Move `broadcast_node_announcement` to `PeerManager`
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use chain::{ChannelMonitorUpdateErr, Confirm, Listen, Watch};
15 use chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS};
16 use chain::transaction::OutPoint;
17 use chain::keysinterface::KeysInterface;
18 use ln::channel::EXPIRE_PREV_CONFIG_TICKS;
19 use ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure};
20 use ln::features::{InitFeatures, InvoiceFeatures};
21 use ln::msgs;
22 use ln::msgs::ChannelMessageHandler;
23 use routing::router::{PaymentParameters, get_route};
24 use util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
25 use util::test_utils;
26 use util::errors::APIError;
27 use util::enforcing_trait_impls::EnforcingSigner;
28 use util::ser::{ReadableArgs, Writeable};
29 use io;
30
31 use bitcoin::{Block, BlockHeader, BlockHash, TxMerkleNode};
32 use bitcoin::hashes::Hash;
33 use bitcoin::network::constants::Network;
34
35 use prelude::*;
36
37 use ln::functional_test_utils::*;
38
39 #[test]
40 fn retry_single_path_payment() {
41         let chanmon_cfgs = create_chanmon_cfgs(3);
42         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
43         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
44         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
45
46         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
47         let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, InitFeatures::known(), InitFeatures::known());
48         // Rebalance to find a route
49         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
50
51         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
52
53         // Rebalance so that the first hop fails.
54         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
55
56         // Make sure the payment fails on the first hop.
57         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
58         check_added_monitors!(nodes[0], 1);
59         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
60         assert_eq!(events.len(), 1);
61         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
62         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
63         check_added_monitors!(nodes[1], 0);
64         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
65         expect_pending_htlcs_forwardable!(nodes[1]);
66         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]);
67         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
68         assert!(htlc_updates.update_add_htlcs.is_empty());
69         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
70         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
71         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
72         check_added_monitors!(nodes[1], 1);
73         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
74         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
75         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
76
77         // Rebalance the channel so the retry succeeds.
78         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
79
80         // Mine two blocks (we expire retries after 3, so this will check that we don't expire early)
81         connect_blocks(&nodes[0], 2);
82
83         // Retry the payment and make sure it succeeds.
84         nodes[0].node.retry_payment(&route, payment_id).unwrap();
85         check_added_monitors!(nodes[0], 1);
86         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
87         assert_eq!(events.len(), 1);
88         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
89         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
90 }
91
92 #[test]
93 fn mpp_failure() {
94         let chanmon_cfgs = create_chanmon_cfgs(4);
95         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
96         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
97         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
98
99         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
100         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
101         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
102         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
103
104         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
105         let path = route.paths[0].clone();
106         route.paths.push(path);
107         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
108         route.paths[0][0].short_channel_id = chan_1_id;
109         route.paths[0][1].short_channel_id = chan_3_id;
110         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
111         route.paths[1][0].short_channel_id = chan_2_id;
112         route.paths[1][1].short_channel_id = chan_4_id;
113         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
114         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
115 }
116
117 #[test]
118 fn mpp_retry() {
119         let chanmon_cfgs = create_chanmon_cfgs(4);
120         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
121         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
122         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
123
124         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
125         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known());
126         let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known());
127         let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2, InitFeatures::known(), InitFeatures::known());
128         // Rebalance
129         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
130
131         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000);
132         let path = route.paths[0].clone();
133         route.paths.push(path);
134         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
135         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
136         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
137         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
138         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
139         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
140
141         // Initiate the MPP payment.
142         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
143         check_added_monitors!(nodes[0], 2); // one monitor per path
144         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
145         assert_eq!(events.len(), 2);
146
147         // Pass half of the payment along the success path.
148         let success_path_msgs = events.remove(0);
149         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
150
151         // Add the HTLC along the first hop.
152         let fail_path_msgs_1 = events.remove(0);
153         let (update_add, commitment_signed) = match fail_path_msgs_1 {
154                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
155                         assert_eq!(update_add_htlcs.len(), 1);
156                         assert!(update_fail_htlcs.is_empty());
157                         assert!(update_fulfill_htlcs.is_empty());
158                         assert!(update_fail_malformed_htlcs.is_empty());
159                         assert!(update_fee.is_none());
160                         (update_add_htlcs[0].clone(), commitment_signed.clone())
161                 },
162                 _ => panic!("Unexpected event"),
163         };
164         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
165         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
166
167         // Attempt to forward the payment and complete the 2nd path's failure.
