Merge pull request #2582 from TheBlueMatt/2023-09-one-less-clone
authorMatt Corallo <649246+TheBlueMatt@users.noreply.github.com>
Mon, 18 Sep 2023 16:16:46 +0000 (16:16 +0000)
committerGitHub <noreply@github.com>
Mon, 18 Sep 2023 16:16:46 +0000 (16:16 +0000)
Avoid unnecessarily cloning unsigned Transaction when broadcasting

ci/ci-tests.sh
lightning-transaction-sync/tests/integration_tests.rs
lightning/src/routing/scoring.rs
lightning/src/util/ser.rs

index 8c675a654be9304d3066b2af4e776dc6492ab0b3..7b925cc8544eca2a077ab7a5b3aa9f2af27c3398 100755 (executable)
@@ -29,6 +29,9 @@ PIN_RELEASE_DEPS # pin the release dependencies in our main workspace
 # The quote crate switched to Rust edition 2021 starting with v1.0.31, i.e., has MSRV of 1.56
 [ "$RUSTC_MINOR_VERSION" -lt 56 ] && cargo update -p quote --precise "1.0.30" --verbose
 
+# The syn crate depends on too-new proc-macro2 starting with v2.0.33, i.e., has MSRV of 1.56
+[ "$RUSTC_MINOR_VERSION" -lt 56 ] && cargo update -p syn:2.0.33 --precise "2.0.32" --verbose
+
 # The proc-macro2 crate switched to Rust edition 2021 starting with v1.0.66, i.e., has MSRV of 1.56
 [ "$RUSTC_MINOR_VERSION" -lt 56 ] && cargo update -p proc-macro2 --precise "1.0.65" --verbose
 
@@ -120,6 +123,10 @@ if [[ $RUSTC_MINOR_VERSION -gt 67 ]]; then
        # lightning-transaction-sync's MSRV is 1.67
        cargo check --verbose --color always --features lightning-transaction-sync
 else
+       # The memchr crate switched to an MSRV of 1.60 starting with v2.6.0
+       # This is currently only a release dependency via core2, which we intend to work with
+       # rust-bitcoin to remove soon.
+       [ "$RUSTC_MINOR_VERSION" -lt 60 ] && cargo update -p memchr --precise "2.5.0" --verbose
        cargo check --verbose --color always
 fi
 popd
index 151f986553f86ec10d44fd6f196655aa711c8e1c..617b1213e89d368903b1903f151176bbc5b9e50e 100644 (file)
@@ -321,20 +321,3 @@ async fn test_esplora_syncs() {
                _ => panic!("Unexpected event"),
        }
 }
-
-#[tokio::test]
-#[cfg(any(feature = "esplora-async-https", feature = "esplora-blocking"))]
-async fn test_esplora_connects_to_public_server() {
-       let mut logger = TestLogger {};
-       let esplora_url = "https://blockstream.info/api".to_string();
-       let tx_sync = EsploraSyncClient::new(esplora_url, &mut logger);
-       let confirmable = TestConfirmable::new();
-
-       // Check we connect and pick up on new best blocks
-       assert_eq!(confirmable.best_block.lock().unwrap().1, 0);
-       #[cfg(feature = "esplora-async-https")]
-       tx_sync.sync(vec![&confirmable]).await.unwrap();
-       #[cfg(feature = "esplora-blocking")]
-       tx_sync.sync(vec![&confirmable]).unwrap();
-       assert_ne!(confirmable.best_block.lock().unwrap().1, 0);
-}
index aaafbc35b6134f4edd839e13c4b3a4c7830759e2..26d555819d35c15e2f8aff22b0667d5e6ba49500 100644 (file)
@@ -773,21 +773,36 @@ impl<G: Deref<Target = NetworkGraph<L>>, L: Deref, T: Time> ProbabilisticScorerU
                                                let amt = directed_info.effective_capacity().as_msat();
                                                let dir_liq = liq.as_directed(source, target, 0, amt, self.decay_params);
 
-                                               let (min_buckets, max_buckets, _) = dir_liq.liquidity_history
+                                               let (min_buckets, max_buckets) = dir_liq.liquidity_history
                                                        .get_decayed_buckets(now, *dir_liq.last_updated,
-                                                               self.decay_params.historical_no_updates_half_life);
+                                                               self.decay_params.historical_no_updates_half_life)
+                                                       .unwrap_or(([0; 32], [0; 32]));
 
