Remove genesis block hash from public API
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use bitcoin::network::constants::Network;
22 use bitcoin::blockdata::constants::genesis_block;
23
24 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
25 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
26 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
27 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
28 use crate::ln::msgs;
29 use crate::routing::utxo::{self, UtxoLookup};
30 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use crate::util::logger::{Logger, Level};
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use crate::sync::{RwLock, RwLockReadGuard};
42 #[cfg(feature = "std")]
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46
47 #[cfg(feature = "std")]
48 use std::time::{SystemTime, UNIX_EPOCH};
49
50 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
51 /// suggestion.
52 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
53
54 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
55 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
56
57 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
58 /// refuse to relay the message.
59 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
60
61 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
62 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
63 const MAX_SCIDS_PER_REPLY: usize = 8000;
64
65 /// Represents the compressed public key of a node
66 #[derive(Clone, Copy)]
67 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
68
69 impl NodeId {
70         /// Create a new NodeId from a public key
71         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
72                 NodeId(pubkey.serialize())
73         }
74
75         /// Get the public key slice from this NodeId
76         pub fn as_slice(&self) -> &[u8] {
77                 &self.0
78         }
79 }
80
81 impl fmt::Debug for NodeId {
82         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
83                 write!(f, "NodeId({})", log_bytes!(self.0))
84         }
85 }
86 impl fmt::Display for NodeId {
87         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
88                 write!(f, "{}", log_bytes!(self.0))
89         }
90 }
91
92 impl core::hash::Hash for NodeId {
93         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
94                 self.0.hash(hasher);
95         }
96 }
97
98 impl Eq for NodeId {}
99
100 impl PartialEq for NodeId {
101         fn eq(&self, other: &Self) -> bool {
102                 self.0[..] == other.0[..]
103         }
104 }
105
106 impl cmp::PartialOrd for NodeId {
107         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
108                 Some(self.cmp(other))
109         }
110 }
111
112 impl Ord for NodeId {
113         fn cmp(&self, other: &Self) -> cmp::Ordering {
114                 self.0[..].cmp(&other.0[..])
115         }
116 }
117
118 impl Writeable for NodeId {
119         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
120                 writer.write_all(&self.0)?;
121                 Ok(())
122         }
123 }
124
125 impl Readable for NodeId {
126         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
127                 let mut buf = [0; PUBLIC_KEY_SIZE];
128                 reader.read_exact(&mut buf)?;
129                 Ok(Self(buf))
130         }
131 }
132
133 /// Represents the network as nodes and channels between them
134 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
135         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
136         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
137         genesis_hash: BlockHash,
138         logger: L,
139         // Lock order: channels -> nodes
140         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
141         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
142         // Lock order: removed_channels -> removed_nodes
143         //
144         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
145         // of `std::time::Instant`s for a few reasons:
146         //   * We want it to be possible to do tracking in no-std environments where we can compare
147         //     a provided current UNIX timestamp with the time at which we started tracking.
148         //   * In the future, if we decide to persist these maps, they will already be serializable.
149         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
150         //     environment should be practical over the time period we are considering (on the order of a
151         //     week).
152         //
153         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
154         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
155         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
156         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
157         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
158         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
159         /// that once some time passes, we can potentially resync it from gossip again.
160         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
161         /// Announcement messages which are awaiting an on-chain lookup to be processed.
162         pub(super) pending_checks: utxo::PendingChecks,
163 }
164
165 /// A read-only view of [`NetworkGraph`].
166 pub struct ReadOnlyNetworkGraph<'a> {
167         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
168         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
169 }
170
171 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
172 /// return packet by a node along the route. See [BOLT #4] for details.
173 ///
174 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
175 #[derive(Clone, Debug, PartialEq, Eq)]
176 pub enum NetworkUpdate {
177         /// An error indicating a `channel_update` messages should be applied via
178         /// [`NetworkGraph::update_channel`].
