[Java] Update auto-generated bindings to 0.0.117
[ldk-java] / src / main / java / org / ldk / structs / PeerManager.java
1 package org.ldk.structs;
2
3 import org.ldk.impl.bindings;
4 import org.ldk.enums.*;
5 import org.ldk.util.*;
6 import java.util.Arrays;
7 import java.lang.ref.Reference;
8 import javax.annotation.Nullable;
9
10
11 /**
12  * A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
13  * socket events into messages which it passes on to its [`MessageHandler`].
14  * 
15  * Locks are taken internally, so you must never assume that reentrancy from a
16  * [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
17  * 
18  * Calls to [`read_event`] will decode relevant messages and pass them to the
19  * [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
20  * parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
21  * [`PeerManager`] functions related to the same connection must occur only in serial, making new
22  * calls only after previous ones have returned.
23  * 
24  * Rather than using a plain [`PeerManager`], it is preferable to use either a [`SimpleArcPeerManager`]
25  * a [`SimpleRefPeerManager`], for conciseness. See their documentation for more details, but
26  * essentially you should default to using a [`SimpleRefPeerManager`], and use a
27  * [`SimpleArcPeerManager`] when you require a `PeerManager` with a static lifetime, such as when
28  * you're using lightning-net-tokio.
29  * 
30  * [`read_event`]: PeerManager::read_event
31  */
32 @SuppressWarnings("unchecked") // We correctly assign various generic arrays
33 public class PeerManager extends CommonBase {
34         PeerManager(Object _dummy, long ptr) { super(ptr); }
35         @Override @SuppressWarnings("deprecation")
36         protected void finalize() throws Throwable {
37                 super.finalize();
38                 if (ptr != 0) { bindings.PeerManager_free(ptr); }
39         }
40
41         /**
42          * Constructs a new `PeerManager` with the given message handlers.
43          * 
44          * `ephemeral_random_data` is used to derive per-connection ephemeral keys and must be
45          * cryptographically secure random bytes.
46          * 
47          * `current_time` is used as an always-increasing counter that survives across restarts and is
48          * incremented irregularly internally. In general it is best to simply use the current UNIX
49          * timestamp, however if it is not available a persistent counter that increases once per
50          * minute should suffice.
51          */
52         public static PeerManager of(ChannelMessageHandler message_handler_chan_handler_arg, RoutingMessageHandler message_handler_route_handler_arg, OnionMessageHandler message_handler_onion_message_handler_arg, CustomMessageHandler message_handler_custom_message_handler_arg, int current_time, byte[] ephemeral_random_data, org.ldk.structs.Logger logger, org.ldk.structs.NodeSigner node_signer) {
53                 long ret = bindings.PeerManager_new(bindings.MessageHandler_new(message_handler_chan_handler_arg.ptr, message_handler_route_handler_arg.ptr, message_handler_onion_message_handler_arg.ptr, message_handler_custom_message_handler_arg.ptr), current_time, InternalUtils.check_arr_len(ephemeral_random_data, 32), logger.ptr, node_signer.ptr);
54                 Reference.reachabilityFence(message_handler_chan_handler_arg);
55                 Reference.reachabilityFence(message_handler_route_handler_arg);
56                 Reference.reachabilityFence(message_handler_onion_message_handler_arg);
57                 Reference.reachabilityFence(message_handler_custom_message_handler_arg);
58                 Reference.reachabilityFence(current_time);
59                 Reference.reachabilityFence(ephemeral_random_data);
60                 Reference.reachabilityFence(logger);
61                 Reference.reachabilityFence(node_signer);
62                 if (ret >= 0 && ret <= 4096) { return null; }
63                 org.ldk.structs.PeerManager ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.PeerManager(null, ret); }
64                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(ret_hu_conv); };
65                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(message_handler_chan_handler_arg); };
66                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(message_handler_route_handler_arg); };
67                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(message_handler_onion_message_handler_arg); };
68                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(message_handler_custom_message_handler_arg); };
69                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(logger); };
70                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(node_signer); };
71                 return ret_hu_conv;
72         }
73
74         /**
75          * Get a list of tuples mapping from node id to network addresses for peers which have
76          * completed the initial handshake.
77          * 
78          * For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
79          * passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
80          * handshake has completed and we are sure the remote peer has the private key for the given
81          * [`PublicKey`].
82          * 
83          * The returned `Option`s will only be `Some` if an address had been previously given via
84          * [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
85          */
86         public TwoTuple_PublicKeyCOption_SocketAddressZZ[] get_peer_node_ids() {
87                 long[] ret = bindings.PeerManager_get_peer_node_ids(this.ptr);
88                 Reference.reachabilityFence(this);
89                 int ret_conv_43_len = ret.length;
90                 TwoTuple_PublicKeyCOption_SocketAddressZZ[] ret_conv_43_arr = new TwoTuple_PublicKeyCOption_SocketAddressZZ[ret_conv_43_len];
91                 for (int r = 0; r < ret_conv_43_len; r++) {
92                         long ret_conv_43 = ret[r];
93                         TwoTuple_PublicKeyCOption_SocketAddressZZ ret_conv_43_hu_conv = new TwoTuple_PublicKeyCOption_SocketAddressZZ(null, ret_conv_43);
94                         if (ret_conv_43_hu_conv != null) { ret_conv_43_hu_conv.ptrs_to.add(this); };
95                         ret_conv_43_arr[r] = ret_conv_43_hu_conv;
96                 }
97                 return ret_conv_43_arr;
98         }
99
100         /**
101          * Indicates a new outbound connection has been established to a node with the given `node_id`
102          * and an optional remote network address.