                                                log_debug!(self.logger, core::concat!(
                                                        "Liquidity from {} to {} via {} is in the range ({}, {}).\n",
-                                                       "\tHistorical min liquidity octile relative probabilities: {} {} {} {} {} {} {} {}\n",
-                                                       "\tHistorical max liquidity octile relative probabilities: {} {} {} {} {} {} {} {}"),
+                                                       "\tHistorical min liquidity bucket relative probabilities:\n",
+                                                       "\t\t{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\n",
+                                                       "\tHistorical max liquidity bucket relative probabilities:\n",
+                                                       "\t\t{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}"),
                                                        source, target, scid, dir_liq.min_liquidity_msat(), dir_liq.max_liquidity_msat(),
-                                                       min_buckets[0], min_buckets[1], min_buckets[2], min_buckets[3],
-                                                       min_buckets[4], min_buckets[5], min_buckets[6], min_buckets[7],
+                                                       min_buckets[ 0], min_buckets[ 1], min_buckets[ 2], min_buckets[ 3],
+                                                       min_buckets[ 4], min_buckets[ 5], min_buckets[ 6], min_buckets[ 7],
+                                                       min_buckets[ 8], min_buckets[ 9], min_buckets[10], min_buckets[11],
+                                                       min_buckets[12], min_buckets[13], min_buckets[14], min_buckets[15],
+                                                       min_buckets[16], min_buckets[17], min_buckets[18], min_buckets[19],
+                                                       min_buckets[20], min_buckets[21], min_buckets[22], min_buckets[23],
+                                                       min_buckets[24], min_buckets[25], min_buckets[26], min_buckets[27],
+                                                       min_buckets[28], min_buckets[29], min_buckets[30], min_buckets[31],
                                                        // Note that the liquidity buckets are an offset from the edge, so we
                                                        // inverse the max order to get the probabilities from zero.
-                                                       max_buckets[7], max_buckets[6], max_buckets[5], max_buckets[4],
-                                                       max_buckets[3], max_buckets[2], max_buckets[1], max_buckets[0]);
+                                                       max_buckets[31], max_buckets[30], max_buckets[29], max_buckets[28],
+                                                       max_buckets[27], max_buckets[26], max_buckets[25], max_buckets[24],
+                                                       max_buckets[23], max_buckets[22], max_buckets[21], max_buckets[20],
+                                                       max_buckets[19], max_buckets[18], max_buckets[17], max_buckets[16],
+                                                       max_buckets[15], max_buckets[14], max_buckets[13], max_buckets[12],
+                                                       max_buckets[11], max_buckets[10], max_buckets[ 9], max_buckets[ 8],
+                                                       max_buckets[ 7], max_buckets[ 6], max_buckets[ 5], max_buckets[ 4],
+                                                       max_buckets[ 3], max_buckets[ 2], max_buckets[ 1], max_buckets[ 0]);
                                        } else {
                                                log_debug!(self.logger, "No amount known for SCID {} from {:?} to {:?}", scid, source, target);
                                        }
@@ -821,29 +836,31 @@ impl<G: Deref<Target = NetworkGraph<L>>, L: Deref, T: Time> ProbabilisticScorerU
        /// Query the historical estimated minimum and maximum liquidity available for sending a
        /// payment over the channel with `scid` towards the given `target` node.
        ///
-       /// Returns two sets of 8 buckets. The first set describes the octiles for lower-bound
-       /// liquidity estimates, the second set describes the octiles for upper-bound liquidity
-       /// estimates. Each bucket describes the relative frequency at which we've seen a liquidity
-       /// bound in the octile relative to the channel's total capacity, on an arbitrary scale.
-       /// Because the values are slowly decayed, more recent data points are weighted more heavily
-       /// than older datapoints.
+       /// Returns two sets of 32 buckets. The first set describes the lower-bound liquidity history,
+       /// the second set describes the upper-bound liquidity history. Each bucket describes the
+       /// relative frequency at which we've seen a liquidity bound in the bucket's range relative to
+       /// the channel's total capacity, on an arbitrary scale. Because the values are slowly decayed,
+       /// more recent data points are weighted more heavily than older datapoints.
        ///
-       /// When scoring, the estimated probability that an upper-/lower-bound lies in a given octile
-       /// relative to the channel's total capacity is calculated by dividing that bucket's value with
-       /// the total of all buckets for the given bound.
+       /// Note that the range of each bucket varies by its location to provide more granular results
+       /// at the edges of a channel's capacity, where it is more likely to sit.
        ///
-       /// For example, a value of `[0, 0, 0, 0, 0, 0, 32]` indicates that we believe the probability
-       /// of a bound being in the top octile to be 100%, and have never (recently) seen it in any
-       /// other octiles. A value of `[31, 0, 0, 0, 0, 0, 0, 32]` indicates we've seen the bound being
-       /// both in the top and bottom octile, and roughly with similar (recent) frequency.
+       /// When scoring, the estimated probability that an upper-/lower-bound lies in a given bucket
+       /// is calculated by dividing that bucket's value with the total value of all buckets.
+       ///
+       /// For example, using a lower bucket count for illustrative purposes, a value of
+       /// `[0, 0, 0, ..., 0, 32]` indicates that we believe the probability of a bound being very
+       /// close to the channel's capacity to be 100%, and have never (recently) seen it in any other
+       /// bucket. A value of `[31, 0, 0, ..., 0, 0, 32]` indicates we've seen the bound being both
+       /// in the top and bottom bucket, and roughly with similar (recent) frequency.
        ///
        /// Because the datapoints are decayed slowly over time, values will eventually return to
-       /// `Some(([0; 8], [0; 8]))`.
+       /// `Some(([1; 32], [1; 32]))` and then to `None` once no datapoints remain.
        ///
        /// In order to fetch a single success probability from the buckets provided here, as used in
        /// the scoring model, see [`Self::historical_estimated_payment_success_probability`].
        pub fn historical_estimated_channel_liquidity_probabilities(&self, scid: u64, target: &NodeId)
-       -> Option<([u16; 8], [u16; 8])> {
+       -> Option<([u16; 32], [u16; 32])> {
                let graph = self.network_graph.read_only();
 
                if let Some(chan) = graph.channels().get(&scid) {
@@ -852,9 +869,12 @@ impl<G: Deref<Target = NetworkGraph<L>>, L: Deref, T: Time> ProbabilisticScorerU
                                        let amt = directed_info.effective_capacity().as_msat();
                                        let dir_liq = liq.as_directed(source, target, 0, amt, self.decay_params);
 
-                                       let (min_buckets, mut max_buckets, _) = dir_liq.liquidity_history
-                                               .get_decayed_buckets(dir_liq.now, *dir_liq.last_updated,
-                                                       self.decay_params.historical_no_updates_half_life);
+                                       let (min_buckets, mut max_buckets) =
+                                               dir_liq.liquidity_history.get_decayed_buckets(
+                                                       dir_liq.now, *dir_liq.last_updated,
+                                                       self.decay_params.historical_no_updates_half_life
+                                               )?;
+
                                        // Note that the liquidity buckets are an offset from the edge, so we inverse
                                        // the max order to get the probabilities from zero.
                                        max_buckets.reverse();
@@ -1121,7 +1141,7 @@ impl<L: DerefMut<Target = u64>, BRT: DerefMut<Target = HistoricalBucketRangeTrac
                        log_trace!(logger, "Max liquidity of {} is {} (already less than or equal to {})",
                                chan_descr, existing_max_msat, amount_msat);
                }
-               self.update_history_buckets();
+               self.update_history_buckets(0);
        }
 
        /// Adjusts the channel liquidity balance bounds when failing to route `amount_msat` downstream.
@@ -1134,7 +1154,7 @@ impl<L: DerefMut<Target = u64>, BRT: DerefMut<Target = HistoricalBucketRangeTrac
                        log_trace!(logger, "Min liquidity of {} is {} (already greater than or equal to {})",
                                chan_descr, existing_min_msat, amount_msat);
                }
-               self.update_history_buckets();
+               self.update_history_buckets(0);
        }
 