179         ChannelUpdateMessage {
180                 /// The update to apply via [`NetworkGraph::update_channel`].
181                 msg: ChannelUpdate,
182         },
183         /// An error indicating that a channel failed to route a payment, which should be applied via
184         /// [`NetworkGraph::channel_failed`].
185         ChannelFailure {
186                 /// The short channel id of the closed channel.
187                 short_channel_id: u64,
188                 /// Whether the channel should be permanently removed or temporarily disabled until a new
189                 /// `channel_update` message is received.
190                 is_permanent: bool,
191         },
192         /// An error indicating that a node failed to route a payment, which should be applied via
193         /// [`NetworkGraph::node_failed_permanent`] if permanent.
194         NodeFailure {
195                 /// The node id of the failed node.
196                 node_id: PublicKey,
197                 /// Whether the node should be permanently removed from consideration or can be restored
198                 /// when a new `channel_update` message is received.
199                 is_permanent: bool,
200         }
201 }
202
203 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
204         (0, ChannelUpdateMessage) => {
205                 (0, msg, required),
206         },
207         (2, ChannelFailure) => {
208                 (0, short_channel_id, required),
209                 (2, is_permanent, required),
210         },
211         (4, NodeFailure) => {
212                 (0, node_id, required),
213                 (2, is_permanent, required),
214         },
215 );
216
217 /// Receives and validates network updates from peers,
218 /// stores authentic and relevant data as a network graph.
219 /// This network graph is then used for routing payments.
220 /// Provides interface to help with initial routing sync by
221 /// serving historical announcements.
222 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
223 where U::Target: UtxoLookup, L::Target: Logger
224 {
225         network_graph: G,
226         utxo_lookup: Option<U>,
227         #[cfg(feature = "std")]
228         full_syncs_requested: AtomicUsize,
229         pending_events: Mutex<Vec<MessageSendEvent>>,
230         logger: L,
231 }
232
233 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
234 where U::Target: UtxoLookup, L::Target: Logger
235 {
236         /// Creates a new tracker of the actual state of the network of channels and nodes,
237         /// assuming an existing Network Graph.
238         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
239         /// correct, and the announcement is signed with channel owners' keys.
240         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
241                 P2PGossipSync {
242                         network_graph,
243                         #[cfg(feature = "std")]
244                         full_syncs_requested: AtomicUsize::new(0),
245                         utxo_lookup,
246                         pending_events: Mutex::new(vec![]),
247                         logger,
248                 }
249         }
250
251         /// Adds a provider used to check new announcements. Does not affect
252         /// existing announcements unless they are updated.
253         /// Add, update or remove the provider would replace the current one.
254         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
255                 self.utxo_lookup = utxo_lookup;
256         }
257
258         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
259         /// [`P2PGossipSync::new`].
260         ///
261         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
262         pub fn network_graph(&self) -> &G {
263                 &self.network_graph
264         }
265
266         #[cfg(feature = "std")]
267         /// Returns true when a full routing table sync should be performed with a peer.
268         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
269                 //TODO: Determine whether to request a full sync based on the network map.
270                 const FULL_SYNCS_TO_REQUEST: usize = 5;
271                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
272                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
273                         true
274                 } else {
275                         false
276                 }
277         }
278
279         /// Used to broadcast forward gossip messages which were validated async.
280         ///
281         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
282         /// data.
283         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
284                 match &mut ev {
285                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
286                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
287                                 if update_msg.as_ref()
288                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
289                                 {
290                                         *update_msg = None;
291                                 }
292                         },
293                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
294                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
295                         },
296                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
297                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
298                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
299                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
300                                 {
301                                         return;
302                                 }
303                         },
304                         _ => return,
305                 }
306                 self.pending_events.lock().unwrap().push(ev);
307         }
308 }
309
310 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
311         /// Handles any network updates originating from [`Event`]s.