168         expect_pending_htlcs_forwardable!(&nodes[2]);
169         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
170         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
171         assert!(htlc_updates.update_add_htlcs.is_empty());
172         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
173         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
174         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
175         check_added_monitors!(nodes[2], 1);
176         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
177         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
178         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
179
180         // Rebalance the channel so the second half of the payment can succeed.
181         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
182
183         // Make sure it errors as expected given a too-large amount.
184         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
185                 assert!(err.contains("over total_payment_amt_msat"));
186         } else { panic!("Unexpected error"); }
187
188         // Make sure it errors as expected given the wrong payment_id.
189         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) {
190                 assert!(err.contains("not found"));
191         } else { panic!("Unexpected error"); }
192
193         // Retry the second half of the payment and make sure it succeeds.
194         let mut path = route.clone();
195         path.paths.remove(0);
196         nodes[0].node.retry_payment(&path, payment_id).unwrap();
197         check_added_monitors!(nodes[0], 1);
198         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
199         assert_eq!(events.len(), 1);
200         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
201         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
202 }
203
204 fn do_mpp_receive_timeout(send_partial_mpp: bool) {
205         let chanmon_cfgs = create_chanmon_cfgs(4);
206         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
207         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
208         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
209
210         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
211         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known());
212         let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known());
213         let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known());
214
215         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
216         let path = route.paths[0].clone();
217         route.paths.push(path);
218         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
219         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
220         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
221         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
222         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
223         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
224
225         // Initiate the MPP payment.
226         let _ = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
227         check_added_monitors!(nodes[0], 2); // one monitor per path
228         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
229         assert_eq!(events.len(), 2);
230
231         // Pass half of the payment along the first path.
232         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), false, None);
233
234         if send_partial_mpp {
235                 // Time out the partial MPP
236                 for _ in 0..MPP_TIMEOUT_TICKS {
237                         nodes[3].node.timer_tick_occurred();
238                 }
239
240                 // Failed HTLC from node 3 -> 1
241                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
242                 let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
243                 assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
244                 nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
245                 check_added_monitors!(nodes[3], 1);
246                 commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
247
248                 // Failed HTLC from node 1 -> 0
249                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
250                 let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
251                 assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
252                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
253                 check_added_monitors!(nodes[1], 1);
254                 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
255
256                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
257         } else {
258                 // Pass half of the payment along the second path.
259                 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), true, None);
260
261                 // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
262                 for _ in 0..MPP_TIMEOUT_TICKS {
263                         nodes[3].node.timer_tick_occurred();
264                 }
265
266                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
267         }
268 }
269
270 #[test]
271 fn mpp_receive_timeout() {
272         do_mpp_receive_timeout(true);
273         do_mpp_receive_timeout(false);
274 }
275
276 #[test]
277 fn retry_expired_payment() {
278         let chanmon_cfgs = create_chanmon_cfgs(3);
279         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
280         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
281         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
282
283         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
284         let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, InitFeatures::known(), InitFeatures::known());
285         // Rebalance to find a route
286         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
287
288         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
289
290         // Rebalance so that the first hop fails.
291         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
292
293         // Make sure the payment fails on the first hop.
294         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
295         check_added_monitors!(nodes[0], 1);
296         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
297         assert_eq!(events.len(), 1);
298         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
299         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
300         check_added_monitors!(nodes[1], 0);
301         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
302         expect_pending_htlcs_forwardable!(nodes[1]);
303         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]);
304         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
305         assert!(htlc_updates.update_add_htlcs.is_empty());
306         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
307         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
308         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
309         check_added_monitors!(nodes[1], 1);
310         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
311         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
312         expect_payment_failed!(nodes[0], payment_hash, false);
313
314         // Mine blocks so the payment will have expired.
315         connect_blocks(&nodes[0], 3);
316
317         // Retry the payment and make sure it errors as expected.
318         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
319                 assert!(err.contains("not found"));
320         } else {
321                 panic!("Unexpected error");
322         }
323 }
324
325 #[test]
326 fn no_pending_leak_on_initial_send_failure() {
327         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
328         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
329         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
330         // pending payment forever and never time it out.
331         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
332         // try, and then check that no pending payment is being tracked.