        /// Adjusts the channel liquidity balance bounds when successfully routing `amount_msat`.
@@ -1142,10 +1162,14 @@ impl<L: DerefMut<Target = u64>, BRT: DerefMut<Target = HistoricalBucketRangeTrac
                let max_liquidity_msat = self.max_liquidity_msat().checked_sub(amount_msat).unwrap_or(0);
                log_debug!(logger, "Subtracting {} from max liquidity of {} (setting it to {})", amount_msat, chan_descr, max_liquidity_msat);
                self.set_max_liquidity_msat(max_liquidity_msat);
-               self.update_history_buckets();
+               self.update_history_buckets(amount_msat);
        }
 
-       fn update_history_buckets(&mut self) {
+       /// Updates the history buckets for this channel. Because the history buckets track what we now
+       /// know about the channel's state *prior to our payment* (i.e. what we assume is "steady
+       /// state"), we allow the caller to set an offset applied to our liquidity bounds which
+       /// represents the amount of the successful payment we just made.
+       fn update_history_buckets(&mut self, bucket_offset_msat: u64) {
                let half_lives = self.now.duration_since(*self.last_updated).as_secs()
                        .checked_div(self.decay_params.historical_no_updates_half_life.as_secs())
                        .map(|v| v.try_into().unwrap_or(u32::max_value())).unwrap_or(u32::max_value());
@@ -1154,11 +1178,11 @@ impl<L: DerefMut<Target = u64>, BRT: DerefMut<Target = HistoricalBucketRangeTrac
 
                let min_liquidity_offset_msat = self.decayed_offset_msat(*self.min_liquidity_offset_msat);
                self.liquidity_history.min_liquidity_offset_history.track_datapoint(
-                       min_liquidity_offset_msat, self.capacity_msat
+                       min_liquidity_offset_msat + bucket_offset_msat, self.capacity_msat
                );
                let max_liquidity_offset_msat = self.decayed_offset_msat(*self.max_liquidity_offset_msat);
                self.liquidity_history.max_liquidity_offset_history.track_datapoint(
-                       max_liquidity_offset_msat, self.capacity_msat
+                       max_liquidity_offset_msat.saturating_sub(bucket_offset_msat), self.capacity_msat
                );
        }
 
@@ -1618,17 +1642,125 @@ mod approx {
 mod bucketed_history {
        use super::*;
 
+       // Because liquidity is often skewed heavily in one direction, we store historical state
+       // distribution in buckets of different size. For backwards compatibility, buckets of size 1/8th
+       // must fit evenly into the buckets here.
+       //
+       // The smallest bucket is 2^-14th of the channel, for each of our 32 buckets here we define the
+       // width of the bucket in 2^14'ths of the channel. This increases exponentially until we reach
+       // a full 16th of the channel's capacity, which is reapeated a few times for backwards
+       // compatibility. The four middle buckets represent full octiles of the channel's capacity.
+       //
+       // For a 1 BTC channel, this let's us differentiate between failures in the bottom 6k sats, or
+       // between the 12,000th sat and 24,000th sat, while only needing to store and operate on 32
+       // buckets in total.
+
+       const BUCKET_START_POS: [u16; 33] = [
+               0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 3072, 4096, 6144, 8192, 10240, 12288,
+               13312, 14336, 15360, 15872, 16128, 16256, 16320, 16352, 16368, 16376, 16380, 16382, 16383, 16384,
+       ];
+
+       const LEGACY_TO_BUCKET_RANGE: [(u8, u8); 8] = [
+               (0, 12), (12, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 20), (20, 32)
+       ];
+
+       const POSITION_TICKS: u16 = 1 << 14;
+
+       fn pos_to_bucket(pos: u16) -> usize {
+               for bucket in 0..32 {
+                       if pos < BUCKET_START_POS[bucket + 1] {
+                               return bucket;
+                       }
+               }
+               debug_assert!(false);
+               return 32;
+       }
+
+       #[cfg(test)]
+       #[test]
+       fn check_bucket_maps() {
+               const BUCKET_WIDTH_IN_16384S: [u16; 32] = [
+                       1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1024, 1024, 2048, 2048,
+                       2048, 2048, 1024, 1024, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1];
+
+               let mut min_size_iter = 0;
+               let mut legacy_bucket_iter = 0;
+               for (bucket, width) in BUCKET_WIDTH_IN_16384S.iter().enumerate() {
+                       assert_eq!(BUCKET_START_POS[bucket], min_size_iter);
+                       for i in 0..*width {
+                               assert_eq!(pos_to_bucket(min_size_iter + i) as usize, bucket);
+                       }
+                       min_size_iter += *width;
+                       if min_size_iter % (POSITION_TICKS / 8) == 0 {
+                               assert_eq!(LEGACY_TO_BUCKET_RANGE[legacy_bucket_iter].1 as usize, bucket + 1);
+                               if legacy_bucket_iter + 1 < 8 {
+                                       assert_eq!(LEGACY_TO_BUCKET_RANGE[legacy_bucket_iter + 1].0 as usize, bucket + 1);
+                               }
+                               legacy_bucket_iter += 1;
+                       }
+               }
+               assert_eq!(BUCKET_START_POS[32], POSITION_TICKS);
+               assert_eq!(min_size_iter, POSITION_TICKS);
+       }
+
+       #[inline]
+       fn amount_to_pos(amount_msat: u64, capacity_msat: u64) -> u16 {
+               let pos = if amount_msat < u64::max_value() / (POSITION_TICKS as u64) {
+                       (amount_msat * (POSITION_TICKS as u64) / capacity_msat.saturating_add(1))
+                               .try_into().unwrap_or(POSITION_TICKS)
+               } else {
+                       // Only use 128-bit arithmetic when multiplication will overflow to avoid 128-bit
+                       // division. This branch should only be hit in fuzz testing since the amount would
+                       // need to be over 2.88 million BTC in practice.
+                       ((amount_msat as u128) * (POSITION_TICKS as u128)
+                                       / (capacity_msat as u128).saturating_add(1))
+                               .try_into().unwrap_or(POSITION_TICKS)
+               };
+               // If we are running in a client that doesn't validate gossip, its possible for a channel's
+               // capacity to change due to a `channel_update` message which, if received while a payment
+               // is in-flight, could cause this to fail. Thus, we only assert in test.
+               #[cfg(test)]
+               debug_assert!(pos < POSITION_TICKS);
+               pos
+       }
+
+       /// Prior to LDK 0.0.117 we used eight buckets which were split evenly across the either
+       /// octiles. This was changed to use 32 buckets for accuracy reasons in 0.0.117, however we
+       /// support reading the legacy values here for backwards compatibility.
+       pub(super) struct LegacyHistoricalBucketRangeTracker {
+               buckets: [u16; 8],
+       }
+
+       impl LegacyHistoricalBucketRangeTracker {
+               pub(crate) fn into_current(&self) -> HistoricalBucketRangeTracker {
+                       let mut buckets = [0; 32];
+                       for (idx, legacy_bucket) in self.buckets.iter().enumerate() {
+                               let mut new_val = *legacy_bucket;
+                               let (start, end) = LEGACY_TO_BUCKET_RANGE[idx];
+                               new_val /= (end - start) as u16;
+                               for i in start..end {
+                                       buckets[i as usize] = new_val;
+                               }
+                       }
+                       HistoricalBucketRangeTracker { buckets }
+               }
+       }
+
        /// Tracks the historical state of a distribution as a weighted average of how much time was spent
-       /// in each of 8 buckets.
+       /// in each of 32 buckets.
        #[derive(Clone, Copy)]
        pub(super) struct HistoricalBucketRangeTracker {
-               buckets: [u16; 8],
+               buckets: [u16; 32],
        }
 
