--- /dev/null
+//! Objects related to [`FilesystemStore`] live here.
+use crate::utils::{check_namespace_key_validity, is_valid_kvstore_str};
+
+use lightning::util::persist::KVStore;
+use lightning::util::string::PrintableString;
+
+use std::collections::HashMap;
+use std::fs;
+use std::io::{Read, Write};
+use std::path::{Path, PathBuf};
+use std::sync::atomic::{AtomicUsize, Ordering};
+use std::sync::{Arc, Mutex, RwLock};
+
+#[cfg(target_os = "windows")]
+use {std::ffi::OsStr, std::os::windows::ffi::OsStrExt};
+
+#[cfg(target_os = "windows")]
+macro_rules! call {
+ ($e: expr) => {
+ if $e != 0 {
+ Ok(())
+ } else {
+ Err(std::io::Error::last_os_error())
+ }
+ };
+}
+
+#[cfg(target_os = "windows")]
+fn path_to_windows_str<T: AsRef<OsStr>>(path: T) -> Vec<u16> {
+ path.as_ref().encode_wide().chain(Some(0)).collect()
+}
+
+// The number of read/write/remove/list operations after which we clean up our `locks` HashMap.
+const GC_LOCK_INTERVAL: usize = 25;
+
+/// A [`KVStore`] implementation that writes to and reads from the file system.
+pub struct FilesystemStore {
+ data_dir: PathBuf,
+ tmp_file_counter: AtomicUsize,
+ gc_counter: AtomicUsize,
+ locks: Mutex<HashMap<PathBuf, Arc<RwLock<()>>>>,
+}
+
+impl FilesystemStore {
+ /// Constructs a new [`FilesystemStore`].
+ pub fn new(data_dir: PathBuf) -> Self {
+ let locks = Mutex::new(HashMap::new());
+ let tmp_file_counter = AtomicUsize::new(0);
+ let gc_counter = AtomicUsize::new(1);
+ Self { data_dir, tmp_file_counter, gc_counter, locks }
+ }
+
+ /// Returns the data directory.
+ pub fn get_data_dir(&self) -> PathBuf {
+ self.data_dir.clone()
+ }
+
+ fn garbage_collect_locks(&self) {
+ let gc_counter = self.gc_counter.fetch_add(1, Ordering::AcqRel);
+
+ if gc_counter % GC_LOCK_INTERVAL == 0 {
+ // Take outer lock for the cleanup.
+ let mut outer_lock = self.locks.lock().unwrap();
+
+ // Garbage collect all lock entries that are not referenced anymore.
+ outer_lock.retain(|_, v| Arc::strong_count(&v) > 1);
+ }
+ }
+
+ fn get_dest_dir_path(&self, namespace: &str, sub_namespace: &str) -> std::io::Result<PathBuf> {
+ let mut dest_dir_path = {
+ #[cfg(target_os = "windows")]
+ {
+ let data_dir = self.data_dir.clone();
+ fs::create_dir_all(data_dir.clone())?;
+ fs::canonicalize(data_dir)?
+ }
+ #[cfg(not(target_os = "windows"))]
+ {
+ self.data_dir.clone()
+ }
+ };
+
+ dest_dir_path.push(namespace);
+ if !sub_namespace.is_empty() {
+ dest_dir_path.push(sub_namespace);
+ }
+
+ Ok(dest_dir_path)
+ }
+}
+
+impl KVStore for FilesystemStore {
+ fn read(&self, namespace: &str, sub_namespace: &str, key: &str) -> std::io::Result<Vec<u8>> {
+ check_namespace_key_validity(namespace, sub_namespace, Some(key), "read")?;
+
+ let mut dest_file_path = self.get_dest_dir_path(namespace, sub_namespace)?;
+ dest_file_path.push(key);
+
+ let mut buf = Vec::new();
+ {
+ let inner_lock_ref = {
+ let mut outer_lock = self.locks.lock().unwrap();
+ Arc::clone(&outer_lock.entry(dest_file_path.clone()).or_default())
+ };
+ let _guard = inner_lock_ref.read().unwrap();
+
+ let mut f = fs::File::open(dest_file_path)?;
+ f.read_to_end(&mut buf)?;
+ }
+
+ self.garbage_collect_locks();
+
+ Ok(buf)
+ }
+
+ fn write(&self, namespace: &str, sub_namespace: &str, key: &str, buf: &[u8]) -> std::io::Result<()> {
+ check_namespace_key_validity(namespace, sub_namespace, Some(key), "write")?;
+
+ let mut dest_file_path = self.get_dest_dir_path(namespace, sub_namespace)?;
+ dest_file_path.push(key);
+
+ let parent_directory = dest_file_path
+ .parent()
+ .ok_or_else(|| {
+ let msg =
+ format!("Could not retrieve parent directory of {}.", dest_file_path.display());
+ std::io::Error::new(std::io::ErrorKind::InvalidInput, msg)
+ })?;
+ fs::create_dir_all(&parent_directory)?;
+
+ // Do a crazy dance with lots of fsync()s to be overly cautious here...