333         let chanmon_cfgs = create_chanmon_cfgs(2);
334         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
335         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
336         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
337
338         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
339
340         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
341
342         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
343         nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
344
345         unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)),
346                 true, APIError::ChannelUnavailable { ref err },
347                 assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!"));
348
349         assert!(!nodes[0].node.has_pending_payments());
350 }
351
352 fn do_retry_with_no_persist(confirm_before_reload: bool) {
353         // If we send a pending payment and `send_payment` returns success, we should always either
354         // return a payment failure event or a payment success event, and on failure the payment should
355         // be retryable.
356         //
357         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
358         // always persisted asynchronously), the ChannelManager has to reload some payment data from
359         // ChannelMonitor(s) in some cases. This tests that reloading.
360         //
361         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
362         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
363         // which has separate codepaths for "commitment transaction already confirmed" and not.
364         let chanmon_cfgs = create_chanmon_cfgs(3);
365         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
366         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
367         let persister: test_utils::TestPersister;
368         let new_chain_monitor: test_utils::TestChainMonitor;
369         let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
370         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
371
372         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2;
373         let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
374
375         // Serialize the ChannelManager prior to sending payments
376         let nodes_0_serialized = nodes[0].node.encode();
377
378         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
379         // out and retry.
380         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
381         let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
382         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
383         check_added_monitors!(nodes[0], 1);
384
385         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
386         assert_eq!(events.len(), 1);
387         let payment_event = SendEvent::from_event(events.pop().unwrap());
388         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
389
390         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
391         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
392         // which would prevent retry.
393         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
394         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
395
396         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
397         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
398         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
399         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
400
401         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
402
403         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
404         if confirm_before_reload {
405                 mine_transaction(&nodes[0], &as_commitment_tx);
406                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
407         }
408
409         // The ChannelMonitor should always be the latest version, as we're required to persist it
410         // during the `commitment_signed_dance!()`.
411         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
412         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
413
414         persister = test_utils::TestPersister::new();
415         let keys_manager = &chanmon_cfgs[0].keys_manager;
416         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
417         nodes[0].chain_monitor = &new_chain_monitor;
418         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
419         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
420                 &mut chan_0_monitor_read, keys_manager).unwrap();
421         assert!(chan_0_monitor_read.is_empty());
422
423         let mut nodes_0_read = &nodes_0_serialized[..];
424         let (_, nodes_0_deserialized_tmp) = {
425                 let mut channel_monitors = HashMap::new();
426                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
427                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
428                         default_config: test_default_channel_config(),
429                         keys_manager,
430                         fee_estimator: node_cfgs[0].fee_estimator,
431                         chain_monitor: nodes[0].chain_monitor,
432                         tx_broadcaster: nodes[0].tx_broadcaster.clone(),
433                         logger: nodes[0].logger,
434                         channel_monitors,
435                 }).unwrap()
436         };
437         nodes_0_deserialized = nodes_0_deserialized_tmp;
438         assert!(nodes_0_read.is_empty());
439
440         assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
441         nodes[0].node = &nodes_0_deserialized;
442         check_added_monitors!(nodes[0], 1);
443
444         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
445         // force-close the channel.
446         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
447         assert!(nodes[0].node.list_channels().is_empty());
448         assert!(nodes[0].node.has_pending_payments());
449         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
450         assert_eq!(as_broadcasted_txn.len(), 1);
451         assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
452
453         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
454         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
455         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
456
457         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
458         // error, as the channel has hit the chain.
459         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
460         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
461         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
462         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
463         assert_eq!(as_err.len(), 1);
464         match as_err[0] {
465                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
466                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
467                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
468                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
469                         check_added_monitors!(nodes[1], 1);
470                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
471                 },
472                 _ => panic!("Unexpected event"),
473         }
474         check_closed_broadcast!(nodes[1], false);
475
476         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
477         // we close in a moment.
478         nodes[2].node.claim_funds(payment_preimage_1);
479         check_added_monitors!(nodes[2], 1);
480         expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
481
482         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
483         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
484         check_added_monitors!(nodes[1], 1);
485         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
486
487         if confirm_before_reload {
488                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
489                 nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
490         }
491
492         // Create a new channel on which to retry the payment before we fail the payment via the
493         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
494         // connecting several blocks while creating the channel (implying time has passed).
