Batch-sign local HTLC txn with a well-doc'd API, returning sigs
[rust-lightning] / lightning / src / ln / chan_utils.rs
index cccbac88e026fe6bc44ec6d3df6d31ea70ec8d22..f6cbdc23b54d8eb940dd92f494e31e051241eaae 100644 (file)
@@ -23,6 +23,10 @@ use secp256k1::key::{SecretKey, PublicKey};
 use secp256k1::{Secp256k1, Signature};
 use secp256k1;
 
+use std::{cmp, mem};
+
+const MAX_ALLOC_SIZE: usize = 64*1024;
+
 pub(super) const HTLC_SUCCESS_TX_WEIGHT: u64 = 703;
 pub(super) const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663;
 
@@ -156,8 +160,8 @@ impl Writeable for CounterpartyCommitmentSecrets {
                Ok(())
        }
 }
-impl<R: ::std::io::Read> Readable<R> for CounterpartyCommitmentSecrets {
-       fn read(reader: &mut R) -> Result<Self, DecodeError> {
+impl Readable for CounterpartyCommitmentSecrets {
+       fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
                let mut old_secrets = [([0; 32], 1 << 48); 49];
                for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() {
                        *secret = Readable::read(reader)?;
@@ -246,7 +250,7 @@ pub(super) fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx:
 
 /// The set of public keys which are used in the creation of one commitment transaction.
 /// These are derived from the channel base keys and per-commitment data.
-#[derive(PartialEq)]
+#[derive(PartialEq, Clone)]
 pub struct TxCreationKeys {
        /// The per-commitment public key which was used to derive the other keys.
        pub per_commitment_point: PublicKey,
@@ -262,6 +266,8 @@ pub struct TxCreationKeys {
        /// B's Payment Key
        pub(crate) b_payment_key: PublicKey,
 }
+impl_writeable!(TxCreationKeys, 33*6,
+       { per_commitment_point, revocation_key, a_htlc_key, b_htlc_key, a_delayed_payment_key, b_payment_key });
 
 /// One counterparty's public keys which do not change over the life of a channel.
 #[derive(Clone, PartialEq)]
@@ -344,8 +350,16 @@ pub struct HTLCOutputInCommitment {
        pub transaction_output_index: Option<u32>,
 }
 
+impl_writeable!(HTLCOutputInCommitment, 1 + 8 + 4 + 32 + 5, {
+       offered,
+       amount_msat,
+       cltv_expiry,
+       payment_hash,
+       transaction_output_index
+});
+
 #[inline]
-pub(super) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
+pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
        let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner();
        if htlc.offered {
                Builder::new().push_opcode(opcodes::all::OP_DUP)
@@ -465,62 +479,52 @@ pub fn build_htlc_transaction(prev_hash: &Sha256dHash, feerate_per_kw: u64, to_s
        }
 }
 