312         ///
313         /// [`Event`]: crate::util::events::Event
314         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
315                 match *network_update {
316                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
317                                 let short_channel_id = msg.contents.short_channel_id;
318                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
319                                 let status = if is_enabled { "enabled" } else { "disabled" };
320                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
321                                 let _ = self.update_channel(msg);
322                         },
323                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
324                                 let action = if is_permanent { "Removing" } else { "Disabling" };
325                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
326                                 self.channel_failed(short_channel_id, is_permanent);
327                         },
328                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
329                                 if is_permanent {
330                                         log_debug!(self.logger,
331                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
332                                         self.node_failed_permanent(node_id);
333                                 };
334                         },
335                 }
336         }
337 }
338
339 macro_rules! secp_verify_sig {
340         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
341                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
342                         Ok(_) => {},
343                         Err(_) => {
344                                 return Err(LightningError {
345                                         err: format!("Invalid signature on {} message", $msg_type),
346                                         action: ErrorAction::SendWarningMessage {
347                                                 msg: msgs::WarningMessage {
348                                                         channel_id: [0; 32],
349                                                         data: format!("Invalid signature on {} message", $msg_type),
350                                                 },
351                                                 log_level: Level::Trace,
352                                         },
353                                 });
354                         },
355                 }
356         };
357 }
358
359 macro_rules! get_pubkey_from_node_id {
360         ( $node_id: expr, $msg_type: expr ) => {
361                 PublicKey::from_slice($node_id.as_slice())
362                         .map_err(|_| LightningError {
363                                 err: format!("Invalid public key on {} message", $msg_type),
364                                 action: ErrorAction::SendWarningMessage {
365                                         msg: msgs::WarningMessage {
366                                                 channel_id: [0; 32],
367                                                 data: format!("Invalid public key on {} message", $msg_type),
368                                         },
369                                         log_level: Level::Trace
370                                 }
371                         })?
372         }
373 }
374
375 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
376 where U::Target: UtxoLookup, L::Target: Logger
377 {
378         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
379                 self.network_graph.update_node_from_announcement(msg)?;
380                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
381                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
382                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
383         }
384
385         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
386                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
387                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
388         }
389
390         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
391                 self.network_graph.update_channel(msg)?;
392                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
393         }
394
395         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
396                 let mut channels = self.network_graph.channels.write().unwrap();
397                 for (_, ref chan) in channels.range(starting_point..) {
398                         if chan.announcement_message.is_some() {
399                                 let chan_announcement = chan.announcement_message.clone().unwrap();
400                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
401                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
402                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
403                                         one_to_two_announcement = one_to_two.last_update_message.clone();
404                                 }
405                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
406                                         two_to_one_announcement = two_to_one.last_update_message.clone();
407                                 }
408                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
409                         } else {
410                                 // TODO: We may end up sending un-announced channel_updates if we are sending
411                                 // initial sync data while receiving announce/updates for this channel.
412                         }
413                 }
414                 None
415         }
416
417         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
418                 let mut nodes = self.network_graph.nodes.write().unwrap();
419                 let iter = if let Some(node_id) = starting_point {
420                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
421                         } else {
422                                 nodes.range(..)
423                         };
424                 for (_, ref node) in iter {
425                         if let Some(node_info) = node.announcement_info.as_ref() {
426                                 if let Some(msg) = node_info.announcement_message.clone() {
427                                         return Some(msg);
428                                 }
429                         }
430                 }
431                 None
432         }
433
434         /// Initiates a stateless sync of routing gossip information with a peer
435         /// using gossip_queries. The default strategy used by this implementation
436         /// is to sync the full block range with several peers.
437         ///
438         /// We should expect one or more reply_channel_range messages in response
439         /// to our query_channel_range. Each reply will enqueue a query_scid message
440         /// to request gossip messages for each channel. The sync is considered complete
441         /// when the final reply_scids_end message is received, though we are not
442         /// tracking this directly.
443         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
444                 // We will only perform a sync with peers that support gossip_queries.
