-extern crate bytes;
-extern crate tokio;
-extern crate tokio_codec;
-extern crate futures;
-extern crate lightning;
-extern crate secp256k1;
-
-use bytes::BufMut;
-
-use futures::future;
-use futures::future::Future;
-use futures::{AsyncSink, Stream, Sink};
-use futures::sync::mpsc;
+//! A socket handling library for those running in Tokio environments who wish to use
+//! rust-lightning with native TcpStreams.
+//!
+//! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
+//! TcpStream and a reference to a PeerManager and the rest is handled", except for the
+//! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
+//!
+//! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
+//! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
+//!
+//! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
+//! their individual docs for more. All three take a
+//! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
+//! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
+//! The call site should, thus, look something like this:
+//! ```
+//! use tokio::sync::mpsc;
+//! use tokio::net::TcpStream;
+//! use secp256k1::key::PublicKey;
+//! use lightning::util::events::EventsProvider;
+//! use std::net::SocketAddr;
+//! use std::sync::Arc;
+//!
+//! // Define concrete types for our high-level objects:
+//! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
+//! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
+//! type ChannelMonitor = lightning::ln::channelmonitor::SimpleManyChannelMonitor<lightning::chain::transaction::OutPoint, lightning::chain::keysinterface::InMemoryChannelKeys, Arc<TxBroadcaster>, Arc<FeeEstimator>>;
+//! type ChannelManager = lightning::ln::channelmanager::SimpleArcChannelManager<ChannelMonitor, TxBroadcaster, FeeEstimator>;
+//! type PeerManager = lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChannelMonitor, TxBroadcaster, FeeEstimator>;
+//!
+//! // Connect to node with pubkey their_node_id at addr:
+//! async fn connect_to_node(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
+//! let (sender, mut receiver) = mpsc::channel(2);
+//! lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
+//! loop {
+//! receiver.recv().await;
+//! for _event in channel_manager.get_and_clear_pending_events().drain(..) {
+//! // Handle the event!
+//! }
+//! for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
+//! // Handle the event!
+//! }
+//! }
+//! }
+//!
+//! // Begin reading from a newly accepted socket and talk to the peer:
+//! async fn accept_socket(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
+//! let (sender, mut receiver) = mpsc::channel(2);
+//! lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
+//! loop {
+//! receiver.recv().await;
+//! for _event in channel_manager.get_and_clear_pending_events().drain(..) {
+//! // Handle the event!
+//! }
+//! for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
+//! // Handle the event!
+//! }
+//! }
+//! }
+//! ```
use secp256k1::key::PublicKey;
-use tokio::timer::Delay;
use tokio::net::TcpStream;
+use tokio::{io, time};
+use tokio::sync::mpsc;
+use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
use lightning::ln::peer_handler;
use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
use lightning::ln::msgs::ChannelMessageHandler;
-use std::mem;
+use std::task;
use std::net::SocketAddr;
-use std::sync::{Arc, Mutex};
+use std::sync::{Arc, Mutex, MutexGuard};
use std::sync::atomic::{AtomicU64, Ordering};
-use std::time::{Duration, Instant};
-use std::vec::Vec;
+use std::time::Duration;
use std::hash::Hash;
static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
-/// A connection to a remote peer. Can be constructed either as a remote connection using
-/// Connection::setup_outbound o
-pub struct Connection {
- writer: Option<mpsc::Sender<bytes::Bytes>>,
+/// Connection contains all our internal state for a connection - we hold a reference to the
+/// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
+/// read future (which is returned by schedule_read).
+struct Connection {
+ writer: Option<io::WriteHalf<TcpStream>>,
event_notify: mpsc::Sender<()>,
- pending_read: Vec<u8>,
- read_blocker: Option<futures::sync::oneshot::Sender<Result<(), ()>>>,
+ // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
+ // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
+ // between being woken up with write-ready and calling PeerManager::write_buffer_spce_avail.
+ // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
+ // the schedule_read stack.