+       /// Buckets are stored in fixed point numbers with a 5 bit fractional part. Thus, the value
+       /// "one" is 32, or this constant.
+       pub const BUCKET_FIXED_POINT_ONE: u16 = 32;
+
        impl HistoricalBucketRangeTracker {
-               pub(super) fn new() -> Self { Self { buckets: [0; 8] } }
+               pub(super) fn new() -> Self { Self { buckets: [0; 32] } }
                pub(super) fn track_datapoint(&mut self, liquidity_offset_msat: u64, capacity_msat: u64) {
-                       // We have 8 leaky buckets for min and max liquidity. Each bucket tracks the amount of time
+                       // We have 32 leaky buckets for min and max liquidity. Each bucket tracks the amount of time
                        // we spend in each bucket as a 16-bit fixed-point number with a 5 bit fractional part.
                        //
                        // Each time we update our liquidity estimate, we add 32 (1.0 in our fixed-point system) to
@@ -1649,21 +1781,18 @@ mod bucketed_history {
                        // The constants were picked experimentally, selecting a decay amount that restricts us
                        // from overflowing buckets without having to cap them manually.
 
-                       // Ensure the bucket index is in the range [0, 7], even if the liquidity offset is zero or
-                       // the channel's capacity, though the second should generally never happen.
-                       debug_assert!(liquidity_offset_msat <= capacity_msat);
-                       let bucket_idx: u8 = (liquidity_offset_msat * 8 / capacity_msat.saturating_add(1))
-                               .try_into().unwrap_or(32); // 32 is bogus for 8 buckets, and will be ignored
-                       debug_assert!(bucket_idx < 8);
-                       if bucket_idx < 8 {
+                       let pos: u16 = amount_to_pos(liquidity_offset_msat, capacity_msat);
+                       if pos < POSITION_TICKS {
                                for e in self.buckets.iter_mut() {
                                        *e = ((*e as u32) * 2047 / 2048) as u16;
                                }
-                               self.buckets[bucket_idx as usize] = self.buckets[bucket_idx as usize].saturating_add(32);
+                               let bucket = pos_to_bucket(pos);
+                               self.buckets[bucket] = self.buckets[bucket].saturating_add(BUCKET_FIXED_POINT_ONE);
                        }
                }
                /// Decay all buckets by the given number of half-lives. Used to more aggressively remove old
                /// datapoints as we receive newer information.
+               #[inline]
                pub(super) fn time_decay_data(&mut self, half_lives: u32) {
                        for e in self.buckets.iter_mut() {
                                *e = e.checked_shr(half_lives).unwrap_or(0);
@@ -1672,99 +1801,122 @@ mod bucketed_history {
        }
 
        impl_writeable_tlv_based!(HistoricalBucketRangeTracker, { (0, buckets, required) });
+       impl_writeable_tlv_based!(LegacyHistoricalBucketRangeTracker, { (0, buckets, required) });
 
+       /// A set of buckets representing the history of where we've seen the minimum- and maximum-
+       /// liquidity bounds for a given channel.
        pub(super) struct HistoricalMinMaxBuckets<D: Deref<Target = HistoricalBucketRangeTracker>> {
+               /// Buckets tracking where and how often we've seen the minimum liquidity bound for a
+               /// channel.
                pub(super) min_liquidity_offset_history: D,
+               /// Buckets tracking where and how often we've seen the maximum liquidity bound for a
+               /// channel.
                pub(super) max_liquidity_offset_history: D,
        }
 
        impl<D: Deref<Target = HistoricalBucketRangeTracker>> HistoricalMinMaxBuckets<D> {
-               #[inline]
                pub(super) fn get_decayed_buckets<T: Time>(&self, now: T, last_updated: T, half_life: Duration)
-               -> ([u16; 8], [u16; 8], u32) {
-                       let required_decays = now.duration_since(last_updated).as_secs()
-                               .checked_div(half_life.as_secs())
-                               .map_or(u32::max_value(), |decays| cmp::min(decays, u32::max_value() as u64) as u32);
+               -> Option<([u16; 32], [u16; 32])> {
+                       let (_, required_decays) = self.get_total_valid_points(now, last_updated, half_life)?;
+
                        let mut min_buckets = *self.min_liquidity_offset_history;
                        min_buckets.time_decay_data(required_decays);
                        let mut max_buckets = *self.max_liquidity_offset_history;
                        max_buckets.time_decay_data(required_decays);
-                       (min_buckets.buckets, max_buckets.buckets, required_decays)
+                       Some((min_buckets.buckets, max_buckets.buckets))
+               }
+               #[inline]
+               pub(super) fn get_total_valid_points<T: Time>(&self, now: T, last_updated: T, half_life: Duration)
+               -> Option<(u64, u32)> {
+                       let required_decays = now.duration_since(last_updated).as_secs()
+                               .checked_div(half_life.as_secs())
+                               .map_or(u32::max_value(), |decays| cmp::min(decays, u32::max_value() as u64) as u32);
+
+                       let mut total_valid_points_tracked = 0;
+                       for (min_idx, min_bucket) in self.min_liquidity_offset_history.buckets.iter().enumerate() {
+                               for max_bucket in self.max_liquidity_offset_history.buckets.iter().take(32 - min_idx) {
+                                       total_valid_points_tracked += (*min_bucket as u64) * (*max_bucket as u64);
+                               }
+                       }
+
+                       // If the total valid points is smaller than 1.0 (i.e. 32 in our fixed-point scheme),
+                       // treat it as if we were fully decayed.
+                       const FULLY_DECAYED: u16 = BUCKET_FIXED_POINT_ONE * BUCKET_FIXED_POINT_ONE;
+                       if total_valid_points_tracked.checked_shr(required_decays).unwrap_or(0) < FULLY_DECAYED.into() {
+                               return None;
+                       }
+
+                       Some((total_valid_points_tracked, required_decays))
                }
 