495         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
496         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
497
498         mine_transaction(&nodes[1], &as_commitment_tx);
499         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
500         assert_eq!(bs_htlc_claim_txn.len(), 1);
501         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
502         expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
503
504         if !confirm_before_reload {
505                 mine_transaction(&nodes[0], &as_commitment_tx);
506         }
507         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
508         expect_payment_sent!(nodes[0], payment_preimage_1);
509         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
510         let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
511         assert_eq!(as_htlc_timeout_txn.len(), 3);
512         let (first_htlc_timeout_tx, second_htlc_timeout_tx) = if as_htlc_timeout_txn[0] == as_commitment_tx {
513                 (&as_htlc_timeout_txn[1], &as_htlc_timeout_txn[2])
514         } else {
515                 assert_eq!(as_htlc_timeout_txn[2], as_commitment_tx);
516                 (&as_htlc_timeout_txn[0], &as_htlc_timeout_txn[1])
517         };
518         check_spends!(first_htlc_timeout_tx, as_commitment_tx);
519         check_spends!(second_htlc_timeout_tx, as_commitment_tx);
520         if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
521                 confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
522         } else {
523                 confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
524         }
525         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
526         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
527
528         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
529         // reloaded) via a route over the new channel, which work without issue and eventually be
530         // received and claimed at the recipient just like any other payment.
531         let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
532
533         // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
534         // and not the original fee. We also update node[1]'s relevant config as
535         // do_claim_payment_along_route expects us to never overpay.
536         {
537                 let mut channel_state = nodes[1].node.channel_state.lock().unwrap();
538                 let mut channel = channel_state.by_id.get_mut(&chan_id_2).unwrap();
539                 let mut new_config = channel.config();
540                 new_config.forwarding_fee_base_msat += 100_000;
541                 channel.update_config(&new_config);
542                 new_route.paths[0][0].fee_msat += 100_000;
543         }
544
545         // Force expiration of the channel's previous config.
546         for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
547                 nodes[1].node.timer_tick_occurred();
548         }
549
550         assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
551         nodes[0].node.retry_payment(&new_route, payment_id).unwrap();
552         check_added_monitors!(nodes[0], 1);
553         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
554         assert_eq!(events.len(), 1);
555         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
556         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
557         expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
558 }
559
560 #[test]
561 fn retry_with_no_persist() {
562         do_retry_with_no_persist(true);
563         do_retry_with_no_persist(false);
564 }
565
566 fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
567         // Test that an off-chain completed payment is not retryable on restart. This was previously
568         // broken for dust payments, but we test for both dust and non-dust payments.
569         //
570         // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
571         // output at all.
572         let chanmon_cfgs = create_chanmon_cfgs(3);
573         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
574
575         let mut manually_accept_config = test_default_channel_config();
576         manually_accept_config.manually_accept_inbound_channels = true;
577
578         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
579
580         let first_persister: test_utils::TestPersister;
581         let first_new_chain_monitor: test_utils::TestChainMonitor;
582         let first_nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
583         let second_persister: test_utils::TestPersister;
584         let second_new_chain_monitor: test_utils::TestChainMonitor;
585         let second_nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
586         let third_persister: test_utils::TestPersister;
587         let third_new_chain_monitor: test_utils::TestChainMonitor;
588         let third_nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
589
590         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
591
592         // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
593         let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
594         confirm_transaction(&nodes[0], &funding_tx);
595         confirm_transaction(&nodes[1], &funding_tx);
596         // Ignore the announcement_signatures messages
597         nodes[0].node.get_and_clear_pending_msg_events();
598         nodes[1].node.get_and_clear_pending_msg_events();
599         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()).2;
600
601         // Serialize the ChannelManager prior to sending payments
602         let mut nodes_0_serialized = nodes[0].node.encode();
603
604         let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
605         let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
606
607         // The ChannelMonitor should always be the latest version, as we're required to persist it
608         // during the `commitment_signed_dance!()`.