+ //
+ // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
+ // runtime with functions templated by the Arc<PeerManager> type, calling
+ // write_buffer_space_avail directly from tokio's write wake, however doing so would require
+ // more unsafe voodo than I really feel like writing.
+ write_avail: mpsc::Sender<()>,
+ // When we are told by rust-lightning to pause read (because we have writes backing up), we do
+ // so by setting read_paused. At that point, the read task will stop reading bytes from the
+ // socket. To wake it up (without otherwise changing its state, we can push a value into this
+ // Sender.
+ read_waker: mpsc::Sender<()>,
read_paused: bool,
- need_disconnect: bool,
+ rl_requested_disconnect: bool,
id: u64,
}
impl Connection {
- fn schedule_read<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor<CMH>, Arc<CMH>>>, us: Arc<Mutex<Self>>, reader: futures::stream::SplitStream<tokio_codec::Framed<TcpStream, tokio_codec::BytesCodec>>) {
- let us_ref = us.clone();
- let us_close_ref = us.clone();
+ fn event_trigger(us: &mut MutexGuard<Self>) {
+ match us.event_notify.try_send(()) {
+ Ok(_) => {},
+ Err(mpsc::error::TrySendError::Full(_)) => {
+ // Ignore full errors as we just need the user to poll after this point, so if they
+ // haven't received the last send yet, it doesn't matter.
+ },
+ _ => panic!()
+ }
+ }
+ async fn schedule_read<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) {
let peer_manager_ref = peer_manager.clone();
- tokio::spawn(reader.for_each(move |b| {
- let pending_read = b.to_vec();
- {
- let mut lock = us_ref.lock().unwrap();
- assert!(lock.pending_read.is_empty());
- if lock.read_paused {
- lock.pending_read = pending_read;
- let (sender, blocker) = futures::sync::oneshot::channel();
- lock.read_blocker = Some(sender);
- return future::Either::A(blocker.then(|_| { Ok(()) }));
- }
+ // 8KB is nice and big but also should never cause any issues with stack overflowing.
+ let mut buf = [0; 8192];
+
+ let mut our_descriptor = SocketDescriptor::new(us.clone());
+ // An enum describing why we did/are disconnecting:
+ enum Disconnect {
+ // Rust-Lightning told us to disconnect, either by returning an Err or by calling
+ // SocketDescriptor::disconnect_socket.
+ // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
+ // already knows we're disconnected.
+ CloseConnection,
+ // The connection was disconnected for some other reason, ie because the socket was
+ // closed.
+ // In this case, we do need to call peer_manager.socket_disconnected() to inform
+ // Rust-Lightning that the socket is gone.
+ PeerDisconnected
+ };
+ let disconnect_type = loop {
+ macro_rules! shutdown_socket {
+ ($err: expr, $need_disconnect: expr) => { {
+ println!("Disconnecting peer due to {}!", $err);
+ break $need_disconnect;
+ } }
}
- //TODO: There's a race where we don't meet the requirements of socket_disconnected if its
- //called right here, after we release the us_ref lock in the scope above, but before we
- //call read_event!
- match peer_manager.read_event(&mut SocketDescriptor::new(us_ref.clone(), peer_manager.clone()), &pending_read) {
- Ok(pause_read) => {
- if pause_read {
- let mut lock = us_ref.lock().unwrap();
- lock.read_paused = true;
+
+ let read_paused = us.lock().unwrap().read_paused;
+ tokio::select! {
+ v = write_avail_receiver.recv() => {
+ assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
+ if us.lock().unwrap().rl_requested_disconnect {
+ shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
+ }
+ if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
+ shutdown_socket!(e, Disconnect::CloseConnection);
}
},
- Err(e) => {
- us_ref.lock().unwrap().need_disconnect = false;
- return future::Either::B(future::result(Err(std::io::Error::new(std::io::ErrorKind::InvalidData, e))));
- }
+ _ = read_wake_receiver.recv() => {},
+ read = reader.read(&mut buf), if !read_paused => match read {
+ Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
+ Ok(len) => {
+ if us.lock().unwrap().rl_requested_disconnect {
+ shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
+ }
+ let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
+ match read_res {
+ Ok(pause_read) => {
+ let mut us_lock = us.lock().unwrap();
+ if pause_read {
+ us_lock.read_paused = true;
+ }
+ Self::event_trigger(&mut us_lock);
+ },
+ Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
+ }
+ },
+ Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
+ },
}
+ };
+ let writer_option = us.lock().unwrap().writer.take();
+ if let Some(mut writer) = writer_option {
+ // If the socket is already closed, shutdown() will fail, so just ignore it.