                #[inline]
                pub(super) fn calculate_success_probability_times_billion<T: Time>(
                        &self, now: T, last_updated: T, half_life: Duration, amount_msat: u64, capacity_msat: u64)
                -> Option<u64> {
-                       // If historical penalties are enabled, calculate the penalty by walking the set of
-                       // historical liquidity bucket (min, max) combinations (where min_idx < max_idx) and, for
-                       // each, calculate the probability of success given our payment amount, then total the
-                       // weighted average probability of success.
-                       //
-                       // We use a sliding scale to decide which point within a given bucket will be compared to
-                       // the amount being sent - for lower-bounds, the amount being sent is compared to the lower
-                       // edge of the first bucket (i.e. zero), but compared to the upper 7/8ths of the last
-                       // bucket (i.e. 9 times the index, or 63), with each bucket in between increasing the
-                       // comparison point by 1/64th. For upper-bounds, the same applies, however with an offset
-                       // of 1/64th (i.e. starting at one and ending at 64). This avoids failing to assign
-                       // penalties to channels at the edges.
-                       //
-                       // If we used the bottom edge of buckets, we'd end up never assigning any penalty at all to
-                       // such a channel when sending less than ~0.19% of the channel's capacity (e.g. ~200k sats
-                       // for a 1 BTC channel!).
-                       //
-                       // If we used the middle of each bucket we'd never assign any penalty at all when sending
-                       // less than 1/16th of a channel's capacity, or 1/8th if we used the top of the bucket.
-                       let mut total_valid_points_tracked = 0;
-
-                       let payment_amt_64th_bucket: u8 = if amount_msat < u64::max_value() / 64 {
-                               (amount_msat * 64 / capacity_msat.saturating_add(1))
-                                       .try_into().unwrap_or(65)
-                       } else {
-                               // Only use 128-bit arithmetic when multiplication will overflow to avoid 128-bit
-                               // division. This branch should only be hit in fuzz testing since the amount would
-                               // need to be over 2.88 million BTC in practice.
-                               ((amount_msat as u128) * 64 / (capacity_msat as u128).saturating_add(1))
-                                       .try_into().unwrap_or(65)
-                       };
-                       #[cfg(not(fuzzing))]
-                       debug_assert!(payment_amt_64th_bucket <= 64);
-                       if payment_amt_64th_bucket >= 64 { return None; }
+                       // If historical penalties are enabled, we try to calculate a probability of success
+                       // given our historical distribution of min- and max-liquidity bounds in a channel.
+                       // To do so, we walk the set of historical liquidity bucket (min, max) combinations
+                       // (where min_idx < max_idx, as having a minimum above our maximum is an invalid
+                       // state). For each pair, we calculate the probability as if the bucket's corresponding
+                       // min- and max- liquidity bounds were our current liquidity bounds and then multiply
+                       // that probability by the weight of the selected buckets.
+                       let payment_pos = amount_to_pos(amount_msat, capacity_msat);
+                       if payment_pos >= POSITION_TICKS { return None; }
 
                        // Check if all our buckets are zero, once decayed and treat it as if we had no data. We
                        // don't actually use the decayed buckets, though, as that would lose precision.
-                       let (decayed_min_buckets, decayed_max_buckets, required_decays) =
-                               self.get_decayed_buckets(now, last_updated, half_life);
-                       if decayed_min_buckets.iter().all(|v| *v == 0) || decayed_max_buckets.iter().all(|v| *v == 0) {
-                               return None;
-                       }
+                       let (total_valid_points_tracked, _)
+                               = self.get_total_valid_points(now, last_updated, half_life)?;
 
-                       for (min_idx, min_bucket) in self.min_liquidity_offset_history.buckets.iter().enumerate() {
-                               for max_bucket in self.max_liquidity_offset_history.buckets.iter().take(8 - min_idx) {
-                                       total_valid_points_tracked += (*min_bucket as u64) * (*max_bucket as u64);
+                       let mut cumulative_success_prob_times_billion = 0;
+                       // Special-case the 0th min bucket - it generally means we failed a payment, so only
+                       // consider the highest (i.e. largest-offset-from-max-capacity) max bucket for all
+                       // points against the 0th min bucket. This avoids the case where we fail to route
+                       // increasingly lower values over a channel, but treat each failure as a separate
+                       // datapoint, many of which may have relatively high maximum-available-liquidity
+                       // values, which will result in us thinking we have some nontrivial probability of
+                       // routing up to that amount.
+                       if self.min_liquidity_offset_history.buckets[0] != 0 {
+                               let mut highest_max_bucket_with_points = 0; // The highest max-bucket with any data
+                               let mut total_max_points = 0; // Total points in max-buckets to consider
+                               for (max_idx, max_bucket) in self.max_liquidity_offset_history.buckets.iter().enumerate() {
+                                       if *max_bucket >= BUCKET_FIXED_POINT_ONE {
+                                               highest_max_bucket_with_points = cmp::max(highest_max_bucket_with_points, max_idx);
+                                       }
+                                       total_max_points += *max_bucket as u64;
+                               }
+                               let max_bucket_end_pos = BUCKET_START_POS[32 - highest_max_bucket_with_points] - 1;
+                               if payment_pos < max_bucket_end_pos {
+                                       let bucket_prob_times_billion =
+                                               (self.min_liquidity_offset_history.buckets[0] as u64) * total_max_points
+                                                       * 1024 * 1024 * 1024 / total_valid_points_tracked;
+                                       cumulative_success_prob_times_billion += bucket_prob_times_billion *
+                                               ((max_bucket_end_pos - payment_pos) as u64) /
+                                               // Add an additional one in the divisor as the payment bucket has been
+                                               // rounded down.
+                                               (max_bucket_end_pos + 1) as u64;
                                }
-                       }
-                       // If the total valid points is smaller than 1.0 (i.e. 32 in our fixed-point scheme), treat
-                       // it as if we were fully decayed.
-                       if total_valid_points_tracked.checked_shr(required_decays).unwrap_or(0) < 32*32 {
-                               return None;
                        }
 