103          * 
104          * The remote network address adds the option to report a remote IP address back to a connecting
105          * peer using the init message.
106          * The user should pass the remote network address of the host they are connected to.
107          * 
108          * If an `Err` is returned here you must disconnect the connection immediately.
109          * 
110          * Returns a small number of bytes to send to the remote node (currently always 50).
111          * 
112          * Panics if descriptor is duplicative with some other descriptor which has not yet been
113          * [`socket_disconnected`].
114          * 
115          * [`socket_disconnected`]: PeerManager::socket_disconnected
116          */
117         public Result_CVec_u8ZPeerHandleErrorZ new_outbound_connection(byte[] their_node_id, org.ldk.structs.SocketDescriptor descriptor, org.ldk.structs.Option_SocketAddressZ remote_network_address) {
118                 long ret = bindings.PeerManager_new_outbound_connection(this.ptr, InternalUtils.check_arr_len(their_node_id, 33), descriptor.ptr, remote_network_address.ptr);
119                 Reference.reachabilityFence(this);
120                 Reference.reachabilityFence(their_node_id);
121                 Reference.reachabilityFence(descriptor);
122                 Reference.reachabilityFence(remote_network_address);
123                 if (ret >= 0 && ret <= 4096) { return null; }
124                 Result_CVec_u8ZPeerHandleErrorZ ret_hu_conv = Result_CVec_u8ZPeerHandleErrorZ.constr_from_ptr(ret);
125                 if (this != null) { this.ptrs_to.add(descriptor); };
126                 if (this != null) { this.ptrs_to.add(remote_network_address); };
127                 return ret_hu_conv;
128         }
129
130         /**
131          * Indicates a new inbound connection has been established to a node with an optional remote
132          * network address.
133          * 
134          * The remote network address adds the option to report a remote IP address back to a connecting
135          * peer using the init message.
136          * The user should pass the remote network address of the host they are connected to.
137          * 
138          * May refuse the connection by returning an Err, but will never write bytes to the remote end
139          * (outbound connector always speaks first). If an `Err` is returned here you must disconnect
140          * the connection immediately.
141          * 
142          * Panics if descriptor is duplicative with some other descriptor which has not yet been
143          * [`socket_disconnected`].
144          * 
145          * [`socket_disconnected`]: PeerManager::socket_disconnected
146          */
147         public Result_NonePeerHandleErrorZ new_inbound_connection(org.ldk.structs.SocketDescriptor descriptor, org.ldk.structs.Option_SocketAddressZ remote_network_address) {
148                 long ret = bindings.PeerManager_new_inbound_connection(this.ptr, descriptor.ptr, remote_network_address.ptr);
149                 Reference.reachabilityFence(this);
150                 Reference.reachabilityFence(descriptor);
151                 Reference.reachabilityFence(remote_network_address);
152                 if (ret >= 0 && ret <= 4096) { return null; }
153                 Result_NonePeerHandleErrorZ ret_hu_conv = Result_NonePeerHandleErrorZ.constr_from_ptr(ret);
154                 if (this != null) { this.ptrs_to.add(descriptor); };
155                 if (this != null) { this.ptrs_to.add(remote_network_address); };
156                 return ret_hu_conv;
157         }
158
159         /**
160          * Indicates that there is room to write data to the given socket descriptor.
161          * 
162          * May return an Err to indicate that the connection should be closed.
163          * 
164          * May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
165          * returning. Thus, be very careful with reentrancy issues! The invariants around calling
166          * [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
167          * ready to call [`write_buffer_space_avail`] again if a write call generated here isn't
168          * sufficient!
169          * 
170          * [`send_data`]: SocketDescriptor::send_data
171          * [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
172          */
173         public Result_NonePeerHandleErrorZ write_buffer_space_avail(org.ldk.structs.SocketDescriptor descriptor) {
174                 long ret = bindings.PeerManager_write_buffer_space_avail(this.ptr, descriptor.ptr);
175                 Reference.reachabilityFence(this);
176                 Reference.reachabilityFence(descriptor);
177                 if (ret >= 0 && ret <= 4096) { return null; }
178                 Result_NonePeerHandleErrorZ ret_hu_conv = Result_NonePeerHandleErrorZ.constr_from_ptr(ret);
179                 return ret_hu_conv;
180         }
181
182         /**
183          * Indicates that data was read from the given socket descriptor.
184          * 
185          * May return an Err to indicate that the connection should be closed.
186          * 
187          * Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
188          * Thus, however, you should call [`process_events`] after any `read_event` to generate
189          * [`send_data`] calls to handle responses.
190          * 
191          * If `Ok(true)` is returned, further read_events should not be triggered until a
192          * [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
193          * send buffer).