+ let _ = writer.shutdown().await;
+ }
+ if let Disconnect::PeerDisconnected = disconnect_type {
+ peer_manager_ref.socket_disconnected(&our_descriptor);
+ Self::event_trigger(&mut us.lock().unwrap());
+ }
+ }
- if let Err(e) = us_ref.lock().unwrap().event_notify.try_send(()) {
- // Ignore full errors as we just need them to poll after this point, so if the user
- // hasn't received the last send yet, it doesn't matter.
- assert!(e.is_full());
- }
+ fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
+ // We only ever need a channel of depth 1 here: if we returned a non-full write to the
+ // PeerManager, we will eventually get notified that there is room in the socket to write
+ // new bytes, which will generate an event. That event will be popped off the queue before
+ // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
+ // the write_buffer_space_avail() call, send_data() returns a non-full write.
+ let (write_avail, write_receiver) = mpsc::channel(1);
+ // Similarly here - our only goal is to make sure the reader wakes up at some point after
+ // we shove a value into the channel which comes after we've reset the read_paused bool to
+ // false.
+ let (read_waker, read_receiver) = mpsc::channel(1);
+ let (reader, writer) = io::split(stream);
- future::Either::B(future::result(Ok(())))
- }).then(move |_| {
- if us_close_ref.lock().unwrap().need_disconnect {
- peer_manager_ref.socket_disconnected(&SocketDescriptor::new(us_close_ref, peer_manager_ref.clone()));
- println!("Peer disconnected!");
- } else {
- println!("We disconnected peer!");
- }
- Ok(())
- }));
+ (reader, write_receiver, read_receiver,
+ Arc::new(Mutex::new(Self {
+ writer: Some(writer), event_notify, write_avail, read_waker,
+ read_paused: false, rl_requested_disconnect: false,
+ id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
+ })))
}
+}
- fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (futures::stream::SplitStream<tokio_codec::Framed<TcpStream, tokio_codec::BytesCodec>>, Arc<Mutex<Self>>) {
- let (writer, reader) = tokio_codec::Framed::new(stream, tokio_codec::BytesCodec::new()).split();
- let (send_sink, send_stream) = mpsc::channel(3);
- tokio::spawn(writer.send_all(send_stream.map_err(|_| -> std::io::Error {
- unreachable!();
- })).then(|_| {
- future::result(Ok(()))
- }));
- let us = Arc::new(Mutex::new(Self { writer: Some(send_sink), event_notify, pending_read: Vec::new(), read_blocker: None, read_paused: false, need_disconnect: true, id: ID_COUNTER.fetch_add(1, Ordering::AcqRel) }));
-
- (reader, us)
- }
+/// Process incoming messages and feed outgoing messages on the provided socket generated by
+/// accepting an incoming connection.
+///
+/// The returned future will complete when the peer is disconnected and associated handling
+/// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
+/// not need to poll the provided future in order to make progress.
+///
+/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
+pub fn setup_inbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) -> impl std::future::Future<Output=()> {
+ let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
+ #[cfg(debug_assertions)]
+ let last_us = Arc::clone(&us);
- /// Process incoming messages and feed outgoing messages on the provided socket generated by
- /// accepting an incoming connection (by scheduling futures with tokio::spawn).
- ///
- /// You should poll the Receive end of event_notify and call get_and_clear_pending_events() on
- /// ChannelManager and ChannelMonitor objects.