609         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
610         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
611
612         let mut chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
613
614         macro_rules! reload_node {
615                 ($chain_monitor: ident, $chan_manager: ident, $persister: ident) => { {
616                         $persister = test_utils::TestPersister::new();
617                         let keys_manager = &chanmon_cfgs[0].keys_manager;
618                         $chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &$persister, keys_manager);
619                         nodes[0].chain_monitor = &$chain_monitor;
620                         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
621                         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
622                                 &mut chan_0_monitor_read, keys_manager).unwrap();
623                         assert!(chan_0_monitor_read.is_empty());
624
625                         let mut chan_1_monitor = None;
626                         let mut channel_monitors = HashMap::new();
627                         channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
628
629                         if !chan_1_monitor_serialized.0.is_empty() {
630                                 let mut chan_1_monitor_read = &chan_1_monitor_serialized.0[..];
631                                 chan_1_monitor = Some(<(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
632                                         &mut chan_1_monitor_read, keys_manager).unwrap().1);
633                                 assert!(chan_1_monitor_read.is_empty());
634                                 channel_monitors.insert(chan_1_monitor.as_ref().unwrap().get_funding_txo().0, chan_1_monitor.as_mut().unwrap());
635                         }
636
637                         let mut nodes_0_read = &nodes_0_serialized[..];
638                         let (_, nodes_0_deserialized_tmp) = {
639                                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
640                                         default_config: test_default_channel_config(),
641                                         keys_manager,
642                                         fee_estimator: node_cfgs[0].fee_estimator,
643                                         chain_monitor: nodes[0].chain_monitor,
644                                         tx_broadcaster: nodes[0].tx_broadcaster.clone(),
645                                         logger: nodes[0].logger,
646                                         channel_monitors,
647                                 }).unwrap()
648                         };
649                         $chan_manager = nodes_0_deserialized_tmp;
650                         assert!(nodes_0_read.is_empty());
651
652                         assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
653                         if !chan_1_monitor_serialized.0.is_empty() {
654                                 let funding_txo = chan_1_monitor.as_ref().unwrap().get_funding_txo().0;
655                                 assert!(nodes[0].chain_monitor.watch_channel(funding_txo, chan_1_monitor.unwrap()).is_ok());
656                         }
657                         nodes[0].node = &$chan_manager;
658                         check_added_monitors!(nodes[0], if !chan_1_monitor_serialized.0.is_empty() { 2 } else { 1 });
659
660                         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
661                 } }
662         }
663
664         reload_node!(first_new_chain_monitor, first_nodes_0_deserialized, first_persister);
665
666         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
667         // force-close the channel.
668         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
669         assert!(nodes[0].node.list_channels().is_empty());
670         assert!(nodes[0].node.has_pending_payments());
671         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
672
673         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
674         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
675
676         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
677         // error, as the channel has hit the chain.
678         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
679         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
680         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
681         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
682         assert_eq!(as_err.len(), 1);
683         let bs_commitment_tx;
684         match as_err[0] {
685                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
686                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
687                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
688                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
689                         check_added_monitors!(nodes[1], 1);
690                         bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
691                 },
692                 _ => panic!("Unexpected event"),
693         }
694         check_closed_broadcast!(nodes[1], false);
695
696         // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
697         // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
698         // incoming HTLCs with the same payment hash later.
699         nodes[2].node.fail_htlc_backwards(&payment_hash);
700         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
701         check_added_monitors!(nodes[2], 1);
702
703         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
704         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
705         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
706         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
707                 [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
708
709         // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
710         // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
711         // after the commitment transaction, so always connect the commitment transaction.
712         mine_transaction(&nodes[0], &bs_commitment_tx[0]);
713         mine_transaction(&nodes[1], &bs_commitment_tx[0]);
714         if !use_dust {
715                 connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
716                 connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
717                 let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
718                 check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
719                 assert_eq!(as_htlc_timeout.len(), 1);
720
721                 mine_transaction(&nodes[0], &as_htlc_timeout[0]);
722                 // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
723                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
724                 mine_transaction(&nodes[1], &as_htlc_timeout[0]);
725         }
726
727         // Create a new channel on which to retry the payment before we fail the payment via the
728         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
729         // connecting several blocks while creating the channel (implying time has passed).
730         // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
731         let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
732         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
733
734         // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
735         // confirming, we will fail as it's considered still-pending...
736         let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
737         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
738         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
739
740         // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
741         // again. We serialize the node first as we'll then test retrying the HTLC after a restart
742         // (which should also still work).