-/// Signs a transaction created by build_htlc_transaction. If the transaction is an
-/// HTLC-Success transaction (ie htlc.offered is false), preimage must be set!
-pub(crate) fn sign_htlc_transaction<T: secp256k1::Signing>(tx: &mut Transaction, their_sig: &Signature, preimage: &Option<PaymentPreimage>, htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey, per_commitment_point: &PublicKey, htlc_base_key: &SecretKey, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Script), ()> {
-       if tx.input.len() != 1 { return Err(()); }
-       if tx.input[0].witness.len() != 0 { return Err(()); }
-
-       let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&htlc, a_htlc_key, b_htlc_key, revocation_key);
-
-       let our_htlc_key = derive_private_key(secp_ctx, per_commitment_point, htlc_base_key).map_err(|_| ())?;
-       let sighash = hash_to_message!(&bip143::SighashComponents::new(&tx).sighash_all(&tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
-       let local_tx = PublicKey::from_secret_key(&secp_ctx, &our_htlc_key) == *a_htlc_key;
-       let our_sig = secp_ctx.sign(&sighash, &our_htlc_key);
-
-       tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
-
-       if local_tx { // b, then a
-               tx.input[0].witness.push(their_sig.serialize_der().to_vec());
-               tx.input[0].witness.push(our_sig.serialize_der().to_vec());
-       } else {
-               tx.input[0].witness.push(our_sig.serialize_der().to_vec());
-               tx.input[0].witness.push(their_sig.serialize_der().to_vec());
-       }
-       tx.input[0].witness[1].push(SigHashType::All as u8);
-       tx.input[0].witness[2].push(SigHashType::All as u8);
-
-       if htlc.offered {
-               tx.input[0].witness.push(Vec::new());
-               assert!(preimage.is_none());
-       } else {
-               tx.input[0].witness.push(preimage.unwrap().0.to_vec());
-       }
-
-       tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec());
-
-       Ok((our_sig, htlc_redeemscript))
-}
-
 #[derive(Clone)]
 /// We use this to track local commitment transactions and put off signing them until we are ready
 /// to broadcast. Eventually this will require a signer which is possibly external, but for now we
 /// just pass in the SecretKeys required.
-pub(crate) struct LocalCommitmentTransaction {
-       tx: Transaction
+pub struct LocalCommitmentTransaction {
+       tx: Transaction,
+       pub(crate) local_keys: TxCreationKeys,
+       pub(crate) feerate_per_kw: u64,
+       pub(crate) per_htlc: Vec<(HTLCOutputInCommitment, Option<Signature>)>,
 }
 impl LocalCommitmentTransaction {
        #[cfg(test)]
        pub fn dummy() -> Self {
-               Self { tx: Transaction {
-                       version: 2,
-                       input: Vec::new(),
-                       output: Vec::new(),
-                       lock_time: 0,
-               } }
+               let dummy_input = TxIn {
+                       previous_output: OutPoint {
+                               txid: Default::default(),
+                               vout: 0,
+                       },
+                       script_sig: Default::default(),
+                       sequence: 0,
+                       witness: vec![vec![], vec![], vec![]]
+               };
+               let dummy_key = PublicKey::from_secret_key(&Secp256k1::new(), &SecretKey::from_slice(&[42; 32]).unwrap());
+               Self {
+                       tx: Transaction {
+                               version: 2,
+                               input: vec![dummy_input],
+                               output: Vec::new(),
+                               lock_time: 0,
+                       },
+                       local_keys: TxCreationKeys {
+                                       per_commitment_point: dummy_key.clone(),
+                                       revocation_key: dummy_key.clone(),
+                                       a_htlc_key: dummy_key.clone(),
+                                       b_htlc_key: dummy_key.clone(),
+                                       a_delayed_payment_key: dummy_key.clone(),
+                                       b_payment_key: dummy_key.clone(),
+                               },
+                       feerate_per_kw: 0,
+                       per_htlc: Vec::new()
+               }
        }
 
-       pub fn new_missing_local_sig(mut tx: Transaction, their_sig: &Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey) -> LocalCommitmentTransaction {
+       /// Generate a new LocalCommitmentTransaction based on a raw commitment transaction,
+       /// remote signature and both parties keys
+       pub(crate) fn new_missing_local_sig(mut tx: Transaction, their_sig: &Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey, local_keys: TxCreationKeys, feerate_per_kw: u64, htlc_data: Vec<(HTLCOutputInCommitment, Option<Signature>)>) -> LocalCommitmentTransaction {
                if tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); }
                if tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); }
 
@@ -536,14 +540,21 @@ impl LocalCommitmentTransaction {
                        tx.input[0].witness.push(Vec::new());
                }
 
-               Self { tx }
+               Self { tx,
+                       local_keys,
+                       feerate_per_kw,
+                       per_htlc: htlc_data,
+               }
        }
 
+       /// Get the txid of the local commitment transaction contained in this
+       /// LocalCommitmentTransaction
        pub fn txid(&self) -> Sha256dHash {
                self.tx.txid()
        }
 
-       pub fn has_local_sig(&self) -> bool {
+       /// Check if LocalCommitmentTransaction has already been signed by us
+       pub(crate) fn has_local_sig(&self) -> bool {
                if self.tx.input.len() != 1 { panic!("Commitment transactions must have input count == 1!"); }
                if self.tx.input[0].witness.len() == 4 {
                        assert!(!self.tx.input[0].witness[1].is_empty());
@@ -557,11 +568,23 @@ impl LocalCommitmentTransaction {
                }
        }
 
