. This should cause the claim event to never make its way to the
+ // ChannelManager.
+ chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
+ chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure));
header.prev_blockhash = nodes[0].best_block_hash();
- let claim_block = Block { header, txdata: claim_txn};
+ let claim_block = Block { header, txdata: claim_txn };
connect_block(&nodes[0], &claim_block);
- expect_payment_sent!(nodes[0], payment_preimage);
- // ChannelManagers generally get re-serialized after any relevant event(s). Since we just
- // connected a highly-relevant block, it likely gets serialized out now.
+ let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
+ let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
+ .get_mut(&funding_txo).unwrap().drain().collect();
+ assert_eq!(mon_updates.len(), 1);
+ assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
+ assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
+
+ // If we persist the ChannelManager here, we should get the PaymentSent event after
+ // deserialization.
let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
- nodes[0].node.write(&mut chan_manager_serialized).unwrap();
+ if !persist_manager_post_event {
+ nodes[0].node.write(&mut chan_manager_serialized).unwrap();
+ }
+
+ // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
+ // payment sent event.
+ chanmon_cfgs[0].persister.set_update_ret(Ok(()));
+ let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
+ get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
+ nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, mon_updates[0]).unwrap();
+ expect_payment_sent!(nodes[0], payment_preimage);
+
+ // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
+ // twice.
+ if persist_manager_post_event {
+ nodes[0].node.write(&mut chan_manager_serialized).unwrap();
+ }
// Now reload nodes[0]...
persister = test_utils::TestPersister::new();
check_added_monitors!(nodes[0], 1);
nodes[0].node = &nodes_0_deserialized;
+ if persist_manager_post_event {
+ assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
+ } else {
+ expect_payment_sent!(nodes[0], payment_preimage);
+ }
+
// Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
// which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
// payment events should kick in, leaving us with no pending events here.
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
}
+#[test]
+fn test_dup_htlc_onchain_fails_on_reload() {
+ do_test_dup_htlc_onchain_fails_on_reload(true);
+ do_test_dup_htlc_onchain_fails_on_reload(false);
+}
+
#[test]
fn test_manager_serialize_deserialize_events() {
// This test makes sure the events field in ChannelManager survives de/serialization