- pub fn setup_inbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor<CMH>, Arc<CMH>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) {
- let (reader, us) = Self::new(event_notify, stream);
+ let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
+ Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
+ } else {
+ // Note that we will skip socket_disconnected here, in accordance with the PeerManager
+ // requirements.
+ None
+ };
- if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone(), peer_manager.clone())) {
- Self::schedule_read(peer_manager, us, reader);
+ async move {
+ if let Some(handle) = handle_opt {
+ if let Err(e) = handle.await {
+ assert!(e.is_cancelled());
+ } else {
+ // This is certainly not guaranteed to always be true - the read loop may exit
+ // while there are still pending write wakers that need to be woken up after the
+ // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
+ // keep too many wakers around, this makes sense. The race should be rare (we do
+ // some work after shutdown()) and an error would be a major memory leak.
+ #[cfg(debug_assertions)]
+ assert!(Arc::try_unwrap(last_us).is_ok());
+ }
}
}
+}
+
+/// Process incoming messages and feed outgoing messages on the provided socket generated by
+/// making an outbound connection which is expected to be accepted by a peer with the given
+/// public key. The relevant processing is set to run free (via tokio::spawn).
+///
+/// The returned future will complete when the peer is disconnected and associated handling
+/// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
+/// not need to poll the provided future in order to make progress.
+///
+/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
+pub fn setup_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) -> impl std::future::Future<Output=()> {
+ let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
+ #[cfg(debug_assertions)]
+ let last_us = Arc::clone(&us);
+
+ let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
+ Some(tokio::spawn(async move {
+ if SocketDescriptor::new(us.clone()).send_data(&initial_send, true) != initial_send.len() {
+ // We should essentially always have enough room in a TCP socket buffer to send the
+ // initial 10s of bytes, if not, just give up as hopeless.
+ eprintln!("Failed to write first full message to socket!");
+ peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
+ } else {
+ Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
+ }
+ }))
+ } else {
+ // Note that we will skip socket_disconnected here, in accordance with the PeerManager
+ // requirements.
+ None
+ };
- /// Process incoming messages and feed outgoing messages on the provided socket generated by
- /// making an outbound connection which is expected to be accepted by a peer with the given
- /// public key (by scheduling futures with tokio::spawn).
- ///
- /// You should poll the Receive end of event_notify and call get_and_clear_pending_events() on
- /// ChannelManager and ChannelMonitor objects.
- pub fn setup_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor<CMH>, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) {
- let (reader, us) = Self::new(event_notify, stream);
-
- if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone(), peer_manager.clone())) {
- if SocketDescriptor::new(us.clone(), peer_manager.clone()).send_data(&initial_send, true) == initial_send.len() {
- Self::schedule_read(peer_manager, us, reader);
+ async move {
+ if let Some(handle) = handle_opt {
+ if let Err(e) = handle.await {
+ assert!(e.is_cancelled());
} else {
- println!("Failed to write first full message to socket!");
+ // This is certainly not guaranteed to always be true - the read loop may exit
+ // while there are still pending write wakers that need to be woken up after the
+ // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
+ // keep too many wakers around, this makes sense. The race should be rare (we do
+ // some work after shutdown()) and an error would be a major memory leak.
+ #[cfg(debug_assertions)]
+ assert!(Arc::try_unwrap(last_us).is_ok());
}
}
}
+}
- /// Process incoming messages and feed outgoing messages on a new connection made to the given
- /// socket address which is expected to be accepted by a peer with the given public key (by
- /// scheduling futures with tokio::spawn).
- ///
- /// You should poll the Receive end of event_notify and call get_and_clear_pending_events() on
- /// ChannelManager and ChannelMonitor objects.
- pub fn connect_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor<CMH>, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) {
- let connect_timeout = Delay::new(Instant::now() + Duration::from_secs(10)).then(|_| {
- future::err(std::io::Error::new(std::io::ErrorKind::TimedOut, "timeout reached"))
- });
- tokio::spawn(TcpStream::connect(&addr).select(connect_timeout)
- .and_then(move |stream| {
- Connection::setup_outbound(peer_manager, event_notify, their_node_id, stream.0);
- future::ok(())
- }).or_else(|_| {
- //TODO: return errors somehow
- future::ok(())
- }));
- }
+/// Process incoming messages and feed outgoing messages on a new connection made to the given
+/// socket address which is expected to be accepted by a peer with the given public key (by
+/// scheduling futures with tokio::spawn).