-                       let mut cumulative_success_prob_times_billion = 0;
-                       for (min_idx, min_bucket) in self.min_liquidity_offset_history.buckets.iter().enumerate() {
-                               for (max_idx, max_bucket) in self.max_liquidity_offset_history.buckets.iter().enumerate().take(8 - min_idx) {
-                                       let bucket_prob_times_million = (*min_bucket as u64) * (*max_bucket as u64)
-                                               * 1024 * 1024 / total_valid_points_tracked;
-                                       let min_64th_bucket = min_idx as u8 * 9;
-                                       let max_64th_bucket = (7 - max_idx as u8) * 9 + 1;
-                                       if payment_amt_64th_bucket > max_64th_bucket {
-                                               // Success probability 0, the payment amount is above the max liquidity
-                                       } else if payment_amt_64th_bucket <= min_64th_bucket {
-                                               cumulative_success_prob_times_billion += bucket_prob_times_million * 1024;
+                       for (min_idx, min_bucket) in self.min_liquidity_offset_history.buckets.iter().enumerate().skip(1) {
+                               let min_bucket_start_pos = BUCKET_START_POS[min_idx];
+                               for (max_idx, max_bucket) in self.max_liquidity_offset_history.buckets.iter().enumerate().take(32 - min_idx) {
+                                       let max_bucket_end_pos = BUCKET_START_POS[32 - max_idx] - 1;
+                                       // Note that this multiply can only barely not overflow - two 16 bit ints plus
+                                       // 30 bits is 62 bits.
+                                       let bucket_prob_times_billion = (*min_bucket as u64) * (*max_bucket as u64)
+                                               * 1024 * 1024 * 1024 / total_valid_points_tracked;
+                                       if payment_pos >= max_bucket_end_pos {
+                                               // Success probability 0, the payment amount may be above the max liquidity
+                                               break;
+                                       } else if payment_pos < min_bucket_start_pos {
+                                               cumulative_success_prob_times_billion += bucket_prob_times_billion;
                                        } else {
-                                               cumulative_success_prob_times_billion += bucket_prob_times_million *
-                                                       ((max_64th_bucket - payment_amt_64th_bucket) as u64) * 1024 /
-                                                       ((max_64th_bucket - min_64th_bucket) as u64);
+                                               cumulative_success_prob_times_billion += bucket_prob_times_billion *
+                                                       ((max_bucket_end_pos - payment_pos) as u64) /
+                                                       // Add an additional one in the divisor as the payment bucket has been
+                                                       // rounded down.
+                                                       ((max_bucket_end_pos - min_bucket_start_pos + 1) as u64);
                                        }
                                }
                        }
@@ -1773,7 +1925,7 @@ mod bucketed_history {
                }
        }
 }
-use bucketed_history::{HistoricalBucketRangeTracker, HistoricalMinMaxBuckets};
+use bucketed_history::{LegacyHistoricalBucketRangeTracker, HistoricalBucketRangeTracker, HistoricalMinMaxBuckets};
 
 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref, T: Time> Writeable for ProbabilisticScorerUsingTime<G, L, T> where L::Target: Logger {
        #[inline]
@@ -1811,10 +1963,12 @@ impl<T: Time> Writeable for ChannelLiquidity<T> {
                let duration_since_epoch = T::duration_since_epoch() - self.last_updated.elapsed();
                write_tlv_fields!(w, {
                        (0, self.min_liquidity_offset_msat, required),
-                       (1, Some(self.min_liquidity_offset_history), option),
+                       // 1 was the min_liquidity_offset_history in octile form
                        (2, self.max_liquidity_offset_msat, required),
-                       (3, Some(self.max_liquidity_offset_history), option),
+                       // 3 was the max_liquidity_offset_history in octile form
                        (4, duration_since_epoch, required),
+                       (5, Some(self.min_liquidity_offset_history), option),
+                       (7, Some(self.max_liquidity_offset_history), option),
                });
                Ok(())
        }
@@ -1825,15 +1979,19 @@ impl<T: Time> Readable for ChannelLiquidity<T> {
        fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
                let mut min_liquidity_offset_msat = 0;
                let mut max_liquidity_offset_msat = 0;
-               let mut min_liquidity_offset_history = Some(HistoricalBucketRangeTracker::new());
-               let mut max_liquidity_offset_history = Some(HistoricalBucketRangeTracker::new());
+               let mut legacy_min_liq_offset_history: Option<LegacyHistoricalBucketRangeTracker> = None;
+               let mut legacy_max_liq_offset_history: Option<LegacyHistoricalBucketRangeTracker> = None;
+               let mut min_liquidity_offset_history: Option<HistoricalBucketRangeTracker> = None;
+               let mut max_liquidity_offset_history: Option<HistoricalBucketRangeTracker> = None;
                let mut duration_since_epoch = Duration::from_secs(0);
                read_tlv_fields!(r, {
                        (0, min_liquidity_offset_msat, required),
-                       (1, min_liquidity_offset_history, option),
+                       (1, legacy_min_liq_offset_history, option),
                        (2, max_liquidity_offset_msat, required),
-                       (3, max_liquidity_offset_history, option),
+                       (3, legacy_max_liq_offset_history, option),
                        (4, duration_since_epoch, required),
+                       (5, min_liquidity_offset_history, option),
+                       (7, max_liquidity_offset_history, option),
                });
                // On rust prior to 1.60 `Instant::duration_since` will panic if time goes backwards.
                // We write `last_updated` as wallclock time even though its ultimately an `Instant` (which
@@ -1847,6 +2005,20 @@ impl<T: Time> Readable for ChannelLiquidity<T> {
                let last_updated = if wall_clock_now > duration_since_epoch {
                        now - (wall_clock_now - duration_since_epoch)
                } else { now };
+               if min_liquidity_offset_history.is_none() {
+                       if let Some(legacy_buckets) = legacy_min_liq_offset_history {
+                               min_liquidity_offset_history = Some(legacy_buckets.into_current());
+                       } else {
+                               min_liquidity_offset_history = Some(HistoricalBucketRangeTracker::new());
+                       }
+               }
+               if max_liquidity_offset_history.is_none() {
+                       if let Some(legacy_buckets) = legacy_max_liq_offset_history {
+                               max_liquidity_offset_history = Some(legacy_buckets.into_current());
+                       } else {
+                               max_liquidity_offset_history = Some(HistoricalBucketRangeTracker::new());
+                       }
+               }
                Ok(Self {
                        min_liquidity_offset_msat,
                        max_liquidity_offset_msat,
@@ -1975,20 +2147,20 @@ mod tests {
                let chain_source: Option<&crate::util::test_utils::TestChainSource> = None;
                network_graph.update_channel_from_announcement(
                        &signed_announcement, &chain_source).unwrap();
-               update_channel(network_graph, short_channel_id, node_1_key, 0, 1_000);
-               update_channel(network_graph, short_channel_id, node_2_key, 1, 0);
+               update_channel(network_graph, short_channel_id, node_1_key, 0, 1_000, 100);
+               update_channel(network_graph, short_channel_id, node_2_key, 1, 0, 100);
        }
 