743         connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
744         connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
745         // We set mpp_parts_remain to avoid having abandon_payment called
746         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
747
748         chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
749         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
750         chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
751         get_monitor!(nodes[0], chan_id_3).write(&mut chan_1_monitor_serialized).unwrap();
752         nodes_0_serialized = nodes[0].node.encode();
753
754         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
755         assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
756
757         reload_node!(second_new_chain_monitor, second_nodes_0_deserialized, second_persister);
758         reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
759
760         // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
761         // the payment is not (spuriously) listed as still pending.
762         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
763         check_added_monitors!(nodes[0], 1);
764         pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
765         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
766
767         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
768         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
769
770         chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
771         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
772         chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
773         get_monitor!(nodes[0], chan_id_3).write(&mut chan_1_monitor_serialized).unwrap();
774         nodes_0_serialized = nodes[0].node.encode();
775
776         // Ensure that after reload we cannot retry the payment.
777         reload_node!(third_new_chain_monitor, third_nodes_0_deserialized, third_persister);
778         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
779
780         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
781         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
782 }
783
784 #[test]
785 fn test_completed_payment_not_retryable_on_reload() {
786         do_test_completed_payment_not_retryable_on_reload(true);
787         do_test_completed_payment_not_retryable_on_reload(false);
788 }
789
790
791 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
792         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
793         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
794         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
795         // the ChannelMonitor tells it to.
796         //
797         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
798         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
799         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
800         let chanmon_cfgs = create_chanmon_cfgs(2);
801         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
802         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
803         let persister: test_utils::TestPersister;
804         let new_chain_monitor: test_utils::TestChainMonitor;
805         let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
806         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
807
808         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
809
810         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
811         // nodes[0].
812         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
813         nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
814         check_closed_broadcast!(nodes[0], true);
815         check_added_monitors!(nodes[0], 1);
816         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
817
818         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
819         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
820
821         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
822         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
823         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
824         assert_eq!(node_txn.len(), 3);
825         assert_eq!(node_txn[0], node_txn[1]);
826         check_spends!(node_txn[1], funding_tx);
827         check_spends!(node_txn[2], node_txn[1]);
828         let timeout_txn = vec![node_txn[2].clone()];
829
830         nodes[1].node.claim_funds(payment_preimage);
831         check_added_monitors!(nodes[1], 1);
832         expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
833
834         let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 };
835         connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
836         check_closed_broadcast!(nodes[1], true);
837         check_added_monitors!(nodes[1], 1);
838         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
839         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
840         assert_eq!(claim_txn.len(), 3);
841         check_spends!(claim_txn[0], node_txn[1]);
842         check_spends!(claim_txn[1], funding_tx);
843         check_spends!(claim_txn[2], claim_txn[1]);
844
845         header.prev_blockhash = nodes[0].best_block_hash();
846         connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
847
848         if confirm_commitment_tx {
849                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
850         }
851
852         header.prev_blockhash = nodes[0].best_block_hash();
853         let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
854
855         if payment_timeout {
856                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
857                 connect_block(&nodes[0], &claim_block);
858                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
859         }
860
861         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
862         // returning TemporaryFailure. This should cause the claim event to never make its way to the
863         // ChannelManager.
864         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
865         chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure));
866
867         if payment_timeout {
868                 connect_blocks(&nodes[0], 1);
869         } else {
870                 connect_block(&nodes[0], &claim_block);
871         }
872
873         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
874         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
875                 .get_mut(&funding_txo).unwrap().drain().collect();
876         // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice
877         assert!(mon_updates.len() == 1 || mon_updates.len() == 2);
878         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
879         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
880
881         // If we persist the ChannelManager here, we should get the PaymentSent event after
882         // deserialization.
883         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
884         if !persist_manager_post_event {
885                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
886         }
887
888         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
889         // payment sent event.
890         chanmon_cfgs[0].persister.set_update_ret(Ok(()));
891         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
892         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
893         for update in mon_updates {
894                 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
895         }
896         if payment_timeout {
897                 expect_payment_failed!(nodes[0], payment_hash, true);
898         } else {
899                 expect_payment_sent!(nodes[0], payment_preimage);
900         }
901
902         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
903         // twice.
904         if persist_manager_post_event {
905                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
906         }
907
908         // Now reload nodes[0]...