+///
+/// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
+///
+/// Returns a future (as the fn is async) which needs to be polled to complete the connection and
+/// connection setup. That future then returns a future which will complete when the peer is
+/// disconnected and associated handling futures are freed, though, because all processing in said
+/// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
+/// make progress.
+///
+/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
+pub async fn connect_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> {
+ if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), TcpStream::connect(&addr)).await {
+ Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
+ } else { None }
}
-pub struct SocketDescriptor<CMH: ChannelMessageHandler + 'static> {
+const SOCK_WAKER_VTABLE: task::RawWakerVTable =
+ task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
+
+fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
+ write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
+}
+// When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
+// failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
+// sending thread may have already gone away due to a socket close, in which case there's nothing
+// to wake up anyway.
+fn wake_socket_waker(orig_ptr: *const ()) {
+ let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
+ let _ = sender.try_send(());
+ drop_socket_waker(orig_ptr);
+}
+fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
+ let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
+ let mut sender = unsafe { (*sender_ptr).clone() };
+ let _ = sender.try_send(());
+}
+fn drop_socket_waker(orig_ptr: *const ()) {
+ let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
+ // _orig_box is now dropped
+}
+fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
+ let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
+ let new_ptr = new_box as *const mpsc::Sender<()>;
+ task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
+}
+
+/// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
+/// type in the template of PeerHandler.
+pub struct SocketDescriptor {
conn: Arc<Mutex<Connection>>,
id: u64,
- peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor<CMH>, Arc<CMH>>>,
}
-impl<CMH: ChannelMessageHandler> SocketDescriptor<CMH> {
- fn new(conn: Arc<Mutex<Connection>>, peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor<CMH>, Arc<CMH>>>) -> Self {
+impl SocketDescriptor {
+ fn new(conn: Arc<Mutex<Connection>>) -> Self {
let id = conn.lock().unwrap().id;
- Self { conn, id, peer_manager }
+ Self { conn, id }
}
}
-impl<CMH: ChannelMessageHandler> peer_handler::SocketDescriptor for SocketDescriptor<CMH> {
+impl peer_handler::SocketDescriptor for SocketDescriptor {
fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
- macro_rules! schedule_read {
- ($us_ref: expr) => {
- tokio::spawn(future::lazy(move || -> Result<(), ()> {
- let mut read_data = Vec::new();
- {
- let mut us = $us_ref.conn.lock().unwrap();
- mem::swap(&mut read_data, &mut us.pending_read);
- }
- if !read_data.is_empty() {
- let mut us_clone = $us_ref.clone();
- match $us_ref.peer_manager.read_event(&mut us_clone, &read_data) {
- Ok(pause_read) => {
- if pause_read { return Ok(()); }
- },
- Err(_) => {
- //TODO: Not actually sure how to do this
- return Ok(());
- }
- }
- }
- let mut us = $us_ref.conn.lock().unwrap();
- if let Some(sender) = us.read_blocker.take() {
- sender.send(Ok(())).unwrap();
- }
- us.read_paused = false;
- if let Err(e) = us.event_notify.try_send(()) {
- // Ignore full errors as we just need them to poll after this point, so if the user
- // hasn't received the last send yet, it doesn't matter.