+ // We never want to end up in a state where we've lost the old data, or end up using the
+ // old data on power loss after we've returned.
+ // The way to atomically write a file on Unix platforms is:
+ // open(tmpname), write(tmpfile), fsync(tmpfile), close(tmpfile), rename(), fsync(dir)
+ let mut tmp_file_path = dest_file_path.clone();
+ let tmp_file_ext = format!("{}.tmp", self.tmp_file_counter.fetch_add(1, Ordering::AcqRel));
+ tmp_file_path.set_extension(tmp_file_ext);
+
+ {
+ let mut tmp_file = fs::File::create(&tmp_file_path)?;
+ tmp_file.write_all(&buf)?;
+ tmp_file.sync_all()?;
+ }
+
+ let res = {
+ let inner_lock_ref = {
+ let mut outer_lock = self.locks.lock().unwrap();
+ Arc::clone(&outer_lock.entry(dest_file_path.clone()).or_default())
+ };
+ let _guard = inner_lock_ref.write().unwrap();
+
+ #[cfg(not(target_os = "windows"))]
+ {
+ fs::rename(&tmp_file_path, &dest_file_path)?;
+ let dir_file = fs::OpenOptions::new().read(true).open(&parent_directory)?;
+ dir_file.sync_all()?;
+ Ok(())
+ }
+
+ #[cfg(target_os = "windows")]
+ {
+ let res = if dest_file_path.exists() {
+ call!(unsafe {
+ windows_sys::Win32::Storage::FileSystem::ReplaceFileW(
+ path_to_windows_str(dest_file_path.clone()).as_ptr(),
+ path_to_windows_str(tmp_file_path).as_ptr(),
+ std::ptr::null(),
+ windows_sys::Win32::Storage::FileSystem::REPLACEFILE_IGNORE_MERGE_ERRORS,
+ std::ptr::null_mut() as *const core::ffi::c_void,
+ std::ptr::null_mut() as *const core::ffi::c_void,
+ )
+ })
+ } else {
+ call!(unsafe {
+ windows_sys::Win32::Storage::FileSystem::MoveFileExW(
+ path_to_windows_str(tmp_file_path).as_ptr(),
+ path_to_windows_str(dest_file_path.clone()).as_ptr(),
+ windows_sys::Win32::Storage::FileSystem::MOVEFILE_WRITE_THROUGH
+ | windows_sys::Win32::Storage::FileSystem::MOVEFILE_REPLACE_EXISTING,
+ )
+ })
+ };
+
+ match res {
+ Ok(()) => {
+ // We fsync the dest file in hopes this will also flush the metadata to disk.
+ let dest_file = fs::OpenOptions::new().read(true).write(true)
+ .open(&dest_file_path)?;
+ dest_file.sync_all()?;
+ Ok(())
+ }
+ Err(e) => Err(e),
+ }
+ }
+ };
+
+ self.garbage_collect_locks();
+
+ res
+ }
+
+ fn remove(&self, namespace: &str, sub_namespace: &str, key: &str, lazy: bool) -> std::io::Result<()> {
+ check_namespace_key_validity(namespace, sub_namespace, Some(key), "remove")?;
+
+ let mut dest_file_path = self.get_dest_dir_path(namespace, sub_namespace)?;
+ dest_file_path.push(key);
+
+ if !dest_file_path.is_file() {
+ return Ok(());
+ }
+
+ {
+ let inner_lock_ref = {
+ let mut outer_lock = self.locks.lock().unwrap();
+ Arc::clone(&outer_lock.entry(dest_file_path.clone()).or_default())
+ };
+ let _guard = inner_lock_ref.write().unwrap();
+
+ if lazy {
+ // If we're lazy we just call remove and be done with it.
+ fs::remove_file(&dest_file_path)?;
+ } else {
+ // If we're not lazy we try our best to persist the updated metadata to ensure
+ // atomicity of this call.
+ #[cfg(not(target_os = "windows"))]
+ {
+ fs::remove_file(&dest_file_path)?;
+
+ let parent_directory = dest_file_path.parent().ok_or_else(|| {
+ let msg =
+ format!("Could not retrieve parent directory of {}.", dest_file_path.display());
+ std::io::Error::new(std::io::ErrorKind::InvalidInput, msg)
+ })?;
+ let dir_file = fs::OpenOptions::new().read(true).open(parent_directory)?;
+ // The above call to `fs::remove_file` corresponds to POSIX `unlink`, whose changes
+ // to the inode might get cached (and hence possibly lost on crash), depending on
+ // the target platform and file system.