-       pub fn add_local_sig<T: secp256k1::Signing>(&mut self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) {
-               if self.has_local_sig() { return; }
+       /// Gets our signature for the contained commitment transaction given our funding private key.
+       ///
+       /// Funding key is your key included in the 2-2 funding_outpoint lock. Should be provided
+       /// by your ChannelKeys.
+       /// Funding redeemscript is script locking funding_outpoint. This is the mutlsig script
+       /// between your own funding key and your counterparty's. Currently, this is provided in
+       /// ChannelKeys::sign_local_commitment() calls directly.
+       /// Channel value is amount locked in funding_outpoint.
+       pub fn get_local_sig<T: secp256k1::Signing>(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) -> Signature {
                let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.tx)
                        .sighash_all(&self.tx.input[0], funding_redeemscript, channel_value_satoshis)[..]);
-               let our_sig = secp_ctx.sign(&sighash, funding_key);
+               secp_ctx.sign(&sighash, funding_key)
+       }
+
+
+       pub(crate) fn add_local_sig(&mut self, funding_redeemscript: &Script, our_sig: Signature) {
+               if self.has_local_sig() { return; }
 
                if self.tx.input[0].witness[1].is_empty() {
                        self.tx.input[0].witness[1] = our_sig.serialize_der().to_vec();
@@ -574,11 +597,79 @@ impl LocalCommitmentTransaction {
                self.tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec());
        }
 