194          * 
195          * In order to avoid processing too many messages at once per peer, `data` should be on the
196          * order of 4KiB.
197          * 
198          * [`send_data`]: SocketDescriptor::send_data
199          * [`process_events`]: PeerManager::process_events
200          */
201         public Result_boolPeerHandleErrorZ read_event(org.ldk.structs.SocketDescriptor peer_descriptor, byte[] data) {
202                 long ret = bindings.PeerManager_read_event(this.ptr, peer_descriptor.ptr, data);
203                 Reference.reachabilityFence(this);
204                 Reference.reachabilityFence(peer_descriptor);
205                 Reference.reachabilityFence(data);
206                 if (ret >= 0 && ret <= 4096) { return null; }
207                 Result_boolPeerHandleErrorZ ret_hu_conv = Result_boolPeerHandleErrorZ.constr_from_ptr(ret);
208                 return ret_hu_conv;
209         }
210
211         /**
212          * Checks for any events generated by our handlers and processes them. Includes sending most
213          * response messages as well as messages generated by calls to handler functions directly (eg
214          * functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
215          * 
216          * May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
217          * issues!
218          * 
219          * You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
220          * or one of the other clients provided in our language bindings.
221          * 
222          * Note that if there are any other calls to this function waiting on lock(s) this may return
223          * without doing any work. All available events that need handling will be handled before the
224          * other calls return.
225          * 
226          * [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
227          * [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
228          * [`send_data`]: SocketDescriptor::send_data
229          */
230         public void process_events() {
231                 bindings.PeerManager_process_events(this.ptr);
232                 Reference.reachabilityFence(this);
233         }
234
235         /**
236          * Indicates that the given socket descriptor's connection is now closed.
237          */
238         public void socket_disconnected(org.ldk.structs.SocketDescriptor descriptor) {
239                 bindings.PeerManager_socket_disconnected(this.ptr, descriptor.ptr);
240                 Reference.reachabilityFence(this);
241                 Reference.reachabilityFence(descriptor);
242         }
243
244         /**
245          * Disconnect a peer given its node id.
246          * 
247          * If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
248          * peer. Thus, be very careful about reentrancy issues.
249          * 
250          * [`disconnect_socket`]: SocketDescriptor::disconnect_socket
251          */
252         public void disconnect_by_node_id(byte[] node_id) {
253                 bindings.PeerManager_disconnect_by_node_id(this.ptr, InternalUtils.check_arr_len(node_id, 33));
254                 Reference.reachabilityFence(this);
255                 Reference.reachabilityFence(node_id);
256         }
257
258         /**
259          * Disconnects all currently-connected peers. This is useful on platforms where there may be
260          * an indication that TCP sockets have stalled even if we weren't around to time them out
261          * using regular ping/pongs.
262          */
263         public void disconnect_all_peers() {
264                 bindings.PeerManager_disconnect_all_peers(this.ptr);
265                 Reference.reachabilityFence(this);
266         }
267
268         /**
269          * Send pings to each peer and disconnect those which did not respond to the last round of
270          * pings.
271          * 
272          * This may be called on any timescale you want, however, roughly once every ten seconds is
273          * preferred. The call rate determines both how often we send a ping to our peers and how much
274          * time they have to respond before we disconnect them.
275          * 
276          * May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
277          * issues!
278          * 
279          * [`send_data`]: SocketDescriptor::send_data
280          */
281         public void timer_tick_occurred() {
282                 bindings.PeerManager_timer_tick_occurred(this.ptr);
283                 Reference.reachabilityFence(this);
284         }
285
286         /**
287          * Generates a signed node_announcement from the given arguments, sending it to all connected
288          * peers. Note that peers will likely ignore this message unless we have at least one public
289          * channel which has at least six confirmations on-chain.
290          * 
291          * `rgb` is a node \"color\" and `alias` is a printable human-readable string to describe this
292          * node to humans. They carry no in-protocol meaning.
293          * 
294          * `addresses` represent the set (possibly empty) of socket addresses on which this node
295          * accepts incoming connections. These will be included in the node_announcement, publicly
296          * tying these addresses together and to this node. If you wish to preserve user privacy,
297          * addresses should likely contain only Tor Onion addresses.
298          * 
299          * Panics if `addresses` is absurdly large (more than 100).
300          * 
301          * [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
302          */
303         public void broadcast_node_announcement(byte[] rgb, byte[] alias, SocketAddress[] addresses) {
304                 bindings.PeerManager_broadcast_node_announcement(this.ptr, InternalUtils.check_arr_len(rgb, 3), InternalUtils.check_arr_len(alias, 32), addresses != null ? Arrays.stream(addresses).mapToLong(addresses_conv_15 -> addresses_conv_15.ptr).toArray() : null);
305                 Reference.reachabilityFence(this);
306                 Reference.reachabilityFence(rgb);
307                 Reference.reachabilityFence(alias);
308                 Reference.reachabilityFence(addresses);
309                 for (SocketAddress addresses_conv_15: addresses) { if (this != null) { this.ptrs_to.add(addresses_conv_15); }; };
310         }
311
312 }