+ //
+ // In order to assert we permanently removed the file in question we therefore
+ // call `fsync` on the parent directory on platforms that support it.
+ dir_file.sync_all()?;
+ }
+
+ #[cfg(target_os = "windows")]
+ {
+ // Since Windows `DeleteFile` API is not persisted until the last open file handle
+ // is dropped, and there seemingly is no reliable way to flush the directory
+ // metadata, we here fall back to use a 'recycling bin' model, i.e., first move the
+ // file to be deleted to a temporary trash file and remove the latter file
+ // afterwards.
+ //
+ // This should be marginally better, as, according to the documentation,
+ // `MoveFileExW` APIs should offer stronger persistence guarantees,
+ // at least if `MOVEFILE_WRITE_THROUGH`/`MOVEFILE_REPLACE_EXISTING` is set.
+ // However, all this is partially based on assumptions and local experiments, as
+ // Windows API is horribly underdocumented.
+ let mut trash_file_path = dest_file_path.clone();
+ let trash_file_ext = format!("{}.trash",
+ self.tmp_file_counter.fetch_add(1, Ordering::AcqRel));
+ trash_file_path.set_extension(trash_file_ext);
+
+ call!(unsafe {
+ windows_sys::Win32::Storage::FileSystem::MoveFileExW(
+ path_to_windows_str(dest_file_path).as_ptr(),
+ path_to_windows_str(trash_file_path.clone()).as_ptr(),
+ windows_sys::Win32::Storage::FileSystem::MOVEFILE_WRITE_THROUGH
+ | windows_sys::Win32::Storage::FileSystem::MOVEFILE_REPLACE_EXISTING,
+ )
+ })?;
+
+ {
+ // We fsync the trash file in hopes this will also flush the original's file
+ // metadata to disk.
+ let trash_file = fs::OpenOptions::new().read(true).write(true)
+ .open(&trash_file_path.clone())?;
+ trash_file.sync_all()?;
+ }
+
+ // We're fine if this remove would fail as the trash file will be cleaned up in
+ // list eventually.
+ fs::remove_file(trash_file_path).ok();
+ }
+ }
+ }
+
+ self.garbage_collect_locks();
+
+ Ok(())
+ }
+
+ fn list(&self, namespace: &str, sub_namespace: &str) -> std::io::Result<Vec<String>> {
+ check_namespace_key_validity(namespace, sub_namespace, None, "list")?;
+
+ let prefixed_dest = self.get_dest_dir_path(namespace, sub_namespace)?;
+ let mut keys = Vec::new();
+
+ if !Path::new(&prefixed_dest).exists() {
+ return Ok(Vec::new());
+ }
+
+ for entry in fs::read_dir(&prefixed_dest)? {
+ let entry = entry?;
+ let p = entry.path();
+
+ if let Some(ext) = p.extension() {
+ #[cfg(target_os = "windows")]
+ {
+ // Clean up any trash files lying around.
+ if ext == "trash" {
+ fs::remove_file(p).ok();
+ continue;
+ }
+ }
+ if ext == "tmp" {
+ continue;
+ }
+ }
+
+ let metadata = p.metadata()?;
+
+ // We allow the presence of directories in the empty namespace and just skip them.
+ if metadata.is_dir() {
+ continue;
+ }
+
+ // If we otherwise don't find a file at the given path something went wrong.
