[C#] Update auto-generated C# bindings
[ldk-java] / c_sharp / src / org / ldk / structs / PeerManager.cs
1 using org.ldk.impl;
2 using org.ldk.enums;
3 using org.ldk.util;
4 using System;
5
6 namespace org { namespace ldk { namespace structs {
7
8
9 /**
10  * A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
11  * socket events into messages which it passes on to its [`MessageHandler`].
12  * 
13  * Locks are taken internally, so you must never assume that reentrancy from a
14  * [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
15  * 
16  * Calls to [`read_event`] will decode relevant messages and pass them to the
17  * [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
18  * parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
19  * [`PeerManager`] functions related to the same connection must occur only in serial, making new
20  * calls only after previous ones have returned.
21  * 
22  * Rather than using a plain [`PeerManager`], it is preferable to use either a [`SimpleArcPeerManager`]
23  * a [`SimpleRefPeerManager`], for conciseness. See their documentation for more details, but
24  * essentially you should default to using a [`SimpleRefPeerManager`], and use a
25  * [`SimpleArcPeerManager`] when you require a `PeerManager` with a static lifetime, such as when
26  * you're using lightning-net-tokio.
27  * 
28  * [`read_event`]: PeerManager::read_event
29  */
30 public class PeerManager : CommonBase {
31         internal PeerManager(object _dummy, long ptr) : base(ptr) { }
32         ~PeerManager() {
33                 if (ptr != 0) { bindings.PeerManager_free(ptr); }
34         }
35
36         /**
37          * Constructs a new `PeerManager` with the given message handlers.
38          * 
39          * `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
40          * cryptographically secure random bytes.
41          * 
42          * `current_time` is used as an always-increasing counter that survives across restarts and is
43          * incremented irregularly internally. In general it is best to simply use the current UNIX
44          * timestamp, however if it is not available a persistent counter that increases once per
45          * minute should suffice.
46          */
47         public static PeerManager of(ChannelMessageHandler message_handler_chan_handler_arg, RoutingMessageHandler message_handler_route_handler_arg, OnionMessageHandler message_handler_onion_message_handler_arg, CustomMessageHandler message_handler_custom_message_handler_arg, int current_time, byte[] ephemeral_random_data, org.ldk.structs.Logger logger, org.ldk.structs.NodeSigner node_signer) {
48                 long ret = bindings.PeerManager_new(bindings.MessageHandler_new(message_handler_chan_handler_arg.ptr, message_handler_route_handler_arg.ptr, message_handler_onion_message_handler_arg.ptr, message_handler_custom_message_handler_arg.ptr), current_time, InternalUtils.encodeUint8Array(InternalUtils.check_arr_len(ephemeral_random_data, 32)), logger.ptr, node_signer.ptr);
49                 GC.KeepAlive(message_handler_chan_handler_arg);
50                 GC.KeepAlive(message_handler_route_handler_arg);
51                 GC.KeepAlive(message_handler_onion_message_handler_arg);
52                 GC.KeepAlive(message_handler_custom_message_handler_arg);
53                 GC.KeepAlive(current_time);
54                 GC.KeepAlive(ephemeral_random_data);
55                 GC.KeepAlive(logger);
56                 GC.KeepAlive(node_signer);
57                 if (ret >= 0 && ret <= 4096) { return null; }
58                 org.ldk.structs.PeerManager ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.PeerManager(null, ret); }
59                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(ret_hu_conv); };
60                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(message_handler_chan_handler_arg); };
61                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(message_handler_route_handler_arg); };
62                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(message_handler_onion_message_handler_arg); };
63                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(message_handler_custom_message_handler_arg); };
64                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(logger); };
65                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(node_signer); };
66                 return ret_hu_conv;
67         }
68
69         /**
70          * Get a list of tuples mapping from node id to network addresses for peers which have
71          * completed the initial handshake.
72          * 
73          * For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
74          * passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
75          * handshake has completed and we are sure the remote peer has the private key for the given
76          * [`PublicKey`].
77          * 
78          * The returned `Option`s will only be `Some` if an address had been previously given via
79          * [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
80          */
81         public TwoTuple_PublicKeyCOption_SocketAddressZZ[] get_peer_node_ids() {
82                 long ret = bindings.PeerManager_get_peer_node_ids(this.ptr);
83                 GC.KeepAlive(this);
84                 if (ret >= 0 && ret <= 4096) { return null; }
85                 int ret_conv_43_len = InternalUtils.getArrayLength(ret);
86                 TwoTuple_PublicKeyCOption_SocketAddressZZ[] ret_conv_43_arr = new TwoTuple_PublicKeyCOption_SocketAddressZZ[ret_conv_43_len];
87                 for (int r = 0; r < ret_conv_43_len; r++) {
88                         long ret_conv_43 = InternalUtils.getU64ArrayElem(ret, r);
89                         TwoTuple_PublicKeyCOption_SocketAddressZZ ret_conv_43_hu_conv = new TwoTuple_PublicKeyCOption_SocketAddressZZ(null, ret_conv_43);
90                         if (ret_conv_43_hu_conv != null) { ret_conv_43_hu_conv.ptrs_to.AddLast(this); };
91                         ret_conv_43_arr[r] = ret_conv_43_hu_conv;
92                 }
93                 bindings.free_buffer(ret);
94                 return ret_conv_43_arr;
95         }
96
97         /**
98          * Indicates a new outbound connection has been established to a node with the given `node_id`
99          * and an optional remote network address.