        fn update_channel(
                network_graph: &mut NetworkGraph<&TestLogger>, short_channel_id: u64, node_key: SecretKey,
-               flags: u8, htlc_maximum_msat: u64
+               flags: u8, htlc_maximum_msat: u64, timestamp: u32,
        ) {
                let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
                let secp_ctx = Secp256k1::new();
                let unsigned_update = UnsignedChannelUpdate {
                        chain_hash: genesis_hash,
                        short_channel_id,
-                       timestamp: 100,
+                       timestamp,
                        flags,
                        cltv_expiry_delta: 18,
                        htlc_minimum_msat: 0,
@@ -2964,6 +3136,12 @@ mod tests {
                        inflight_htlc_msat: 0,
                        effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
                };
+               let usage_1 = ChannelUsage {
+                       amount_msat: 1,
+                       inflight_htlc_msat: 0,
+                       effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
+               };
+
                // With no historical data the normal liquidity penalty calculation is used.
                assert_eq!(scorer.channel_penalty_msat(42, &source, &target, usage, &params), 47);
                assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
@@ -2973,33 +3151,36 @@ mod tests {
 
                scorer.payment_path_failed(&payment_path_for_amount(1), 42);
                assert_eq!(scorer.channel_penalty_msat(42, &source, &target, usage, &params), 2048);
-               // The "it failed" increment is 32, where the probability should lie fully in the first
-               // octile.
+               assert_eq!(scorer.channel_penalty_msat(42, &source, &target, usage_1, &params), 128);
+               // The "it failed" increment is 32, where the probability should lie several buckets into
+               // the first octile.
                assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
-                       Some(([32, 0, 0, 0, 0, 0, 0, 0], [32, 0, 0, 0, 0, 0, 0, 0])));
-               assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 1),
-                       Some(1.0));
+                       Some(([32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
+                               [0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
+               assert!(scorer.historical_estimated_payment_success_probability(42, &target, 1)
+                       .unwrap() > 0.35);
                assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 500),
                        Some(0.0));
 
                // Even after we tell the scorer we definitely have enough available liquidity, it will
                // still remember that there was some failure in the past, and assign a non-0 penalty.
                scorer.payment_path_failed(&payment_path_for_amount(1000), 43);
-               assert_eq!(scorer.channel_penalty_msat(42, &source, &target, usage, &params), 198);
-               // The first octile should be decayed just slightly and the last octile has a new point.
+               assert_eq!(scorer.channel_penalty_msat(42, &source, &target, usage, &params), 32);
+               // The first points should be decayed just slightly and the last bucket has a new point.
                assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
-                       Some(([31, 0, 0, 0, 0, 0, 0, 32], [31, 0, 0, 0, 0, 0, 0, 32])));
+                       Some(([31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0],
+                               [0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32])));
 
                // The exact success probability is a bit complicated and involves integer rounding, so we
                // simply check bounds here.
                let five_hundred_prob =
                        scorer.historical_estimated_payment_success_probability(42, &target, 500).unwrap();
-               assert!(five_hundred_prob > 0.5);
-               assert!(five_hundred_prob < 0.52);
+               assert!(five_hundred_prob > 0.66);
+               assert!(five_hundred_prob < 0.68);
                let one_prob =
                        scorer.historical_estimated_payment_success_probability(42, &target, 1).unwrap();
                assert!(one_prob < 1.0);
-               assert!(one_prob > 0.99);
+               assert!(one_prob > 0.95);
 
                // Advance the time forward 16 half-lives (which the docs claim will ensure all data is
                // gone), and check that we're back to where we started.
@@ -3008,7 +3189,7 @@ mod tests {
                // Once fully decayed we still have data, but its all-0s. In the future we may remove the
                // data entirely instead.
                assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
-                       Some(([0; 8], [0; 8])));
+                       None);
                assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 1), None);
 
                let mut usage = ChannelUsage {
@@ -3019,7 +3200,7 @@ mod tests {
                scorer.payment_path_failed(&payment_path_for_amount(1), 42);
                assert_eq!(scorer.channel_penalty_msat(42, &source, &target, usage, &params), 2048);
                usage.inflight_htlc_msat = 0;
-               assert_eq!(scorer.channel_penalty_msat(42, &source, &target, usage, &params), 409);
+               assert_eq!(scorer.channel_penalty_msat(42, &source, &target, usage, &params), 866);
 