+ if !metadata.is_file() {
+ debug_assert!(false, "Failed to list keys of {}/{}: file couldn't be accessed.",
+ PrintableString(namespace), PrintableString(sub_namespace));
+ let msg = format!("Failed to list keys of {}/{}: file couldn't be accessed.",
+ PrintableString(namespace), PrintableString(sub_namespace));
+ return Err(std::io::Error::new(std::io::ErrorKind::Other, msg));
+ }
+
+ match p.strip_prefix(&prefixed_dest) {
+ Ok(stripped_path) => {
+ if let Some(relative_path) = stripped_path.to_str() {
+ if is_valid_kvstore_str(relative_path) {
+ keys.push(relative_path.to_string())
+ }
+ } else {
+ debug_assert!(false, "Failed to list keys of {}/{}: file path is not valid UTF-8",
+ PrintableString(namespace), PrintableString(sub_namespace));
+ let msg = format!("Failed to list keys of {}/{}: file path is not valid UTF-8",
+ PrintableString(namespace), PrintableString(sub_namespace));
+ return Err(std::io::Error::new(std::io::ErrorKind::Other, msg));
+ }
+ }
+ Err(e) => {
+ debug_assert!(false, "Failed to list keys of {}/{}: {}",
+ PrintableString(namespace), PrintableString(sub_namespace), e);
+ let msg = format!("Failed to list keys of {}/{}: {}",
+ PrintableString(namespace), PrintableString(sub_namespace), e);
+ return Err(std::io::Error::new(std::io::ErrorKind::Other, msg));
+ }
+ }
+ }
+
+ self.garbage_collect_locks();
+
+ Ok(keys)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use crate::test_utils::do_read_write_remove_list_persist;
+
+ #[test]
+ fn read_write_remove_list_persist() {
+ let mut temp_path = std::env::temp_dir();
+ temp_path.push("test_read_write_remove_list_persist");
+ let fs_store = FilesystemStore::new(temp_path);
+ do_read_write_remove_list_persist(&fs_store);
+ }
+}
--- /dev/null
+use lightning::util::persist::{KVSTORE_NAMESPACE_KEY_ALPHABET, KVSTORE_NAMESPACE_KEY_MAX_LEN};
+use lightning::util::string::PrintableString;
+
+
+pub(crate) fn is_valid_kvstore_str(key: &str) -> bool {
+ key.len() <= KVSTORE_NAMESPACE_KEY_MAX_LEN && key.chars().all(|c| KVSTORE_NAMESPACE_KEY_ALPHABET.contains(c))
+}
+
+pub(crate) fn check_namespace_key_validity(namespace: &str, sub_namespace: &str, key: Option<&str>, operation: &str) -> Result<(), std::io::Error> {
+ if let Some(key) = key {
+ if key.is_empty() {
+ debug_assert!(false, "Failed to {} {}/{}/{}: key may not be empty.", operation,
+ PrintableString(namespace), PrintableString(sub_namespace), PrintableString(key));
+ let msg = format!("Failed to {} {}/{}/{}: key may not be empty.", operation,
+ PrintableString(namespace), PrintableString(sub_namespace), PrintableString(key));
+ return Err(std::io::Error::new(std::io::ErrorKind::Other, msg));
+ }
+
+ if namespace.is_empty() && !sub_namespace.is_empty() {
+ debug_assert!(false,
+ "Failed to {} {}/{}/{}: namespace may not be empty if a non-empty sub-namespace is given.",
+ operation,
+ PrintableString(namespace), PrintableString(sub_namespace), PrintableString(key));
+ let msg = format!(
+ "Failed to {} {}/{}/{}: namespace may not be empty if a non-empty sub-namespace is given.", operation,
+ PrintableString(namespace), PrintableString(sub_namespace), PrintableString(key));
+ return Err(std::io::Error::new(std::io::ErrorKind::Other, msg));
+ }
+
+ if !is_valid_kvstore_str(namespace) || !is_valid_kvstore_str(sub_namespace) || !is_valid_kvstore_str(key) {
+ debug_assert!(false, "Failed to {} {}/{}/{}: namespace, sub-namespace, and key must be valid.",
+ operation,
+ PrintableString(namespace), PrintableString(sub_namespace), PrintableString(key));
+ let msg = format!("Failed to {} {}/{}/{}: namespace, sub-namespace, and key must be valid.",
+ operation,
+ PrintableString(namespace), PrintableString(sub_namespace), PrintableString(key));
+ return Err(std::io::Error::new(std::io::ErrorKind::Other, msg));
+ }
+ } else {
+ if namespace.is_empty() && !sub_namespace.is_empty() {
+ debug_assert!(false,
+ "Failed to {} {}/{}: namespace may not be empty if a non-empty sub-namespace is given.",
+ operation, PrintableString(namespace), PrintableString(sub_namespace));
+ let msg = format!(
+ "Failed to {} {}/{}: namespace may not be empty if a non-empty sub-namespace is given.",
+ operation, PrintableString(namespace), PrintableString(sub_namespace));
+ return Err(std::io::Error::new(std::io::ErrorKind::Other, msg));
+ }
+ if !is_valid_kvstore_str(namespace) || !is_valid_kvstore_str(sub_namespace) {
+ debug_assert!(false, "Failed to {} {}/{}: namespace and sub-namespace must be valid.",
+ operation, PrintableString(namespace), PrintableString(sub_namespace));
+ let msg = format!("Failed to {} {}/{}: namespace and sub-namespace must be valid.",
+ operation, PrintableString(namespace), PrintableString(sub_namespace));
+ return Err(std::io::Error::new(std::io::ErrorKind::Other, msg));
+ }
+ }
+
+ Ok(())
+}