100          * 
101          * The remote network address adds the option to report a remote IP address back to a connecting
102          * peer using the init message.
103          * The user should pass the remote network address of the host they are connected to.
104          * 
105          * If an `Err` is returned here you must disconnect the connection immediately.
106          * 
107          * Returns a small number of bytes to send to the remote node (currently always 50).
108          * 
109          * Panics if descriptor is duplicative with some other descriptor which has not yet been
110          * [`socket_disconnected`].
111          * 
112          * [`socket_disconnected`]: PeerManager::socket_disconnected
113          */
114         public Result_CVec_u8ZPeerHandleErrorZ new_outbound_connection(byte[] their_node_id, org.ldk.structs.SocketDescriptor descriptor, org.ldk.structs.Option_SocketAddressZ remote_network_address) {
115                 long ret = bindings.PeerManager_new_outbound_connection(this.ptr, InternalUtils.encodeUint8Array(InternalUtils.check_arr_len(their_node_id, 33)), descriptor.ptr, remote_network_address.ptr);
116                 GC.KeepAlive(this);
117                 GC.KeepAlive(their_node_id);
118                 GC.KeepAlive(descriptor);
119                 GC.KeepAlive(remote_network_address);
120                 if (ret >= 0 && ret <= 4096) { return null; }
121                 Result_CVec_u8ZPeerHandleErrorZ ret_hu_conv = Result_CVec_u8ZPeerHandleErrorZ.constr_from_ptr(ret);
122                 if (this != null) { this.ptrs_to.AddLast(descriptor); };
123                 if (this != null) { this.ptrs_to.AddLast(remote_network_address); };
124                 return ret_hu_conv;
125         }
126
127         /**
128          * Indicates a new inbound connection has been established to a node with an optional remote
129          * network address.
130          * 
131          * The remote network address adds the option to report a remote IP address back to a connecting
132          * peer using the init message.
133          * The user should pass the remote network address of the host they are connected to.
134          * 
135          * May refuse the connection by returning an Err, but will never write bytes to the remote end
136          * (outbound connector always speaks first). If an `Err` is returned here you must disconnect
137          * the connection immediately.
138          * 
139          * Panics if descriptor is duplicative with some other descriptor which has not yet been
140          * [`socket_disconnected`].
141          * 
142          * [`socket_disconnected`]: PeerManager::socket_disconnected
143          */
144         public Result_NonePeerHandleErrorZ new_inbound_connection(org.ldk.structs.SocketDescriptor descriptor, org.ldk.structs.Option_SocketAddressZ remote_network_address) {
145                 long ret = bindings.PeerManager_new_inbound_connection(this.ptr, descriptor.ptr, remote_network_address.ptr);
146                 GC.KeepAlive(this);
147                 GC.KeepAlive(descriptor);
148                 GC.KeepAlive(remote_network_address);
149                 if (ret >= 0 && ret <= 4096) { return null; }
150                 Result_NonePeerHandleErrorZ ret_hu_conv = Result_NonePeerHandleErrorZ.constr_from_ptr(ret);
151                 if (this != null) { this.ptrs_to.AddLast(descriptor); };
152                 if (this != null) { this.ptrs_to.AddLast(remote_network_address); };
153                 return ret_hu_conv;
154         }
155
156         /**
157          * Indicates that there is room to write data to the given socket descriptor.
158          * 
159          * May return an Err to indicate that the connection should be closed.
160          * 
161          * May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
162          * returning. Thus, be very careful with reentrancy issues! The invariants around calling
163          * [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
164          * ready to call [`write_buffer_space_avail`] again if a write call generated here isn't
165          * sufficient!
166          * 
167          * [`send_data`]: SocketDescriptor::send_data
168          * [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
169          */
170         public Result_NonePeerHandleErrorZ write_buffer_space_avail(org.ldk.structs.SocketDescriptor descriptor) {
171                 long ret = bindings.PeerManager_write_buffer_space_avail(this.ptr, descriptor.ptr);
172                 GC.KeepAlive(this);
173                 GC.KeepAlive(descriptor);
174                 if (ret >= 0 && ret <= 4096) { return null; }
175                 Result_NonePeerHandleErrorZ ret_hu_conv = Result_NonePeerHandleErrorZ.constr_from_ptr(ret);
176                 return ret_hu_conv;
177         }
178
179         /**
180          * Indicates that data was read from the given socket descriptor.
181          * 
182          * May return an Err to indicate that the connection should be closed.
183          * 
184          * Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
185          * Thus, however, you should call [`process_events`] after any `read_event` to generate
186          * [`send_data`] calls to handle responses.
187          * 
188          * If `Ok(true)` is returned, further read_events should not be triggered until a
189          * [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
190          * send buffer).
191          * 
192          * In order to avoid processing too many messages at once per peer, `data` should be on the
193          * order of 4KiB.
