send_payment(&nodes[0], &[&nodes[1]], 1000000);
}
+#[test]
+fn test_dup_htlc_onchain_fails_on_reload() {
+ // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
+ // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
+ // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
+ // the ChannelMonitor tells it to.
+ //
+ // If, due to an on-chain event, an HTLC is failed/claimed, and then we serialize the
+ // ChannelManager, we generally expect there not to be a duplicate HTLC fail/claim (eg via a
+ // PaymentFailed event appearing). However, because we may not serialize the relevant
+ // ChannelMonitor at the same time, this isn't strictly guaranteed. In order to provide this
+ // consistency, the ChannelManager explicitly tracks pending-onchain-resolution outbound HTLCs
+ // and de-duplicates ChannelMonitor events.
+ //
+ // This tests that explicit tracking behavior.
+ let chanmon_cfgs = create_chanmon_cfgs(2);
+ let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
+ let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
+ let persister: test_utils::TestPersister;
+ let new_chain_monitor: test_utils::TestChainMonitor;
+ let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
+ let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
+
+ create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
+
+ // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
+ // nodes[0].
+ let (payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 10000000);
+ nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id).unwrap();
+ check_closed_broadcast!(nodes[0], true);
+ check_added_monitors!(nodes[0], 1);
+
+ nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
+ nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
+
+ let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
+ assert_eq!(node_txn.len(), 2);
+
+ assert!(nodes[1].node.claim_funds(payment_preimage));
+ check_added_monitors!(nodes[1], 1);
+
+ let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
+ connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[0].clone(), node_txn[1].clone()]});
+ check_closed_broadcast!(nodes[1], true);
+ check_added_monitors!(nodes[1], 1);
+ let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
+
+ connect_block(&nodes[0], &Block { header, txdata: node_txn});
+
+ // Serialize out the ChannelMonitor before connecting the on-chain claim transactions. This is
+ // fairly normal behavior as ChannelMonitor(s) are often not re-serialized when on-chain events
+ // happen, unlike ChannelManager which tends to be re-serialized after any relevant event(s).
+ let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
+ nodes[0].chain_monitor.chain_monitor.monitors.read().unwrap().iter().next().unwrap().1.write(&mut chan_0_monitor_serialized).unwrap();
+
+ header.prev_blockhash = header.block_hash();
+ let claim_block = Block { header, txdata: claim_txn};
+ connect_block(&nodes[0], &claim_block);
+ expect_payment_sent!(nodes[0], payment_preimage);
+
+ // ChannelManagers generally get re-serialized after any relevant event(s). Since we just
+ // connected a highly-relevant block, it likely gets serialized out now.
+ let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
+ nodes[0].node.write(&mut chan_manager_serialized).unwrap();
+
+ // Now reload nodes[0]...
+ persister = test_utils::TestPersister::new();
+ let keys_manager = &chanmon_cfgs[0].keys_manager;
+ new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
+ nodes[0].chain_monitor = &new_chain_monitor;
+ let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
+ let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
+ &mut chan_0_monitor_read, keys_manager).unwrap();
+ assert!(chan_0_monitor_read.is_empty());
+
+ let (_, nodes_0_deserialized_tmp) = {
+ let mut channel_monitors = HashMap::new();
+ channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
+ <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
+ ::read(&mut std::io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
+ default_config: Default::default(),
+ keys_manager,
+ fee_estimator: node_cfgs[0].fee_estimator,
+ chain_monitor: nodes[0].chain_monitor,
+ tx_broadcaster: nodes[0].tx_broadcaster.clone(),
+ logger: nodes[0].logger,
+ channel_monitors,
+ }).unwrap()
+ };
+ nodes_0_deserialized = nodes_0_deserialized_tmp;
+
+ assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
+ check_added_monitors!(nodes[0], 1);
+ nodes[0].node = &nodes_0_deserialized;
+
+ // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
+ // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
+ // payment events should kick in, leaving us with no pending events here.
+ nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, nodes[0].blocks.borrow().len() as u32 - 1);
+ assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
+}
+
#[test]
fn test_manager_serialize_deserialize_events() {
// This test makes sure the events field in ChannelManager survives de/serialization