909         persister = test_utils::TestPersister::new();
910         let keys_manager = &chanmon_cfgs[0].keys_manager;
911         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
912         nodes[0].chain_monitor = &new_chain_monitor;
913         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
914         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
915                 &mut chan_0_monitor_read, keys_manager).unwrap();
916         assert!(chan_0_monitor_read.is_empty());
917
918         let (_, nodes_0_deserialized_tmp) = {
919                 let mut channel_monitors = HashMap::new();
920                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
921                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
922                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
923                                 default_config: Default::default(),
924                                 keys_manager,
925                                 fee_estimator: node_cfgs[0].fee_estimator,
926                                 chain_monitor: nodes[0].chain_monitor,
927                                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
928                                 logger: nodes[0].logger,
929                                 channel_monitors,
930                         }).unwrap()
931         };
932         nodes_0_deserialized = nodes_0_deserialized_tmp;
933
934         assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
935         check_added_monitors!(nodes[0], 1);
936         nodes[0].node = &nodes_0_deserialized;
937
938         if persist_manager_post_event {
939                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
940         } else if payment_timeout {
941                 expect_payment_failed!(nodes[0], payment_hash, true);
942         } else {
943                 expect_payment_sent!(nodes[0], payment_preimage);
944         }
945
946         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
947         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
948         // payment events should kick in, leaving us with no pending events here.
949         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
950         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
951         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
952 }
953
954 #[test]
955 fn test_dup_htlc_onchain_fails_on_reload() {
956         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
957         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
958         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
959         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
960         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
961         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
962 }
963
964 #[test]
965 fn test_fulfill_restart_failure() {
966         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
967         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
968         // again, or fail it, giving us free money.
969         //
970         // Of course probably they won't fail it and give us free money, but because we have code to
971         // handle it, we should test the logic for it anyway. We do that here.
972         let chanmon_cfgs = create_chanmon_cfgs(2);
973         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
974         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
975         let persister: test_utils::TestPersister;
976         let new_chain_monitor: test_utils::TestChainMonitor;
977         let nodes_1_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
978         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
979
980         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2;
981         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
982
983         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
984         // pre-fulfill, which we do by serializing it here.
985         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
986         nodes[1].node.write(&mut chan_manager_serialized).unwrap();
987         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
988         get_monitor!(nodes[1], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
989
990         nodes[1].node.claim_funds(payment_preimage);
991         check_added_monitors!(nodes[1], 1);
992         expect_payment_claimed!(nodes[1], payment_hash, 100_000);
993
994         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
995         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
996         expect_payment_sent_without_paths!(nodes[0], payment_preimage);
997
998         // Now reload nodes[1]...
999         persister = test_utils::TestPersister::new();
1000         let keys_manager = &chanmon_cfgs[1].keys_manager;
1001         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[1].chain_source), nodes[1].tx_broadcaster.clone(), nodes[1].logger, node_cfgs[1].fee_estimator, &persister, keys_manager);
1002         nodes[1].chain_monitor = &new_chain_monitor;
1003         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
1004         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
1005                 &mut chan_0_monitor_read, keys_manager).unwrap();
1006         assert!(chan_0_monitor_read.is_empty());
1007
1008         let (_, nodes_1_deserialized_tmp) = {
1009                 let mut channel_monitors = HashMap::new();
1010                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
1011                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
1012                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
1013                                 default_config: Default::default(),
1014                                 keys_manager,
1015                                 fee_estimator: node_cfgs[1].fee_estimator,
1016                                 chain_monitor: nodes[1].chain_monitor,
1017                                 tx_broadcaster: nodes[1].tx_broadcaster.clone(),
1018                                 logger: nodes[1].logger,
1019                                 channel_monitors,
1020                         }).unwrap()
1021         };
1022         nodes_1_deserialized = nodes_1_deserialized_tmp;
1023
1024         assert!(nodes[1].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
1025         check_added_monitors!(nodes[1], 1);
1026         nodes[1].node = &nodes_1_deserialized;
1027
1028         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
1029         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
1030
1031         nodes[1].node.fail_htlc_backwards(&payment_hash);
1032         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
1033         check_added_monitors!(nodes[1], 1);
1034         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1035         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
1036         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
1037         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
1038         // it had already considered the payment fulfilled, and now they just got free money.