                let usage = ChannelUsage {
                        amount_msat: 1,
@@ -3135,4 +3316,77 @@ mod tests {
                assert_eq!(liquidity.min_liquidity_msat(), 256);
                assert_eq!(liquidity.max_liquidity_msat(), 768);
        }
+
+       #[test]
+       fn realistic_historical_failures() {
+               // The motivation for the unequal sized buckets came largely from attempting to pay 10k
+               // sats over a one bitcoin channel. This tests that case explicitly, ensuring that we score
+               // properly.
+               let logger = TestLogger::new();
+               let mut network_graph = network_graph(&logger);
+               let params = ProbabilisticScoringFeeParameters {
+                       historical_liquidity_penalty_multiplier_msat: 1024,
+                       historical_liquidity_penalty_amount_multiplier_msat: 1024,
+                       ..ProbabilisticScoringFeeParameters::zero_penalty()
+               };
+               let decay_params = ProbabilisticScoringDecayParameters {
+                       liquidity_offset_half_life: Duration::from_secs(60 * 60),
+                       historical_no_updates_half_life: Duration::from_secs(10),
+                       ..ProbabilisticScoringDecayParameters::default()
+               };
+
+               let capacity_msat = 100_000_000_000;
+               update_channel(&mut network_graph, 42, source_privkey(), 0, capacity_msat, 200);
+               update_channel(&mut network_graph, 42, target_privkey(), 1, capacity_msat, 200);
+
+               let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
+               let source = source_node_id();
+               let target = target_node_id();
+
+               let mut amount_msat = 10_000_000;
+               let usage = ChannelUsage {
+                       amount_msat,
+                       inflight_htlc_msat: 0,
+                       effective_capacity: EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: capacity_msat },
+               };
+               // With no historical data the normal liquidity penalty calculation is used, which in this
+               // case is diminuitively low.
+               assert_eq!(scorer.channel_penalty_msat(42, &source, &target, usage, &params), 0);
+               assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
+                       None);
+               assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 42),
+                       None);
+
+               // Fail to pay once, and then check the buckets and penalty.
+               scorer.payment_path_failed(&payment_path_for_amount(amount_msat), 42);
+               // The penalty should be the maximum penalty, as the payment we're scoring is now in the
+               // same bucket which is the only maximum datapoint.
+               assert_eq!(scorer.channel_penalty_msat(42, &source, &target, usage, &params),
+                       2048 + 2048 * amount_msat / super::AMOUNT_PENALTY_DIVISOR);
+               // The "it failed" increment is 32, which we should apply to the first upper-bound (between
+               // 6k sats and 12k sats).
+               assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
+                       Some(([32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
+                               [0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
+               // The success probability estimate itself should be zero.
+               assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat),
+                       Some(0.0));
+
+               // Now test again with the amount in the bottom bucket.
+               amount_msat /= 2;
+               // The new amount is entirely within the only minimum bucket with score, so the probability
+               // we assign is 1/2.
+               assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat),
+                       Some(0.5));
+
+               // ...but once we see a failure, we consider the payment to be substantially less likely,
+               // even though not a probability of zero as we still look at the second max bucket which
+               // now shows 31.
+               scorer.payment_path_failed(&payment_path_for_amount(amount_msat), 42);
+               assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
+                       Some(([63, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
+                               [32, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
+               assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat),
+                       Some(0.0));
+       }
 }
index 1eb5e7424c82343d0bb88aef7df632dc408563f0..af4de88a1a7dda59145b1ea25fa7b7e434519f76 100644 (file)
@@ -553,61 +553,50 @@ impl Readable for bool {
        }
 }
 
-// u8 arrays
 macro_rules! impl_array {
-       ( $size:expr ) => (
-               impl Writeable for [u8; $size]
-               {
+       ($size:expr, $ty: ty) => (
+               impl Writeable for [$ty; $size] {
                        #[inline]
                        fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
-                               w.write_all(self)
+                               let mut out = [0; $size * core::mem::size_of::<$ty>()];
+                               for (idx, v) in self.iter().enumerate() {
+                                       let startpos = idx * core::mem::size_of::<$ty>();
+                                       out[startpos..startpos + core::mem::size_of::<$ty>()].copy_from_slice(&v.to_be_bytes());
+                               }
+                               w.write_all(&out)
                        }
                }
 
-               impl Readable for [u8; $size]
-               {
+               impl Readable for [$ty; $size] {
                        #[inline]
                        fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
-                               let mut buf = [0u8; $size];
+                               let mut buf = [0u8; $size * core::mem::size_of::<$ty>()];
                                r.read_exact(&mut buf)?;
-                               Ok(buf)
+                               let mut res = [0; $size];
+                               for (idx, v) in res.iter_mut().enumerate() {
+                                       let startpos = idx * core::mem::size_of::<$ty>();
+                                       let mut arr = [0; core::mem::size_of::<$ty>()];
+                                       arr.copy_from_slice(&buf[startpos..startpos + core::mem::size_of::<$ty>()]);
+                                       *v = <$ty>::from_be_bytes(arr);
+                               }
+                               Ok(res)
                        }
                }
        );
 }
 
-impl_array!(3); // for rgb, ISO 4712 code
-impl_array!(4); // for IPv4
-impl_array!(12); // for OnionV2
-impl_array!(16); // for IPv6
-impl_array!(32); // for channel id & hmac
-impl_array!(PUBLIC_KEY_SIZE); // for PublicKey
-impl_array!(64); // for ecdsa::Signature and schnorr::Signature
-impl_array!(66); // for MuSig2 nonces
-impl_array!(1300); // for OnionPacket.hop_data
+impl_array!(3, u8); // for rgb, ISO 4712 code
+impl_array!(4, u8); // for IPv4
+impl_array!(12, u8); // for OnionV2
+impl_array!(16, u8); // for IPv6
+impl_array!(32, u8); // for channel id & hmac
+impl_array!(PUBLIC_KEY_SIZE, u8); // for PublicKey
+impl_array!(64, u8); // for ecdsa::Signature and schnorr::Signature
+impl_array!(66, u8); // for MuSig2 nonces
+impl_array!(1300, u8); // for OnionPacket.hop_data
 
-impl Writeable for [u16; 8] {
-       #[inline]
-       fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
-               for v in self.iter() {
-                       w.write_all(&v.to_be_bytes())?
-               }
-               Ok(())
-       }
-}
-
-impl Readable for [u16; 8] {
-       #[inline]
-       fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
-               let mut buf = [0u8; 16];
-               r.read_exact(&mut buf)?;
-               let mut res = [0u16; 8];
-               for (idx, v) in res.iter_mut().enumerate() {
-                       *v = (buf[idx*2] as u16) << 8 | (buf[idx*2 + 1] as u16)
-               }
-               Ok(res)
-       }
-}
+impl_array!(8, u16);
+impl_array!(32, u16);
 
 /// A type for variable-length values within TLV record where the length is encoded as part of the record.
 /// Used to prevent encoding the length twice.