- assert!(e.is_full());
- }
- Ok(())
- }));
- }
- }
-
+ // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
+ // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
+ // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
+ // processing future which will call write_buffer_space_avail and we'll end up back here.
let mut us = self.conn.lock().unwrap();
- if resume_read {
- let us_ref = self.clone();
- schedule_read!(us_ref);
- }
- if data.is_empty() { return 0; }
if us.writer.is_none() {
- us.read_paused = true;
+ // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
return 0;
}
- let mut bytes = bytes::BytesMut::with_capacity(data.len());
- bytes.put(data);
- let write_res = us.writer.as_mut().unwrap().start_send(bytes.freeze());
- match write_res {
- Ok(res) => {
- match res {
- AsyncSink::Ready => {
- data.len()
- },
- AsyncSink::NotReady(_) => {
- us.read_paused = true;
- let us_ref = self.clone();
- tokio::spawn(us.writer.take().unwrap().flush().then(move |writer_res| -> Result<(), ()> {
- if let Ok(writer) = writer_res {
- {
- let mut us = us_ref.conn.lock().unwrap();
- us.writer = Some(writer);
- }
- schedule_read!(us_ref);
- } // we'll fire the disconnect event on the socket reader end
- Ok(())
- }));
- 0
- }
- }
- },
- Err(_) => {
- // We'll fire the disconnected event on the socket reader end
- 0
- },
+ if resume_read && us.read_paused {
+ // The schedule_read future may go to lock up but end up getting woken up by there
+ // being more room in the write buffer, dropping the other end of this Sender
+ // before we get here, so we ignore any failures to wake it up.
+ us.read_paused = false;
+ let _ = us.read_waker.try_send(());
+ }
+ if data.is_empty() { return 0; }
+ let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
+ let mut ctx = task::Context::from_waker(&waker);
+ let mut written_len = 0;
+ loop {
+ match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
+ task::Poll::Ready(Ok(res)) => {
+ // The tokio docs *seem* to indicate this can't happen, and I certainly don't
+ // know how to handle it if it does (cause it should be a Poll::Pending
+ // instead):
+ assert_ne!(res, 0);
+ written_len += res;
+ if written_len == data.len() { return written_len; }
+ },
+ task::Poll::Ready(Err(e)) => {
+ // The tokio docs *seem* to indicate this can't happen, and I certainly don't
+ // know how to handle it if it does (cause it should be a Poll::Pending
+ // instead):
+ assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
+ // Probably we've already been closed, just return what we have and let the
+ // read thread handle closing logic.
+ return written_len;
+ },
+ task::Poll::Pending => {
+ // We're queued up for a write event now, but we need to make sure we also
+ // pause read given we're now waiting on the remote end to ACK (and in
+ // accordance with the send_data() docs).
+ us.read_paused = true;
+ return written_len;
+ },
+ }
}
}
fn disconnect_socket(&mut self) {
let mut us = self.conn.lock().unwrap();
- us.need_disconnect = true;
+ us.rl_requested_disconnect = true;
us.read_paused = true;
+ // Wake up the sending thread, assuming it is still alive
+ let _ = us.write_avail.try_send(());
+ // TODO: There's a race where we don't meet the requirements of disconnect_socket if the
+ // read task is about to call a PeerManager function (eg read_event or write_event).
+ // Ideally we need to release the us lock and block until we have confirmation from the
+ // read task that it has broken out of its main loop.