-       pub fn without_valid_witness(&self) -> &Transaction { &self.tx }
-       pub fn with_valid_witness(&self) -> &Transaction {
+       /// Get raw transaction without asserting if witness is complete
+       pub(crate) fn without_valid_witness(&self) -> &Transaction { &self.tx }
+       /// Get raw transaction with panics if witness is incomplete
+       pub(crate) fn with_valid_witness(&self) -> &Transaction {
                assert!(self.has_local_sig());
                &self.tx
        }
+
+       /// Get a signature for each HTLC which was included in the commitment transaction (ie for
+       /// which HTLCOutputInCommitment::transaction_output_index.is_some()).
+       ///
+       /// The returned Vec has one entry for each HTLC, and in the same order. For HTLCs which were
+       /// considered dust and not included, a None entry exists, for all others a signature is
+       /// included.
+       pub fn get_htlc_sigs<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_base_key: &SecretKey, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
+               let txid = self.txid();
+               let mut ret = Vec::with_capacity(self.per_htlc.len());
+               let our_htlc_key = derive_private_key(secp_ctx, &self.local_keys.per_commitment_point, htlc_base_key).map_err(|_| ())?;
+
+               for this_htlc in self.per_htlc.iter() {
+                       if this_htlc.0.transaction_output_index.is_some() {
+                               let htlc_tx = build_htlc_transaction(&txid, self.feerate_per_kw, local_csv, &this_htlc.0, &self.local_keys.a_delayed_payment_key, &self.local_keys.revocation_key);
+                               assert_eq!(htlc_tx.input.len(), 1);
+                               assert_eq!(htlc_tx.input[0].witness.len(), 0);
+
+                               let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc.0, &self.local_keys.a_htlc_key, &self.local_keys.b_htlc_key, &self.local_keys.revocation_key);
+
+                               let sighash = hash_to_message!(&bip143::SighashComponents::new(&htlc_tx).sighash_all(&htlc_tx.input[0], &htlc_redeemscript, this_htlc.0.amount_msat / 1000)[..]);
+                               ret.push(Some(secp_ctx.sign(&sighash, &our_htlc_key)));
+                       } else {
+                               ret.push(None);
+                       }
+               }
+               Ok(ret)
+       }
+
+       /// Gets a signed HTLC transaction given a preimage (for !htlc.offered) and the local HTLC transaction signature.
+       pub(crate) fn get_signed_htlc_tx(&self, htlc_index: usize, signature: &Signature, preimage: &Option<PaymentPreimage>, local_csv: u16) -> Transaction {
+               let txid = self.txid();
+               let this_htlc = &self.per_htlc[htlc_index];
+               assert!(this_htlc.0.transaction_output_index.is_some());
+               // if we don't have preimage for an HTLC-Success, we can't generate an HTLC transaction.
+               if !this_htlc.0.offered && preimage.is_none() { unreachable!(); }
+               // Further, we should never be provided the preimage for an HTLC-Timeout transaction.
+               if  this_htlc.0.offered && preimage.is_some() { unreachable!(); }
+
+               let mut htlc_tx = build_htlc_transaction(&txid, self.feerate_per_kw, local_csv, &this_htlc.0, &self.local_keys.a_delayed_payment_key, &self.local_keys.revocation_key);
+               // Channel should have checked that we have a remote signature for this HTLC at
+               // creation, and we should have a sensible htlc transaction:
+               assert!(this_htlc.1.is_some());
+               assert_eq!(htlc_tx.input.len(), 1);
+               assert_eq!(htlc_tx.input[0].witness.len(), 0);
+
+               let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc.0, &self.local_keys.a_htlc_key, &self.local_keys.b_htlc_key, &self.local_keys.revocation_key);
+
+               // First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element.
+               htlc_tx.input[0].witness.push(Vec::new());
+
+               htlc_tx.input[0].witness.push(this_htlc.1.unwrap().serialize_der().to_vec());
+               htlc_tx.input[0].witness.push(signature.serialize_der().to_vec());
+               htlc_tx.input[0].witness[1].push(SigHashType::All as u8);
+               htlc_tx.input[0].witness[2].push(SigHashType::All as u8);
+
+               if this_htlc.0.offered {
+                       // Due to BIP146 (MINIMALIF) this must be a zero-length element to relay.
+                       htlc_tx.input[0].witness.push(Vec::new());
+               } else {
+                       htlc_tx.input[0].witness.push(preimage.unwrap().0.to_vec());
+               }
+
+               htlc_tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec());
+               htlc_tx
+       }
 }
 impl PartialEq for LocalCommitmentTransaction {
        // We dont care whether we are signed in equality comparison
@@ -594,11 +685,18 @@ impl Writeable for LocalCommitmentTransaction {
                                _ => panic!("local tx must have been well-formed!"),
                        }
                }
+               self.local_keys.write(writer)?;
+               self.feerate_per_kw.write(writer)?;
+               writer.write_all(&byte_utils::be64_to_array(self.per_htlc.len() as u64))?;
+               for &(ref htlc, ref sig) in self.per_htlc.iter() {
+                       htlc.write(writer)?;
+                       sig.write(writer)?;
+               }
                Ok(())
        }
 }
-impl<R: ::std::io::Read> Readable<R> for LocalCommitmentTransaction {
-       fn read(reader: &mut R) -> Result<Self, DecodeError> {
+impl Readable for LocalCommitmentTransaction {
+       fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
                let tx = match Transaction::consensus_decode(reader.by_ref()) {
                        Ok(tx) => tx,
                        Err(e) => match e {
@@ -606,12 +704,26 @@ impl<R: ::std::io::Read> Readable<R> for LocalCommitmentTransaction {
                                _ => return Err(DecodeError::InvalidValue),
                        },
                };
+               let local_keys = Readable::read(reader)?;
+               let feerate_per_kw = Readable::read(reader)?;
+               let htlcs_count: u64 = Readable::read(reader)?;
+               let mut per_htlc = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / mem::size_of::<(HTLCOutputInCommitment, Option<Signature>)>()));
+               for _ in 0..htlcs_count {
+                       let htlc: HTLCOutputInCommitment = Readable::read(reader)?;
+                       let sigs = Readable::read(reader)?;
+                       per_htlc.push((htlc, sigs));
+               }
 
                if tx.input.len() != 1 {
                        // Ensure tx didn't hit the 0-input ambiguity case.
                        return Err(DecodeError::InvalidValue);
                }
-               Ok(Self { tx })
+               Ok(Self {
+                       tx,
+                       local_keys,
+                       feerate_per_kw,
+                       per_htlc,
+               })
        }
 }