194          * 
195          * [`send_data`]: SocketDescriptor::send_data
196          * [`process_events`]: PeerManager::process_events
197          */
198         public Result_boolPeerHandleErrorZ read_event(org.ldk.structs.SocketDescriptor peer_descriptor, byte[] data) {
199                 long ret = bindings.PeerManager_read_event(this.ptr, peer_descriptor.ptr, InternalUtils.encodeUint8Array(data));
200                 GC.KeepAlive(this);
201                 GC.KeepAlive(peer_descriptor);
202                 GC.KeepAlive(data);
203                 if (ret >= 0 && ret <= 4096) { return null; }
204                 Result_boolPeerHandleErrorZ ret_hu_conv = Result_boolPeerHandleErrorZ.constr_from_ptr(ret);
205                 return ret_hu_conv;
206         }
207
208         /**
209          * Checks for any events generated by our handlers and processes them. Includes sending most
210          * response messages as well as messages generated by calls to handler functions directly (eg
211          * functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
212          * 
213          * May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
214          * issues!
215          * 
216          * You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
217          * or one of the other clients provided in our language bindings.
218          * 
219          * Note that if there are any other calls to this function waiting on lock(s) this may return
220          * without doing any work. All available events that need handling will be handled before the
221          * other calls return.
222          * 
223          * [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
224          * [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
225          * [`send_data`]: SocketDescriptor::send_data
226          */
227         public void process_events() {
228                 bindings.PeerManager_process_events(this.ptr);
229                 GC.KeepAlive(this);
230         }
231
232         /**
233          * Indicates that the given socket descriptor's connection is now closed.
234          */
235         public void socket_disconnected(org.ldk.structs.SocketDescriptor descriptor) {
236                 bindings.PeerManager_socket_disconnected(this.ptr, descriptor.ptr);
237                 GC.KeepAlive(this);
238                 GC.KeepAlive(descriptor);
239         }
240
241         /**
242          * Disconnect a peer given its node id.
243          * 
244          * If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
245          * peer. Thus, be very careful about reentrancy issues.
246          * 
247          * [`disconnect_socket`]: SocketDescriptor::disconnect_socket
248          */
249         public void disconnect_by_node_id(byte[] node_id) {
250                 bindings.PeerManager_disconnect_by_node_id(this.ptr, InternalUtils.encodeUint8Array(InternalUtils.check_arr_len(node_id, 33)));
251                 GC.KeepAlive(this);
252                 GC.KeepAlive(node_id);
253         }
254
255         /**
256          * Disconnects all currently-connected peers. This is useful on platforms where there may be
257          * an indication that TCP sockets have stalled even if we weren't around to time them out
258          * using regular ping/pongs.
259          */
260         public void disconnect_all_peers() {
261                 bindings.PeerManager_disconnect_all_peers(this.ptr);
262                 GC.KeepAlive(this);
263         }
264
265         /**
266          * Send pings to each peer and disconnect those which did not respond to the last round of
267          * pings.
268          * 
269          * This may be called on any timescale you want, however, roughly once every ten seconds is
270          * preferred. The call rate determines both how often we send a ping to our peers and how much
271          * time they have to respond before we disconnect them.
272          * 
273          * May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
274          * issues!
275          * 
276          * [`send_data`]: SocketDescriptor::send_data
277          */
278         public void timer_tick_occurred() {
279                 bindings.PeerManager_timer_tick_occurred(this.ptr);
280                 GC.KeepAlive(this);
281         }
282
283         /**
284          * Generates a signed node_announcement from the given arguments, sending it to all connected
285          * peers. Note that peers will likely ignore this message unless we have at least one public
286          * channel which has at least six confirmations on-chain.
287          * 
288          * `rgb` is a node \"color\" and `alias` is a printable human-readable string to describe this
289          * node to humans. They carry no in-protocol meaning.
290          * 
291          * `addresses` represent the set (possibly empty) of socket addresses on which this node
292          * accepts incoming connections. These will be included in the node_announcement, publicly
293          * tying these addresses together and to this node. If you wish to preserve user privacy,
294          * addresses should likely contain only Tor Onion addresses.
295          * 
296          * Panics if `addresses` is absurdly large (more than 100).
297          * 
298          * [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
299          */
300         public void broadcast_node_announcement(byte[] rgb, byte[] alias, SocketAddress[] addresses) {
301                 bindings.PeerManager_broadcast_node_announcement(this.ptr, InternalUtils.encodeUint8Array(InternalUtils.check_arr_len(rgb, 3)), InternalUtils.encodeUint8Array(InternalUtils.check_arr_len(alias, 32)), InternalUtils.encodeUint64Array(InternalUtils.mapArray(addresses, addresses_conv_15 => addresses_conv_15.ptr)));
302                 GC.KeepAlive(this);
303                 GC.KeepAlive(rgb);
304                 GC.KeepAlive(alias);
305                 GC.KeepAlive(addresses);
306                 foreach (SocketAddress addresses_conv_15 in addresses) { if (this != null) { this.ptrs_to.AddLast(addresses_conv_15); }; };
307         }
308
309 }
310 } } }