1039         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
1040 }
1041
1042 #[test]
1043 fn get_ldk_payment_preimage() {
1044         // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
1045         let chanmon_cfgs = create_chanmon_cfgs(2);
1046         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1047         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1048         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1049         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
1050
1051         let amt_msat = 60_000;
1052         let expiry_secs = 60 * 60;
1053         let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs).unwrap();
1054
1055         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id())
1056                 .with_features(InvoiceFeatures::known());
1057         let scorer = test_utils::TestScorer::with_penalty(0);
1058         let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
1059         let random_seed_bytes = keys_manager.get_secure_random_bytes();
1060         let route = get_route(
1061                 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
1062                 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
1063                 amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap();
1064         let _payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
1065         check_added_monitors!(nodes[0], 1);
1066
1067         // Make sure to use `get_payment_preimage`
1068         let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
1069         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
1070         assert_eq!(events.len(), 1);
1071         pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
1072         claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
1073 }
1074
1075 #[test]
1076 fn sent_probe_is_probe_of_sending_node() {
1077         let chanmon_cfgs = create_chanmon_cfgs(3);
1078         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1079         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1080         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1081
1082         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
1083         create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
1084
1085         // First check we refuse to build a single-hop probe
1086         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
1087         assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
1088
1089         // Then build an actual two-hop probing path
1090         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
1091
1092         match nodes[0].node.send_probe(route.paths[0].clone()) {
1093                 Ok((payment_hash, payment_id)) => {
1094                         assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
1095                         assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
1096                         assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
1097                 },
1098                 _ => panic!(),
1099         }
1100
1101         get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1102         check_added_monitors!(nodes[0], 1);
1103 }
1104
1105 #[test]
1106 fn successful_probe_yields_event() {
1107         let chanmon_cfgs = create_chanmon_cfgs(3);
1108         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1109         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1110         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1111
1112         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
1113         create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
1114
1115         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
1116
1117         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1118
1119         // node[0] -- update_add_htlcs -> node[1]
1120         check_added_monitors!(nodes[0], 1);
1121         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1122         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1123         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1124         check_added_monitors!(nodes[1], 0);
1125         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1126         expect_pending_htlcs_forwardable!(nodes[1]);
1127
1128         // node[1] -- update_add_htlcs -> node[2]
1129         check_added_monitors!(nodes[1], 1);
1130         let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1131         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1132         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
1133         check_added_monitors!(nodes[2], 0);
1134         commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
1135
1136         // node[1] <- update_fail_htlcs -- node[2]
1137         let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
1138         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1139         check_added_monitors!(nodes[1], 0);
1140         commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
1141
1142         // node[0] <- update_fail_htlcs -- node[1]
1143         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1144         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1145         check_added_monitors!(nodes[0], 0);
1146         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
1147
1148         let mut events = nodes[0].node.get_and_clear_pending_events();
1149         assert_eq!(events.len(), 1);
1150         match events.drain(..).next().unwrap() {
1151                 crate::util::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1152                         assert_eq!(payment_id, ev_pid);
1153                         assert_eq!(payment_hash, ev_ph);
1154                 },
1155                 _ => panic!(),
1156         };
1157 }
1158
1159 #[test]
1160 fn failed_probe_yields_event() {
1161         let chanmon_cfgs = create_chanmon_cfgs(3);
1162         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1163         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1164         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1165
1166         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
1167         create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000, InitFeatures::known(), InitFeatures::known());
1168
1169         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id());
1170
1171         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42);
1172
1173         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1174
1175         // node[0] -- update_add_htlcs -> node[1]
1176         check_added_monitors!(nodes[0], 1);
1177         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1178         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1179         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1180         check_added_monitors!(nodes[1], 0);
1181         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1182         expect_pending_htlcs_forwardable!(nodes[1]);
1183
1184         // node[0] <- update_fail_htlcs -- node[1]
1185         check_added_monitors!(nodes[1], 1);
1186         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1187         // Skip the PendingHTLCsForwardable event
1188         let _events = nodes[1].node.get_and_clear_pending_events();
1189         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1190         check_added_monitors!(nodes[0], 0);
1191         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
1192
1193         let mut events = nodes[0].node.get_and_clear_pending_events();
1194         assert_eq!(events.len(), 1);
1195         match events.drain(..).next().unwrap() {
1196                 crate::util::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1197                         assert_eq!(payment_id, ev_pid);
1198                         assert_eq!(payment_hash, ev_ph);
1199                 },
1200                 _ => panic!(),
1201         };
1202 }