}
}
-impl<CMH: ChannelMessageHandler> Clone for SocketDescriptor<CMH> {
+impl Clone for SocketDescriptor {
fn clone(&self) -> Self {
Self {
conn: Arc::clone(&self.conn),
id: self.id,
- peer_manager: Arc::clone(&self.peer_manager),
}
}
}
-impl<CMH: ChannelMessageHandler> Eq for SocketDescriptor<CMH> {}
-impl<CMH: ChannelMessageHandler> PartialEq for SocketDescriptor<CMH> {
+impl Eq for SocketDescriptor {}
+impl PartialEq for SocketDescriptor {
fn eq(&self, o: &Self) -> bool {
self.id == o.id
}
}
-impl<CMH: ChannelMessageHandler> Hash for SocketDescriptor<CMH> {
+impl Hash for SocketDescriptor {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.id.hash(state);
}
}
+#[cfg(test)]
+mod tests {
+ use lightning::ln::features::*;
+ use lightning::ln::msgs::*;
+ use lightning::ln::peer_handler::{MessageHandler, PeerManager};
+ use lightning::util::events::*;
+ use secp256k1::{Secp256k1, SecretKey, PublicKey};
+
+ use tokio::sync::mpsc;
+
+ use std::mem;
+ use std::sync::{Arc, Mutex};
+ use std::time::Duration;
+
+ pub struct TestLogger();
+ impl lightning::util::logger::Logger for TestLogger {
+ fn log(&self, record: &lightning::util::logger::Record) {
+ println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
+ }
+ }
+
+ struct MsgHandler{
+ expected_pubkey: PublicKey,
+ pubkey_connected: mpsc::Sender<()>,
+ pubkey_disconnected: mpsc::Sender<()>,
+ msg_events: Mutex<Vec<MessageSendEvent>>,
+ }
+ impl RoutingMessageHandler for MsgHandler {
+ fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
+ fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
+ fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
+ fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
+ fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, ChannelUpdate, ChannelUpdate)> { Vec::new() }
+ fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
+ fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { false }
+ }
+ impl ChannelMessageHandler for MsgHandler {
+ fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
+ fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
+ fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
+ fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
+ fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
+ fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
+ fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
+ fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
+ fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
+ fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
+ fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
+ fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
+ fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
+ fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
+ fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
+ fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
+ if *their_node_id == self.expected_pubkey {
+ self.pubkey_disconnected.clone().try_send(()).unwrap();
+ }
+ }
+ fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
+ if *their_node_id == self.expected_pubkey {
+ self.pubkey_connected.clone().try_send(()).unwrap();
+ }
+ }
+ fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
+ fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
+ }
+ impl MessageSendEventsProvider for MsgHandler {
+ fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
+ let mut ret = Vec::new();
+ mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
+ ret
+ }
+ }
+
+ #[tokio::test(threaded_scheduler)]
+ async fn basic_connection_test() {
+ let secp_ctx = Secp256k1::new();
+ let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
+ let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
+ let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
+ let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
+
+ let (a_connected_sender, mut a_connected) = mpsc::channel(1);
+ let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
+ let a_handler = Arc::new(MsgHandler {
+ expected_pubkey: b_pub,
+ pubkey_connected: a_connected_sender,
+ pubkey_disconnected: a_disconnected_sender,
+ msg_events: Mutex::new(Vec::new()),
+ });
+ let a_manager = Arc::new(PeerManager::new(MessageHandler {
+ chan_handler: Arc::clone(&a_handler),
+ route_handler: Arc::clone(&a_handler) as Arc<dyn RoutingMessageHandler>,
+ }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
+
+ let (b_connected_sender, mut b_connected) = mpsc::channel(1);
+ let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
+ let b_handler = Arc::new(MsgHandler {
+ expected_pubkey: a_pub,
+ pubkey_connected: b_connected_sender,
+ pubkey_disconnected: b_disconnected_sender,
+ msg_events: Mutex::new(Vec::new()),
+ });
+ let b_manager = Arc::new(PeerManager::new(MessageHandler {
+ chan_handler: Arc::clone(&b_handler),
+ route_handler: Arc::clone(&b_handler) as Arc<dyn RoutingMessageHandler>,
+ }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
+
+ // We bind on localhost, hoping the environment is properly configured with a local
+ // address. This may not always be the case in containers and the like, so if this test is
+ // failing for you check that you have a loopback interface and it is configured with
+ // 127.0.0.1.
+ let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
+ (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
+ } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
+ (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
+ } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
+ (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
+ } else { panic!("Failed to bind to v4 localhost on common ports"); };
+
+ let (sender, _receiver) = mpsc::channel(2);
+ let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, tokio::net::TcpStream::from_std(conn_a).unwrap());
+ let fut_b = super::setup_inbound(b_manager, sender, tokio::net::TcpStream::from_std(conn_b).unwrap());
+
+ tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
+ tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
+
+ a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
+ node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
+ });
+ assert!(a_disconnected.try_recv().is_err());
+ assert!(b_disconnected.try_recv().is_err());
+
+ a_manager.process_events();
+ tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
+ tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
+
+ fut_a.await;
+ fut_b.await;
+ }
+}