445                 if !init_msg.features.supports_gossip_queries() {
446                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
447                         // channels with peers even without being able to exchange gossip.
448                         return Ok(());
449                 }
450
451                 // The lightning network's gossip sync system is completely broken in numerous ways.
452                 //
453                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
454                 // to do a full sync from the first few peers we connect to, and then receive gossip
455                 // updates from all our peers normally.
456                 //
457                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
458                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
459                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
460                 // seen.
461                 //
462                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
463                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
464                 // channel data which you are missing. Except there was no way at all to identify which
465                 // `channel_update`s you were missing, so you still had to request everything, just in a
466                 // very complicated way with some queries instead of just getting the dump.
467                 //
468                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
469                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
470                 // relying on it useless.
471                 //
472                 // After gossip queries were introduced, support for receiving a full gossip table dump on
473                 // connection was removed from several nodes, making it impossible to get a full sync
474                 // without using the "gossip queries" messages.
475                 //
476                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
477                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
478                 // message, as the name implies, tells the peer to not forward any gossip messages with a
479                 // timestamp older than a given value (not the time the peer received the filter, but the
480                 // timestamp in the update message, which is often hours behind when the peer received the
481                 // message).
482                 //
483                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
484                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
485                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
486                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
487                 // will simply not forward any new updates they see to you which were generated some time
488                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
489                 // ago), you will always get the full routing graph from all your peers.
490                 //
491                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
492                 // propagated some time after it was generated, and, worse, often disable gossiping with
493                 // several peers after their first connection. The second behavior can cause gossip to not
494                 // propagate fully if there are cuts in the gossiping subgraph.
495                 //
496                 // In an attempt to cut a middle ground between always fetching the full graph from all of
497                 // our peers and never receiving gossip from peers at all, we send all of our peers a
498                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
499                 //
500                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
501                 #[allow(unused_mut, unused_assignments)]
502                 let mut gossip_start_time = 0;
503                 #[cfg(feature = "std")]
504                 {
505                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
506                         if self.should_request_full_sync(&their_node_id) {
507                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
508                         } else {
509                                 gossip_start_time -= 60 * 60; // an hour ago
510                         }
511                 }
512
513                 let mut pending_events = self.pending_events.lock().unwrap();
514                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
515                         node_id: their_node_id.clone(),
516                         msg: GossipTimestampFilter {
517                                 chain_hash: self.network_graph.genesis_hash,
518                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
519                                 timestamp_range: u32::max_value(),
520                         },
521                 });
522                 Ok(())
523         }
524
525         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
526                 // We don't make queries, so should never receive replies. If, in the future, the set
527                 // reconciliation extensions to gossip queries become broadly supported, we should revert
528                 // this code to its state pre-0.0.106.
529                 Ok(())
530         }
531
532         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
533                 // We don't make queries, so should never receive replies. If, in the future, the set
534                 // reconciliation extensions to gossip queries become broadly supported, we should revert
535                 // this code to its state pre-0.0.106.
536                 Ok(())
537         }
538
539         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
540         /// are in the specified block range. Due to message size limits, large range
541         /// queries may result in several reply messages. This implementation enqueues
542         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
543         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
544         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
545         /// memory constrained systems.
546         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
547                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
548
549                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
550
551                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
552                 // If so, we manually cap the ending block to avoid this overflow.
553                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
554
555                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
556                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
557                         let mut pending_events = self.pending_events.lock().unwrap();
558                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
559                                 node_id: their_node_id.clone(),
560                                 msg: ReplyChannelRange {
561                                         chain_hash: msg.chain_hash.clone(),
562                                         first_blocknum: msg.first_blocknum,
563                                         number_of_blocks: msg.number_of_blocks,
564                                         sync_complete: true,
565                                         short_channel_ids: vec![],
566                                 }
567                         });
568                         return Err(LightningError {
569                                 err: String::from("query_channel_range could not be processed"),
570                                 action: ErrorAction::IgnoreError,
571                         });
572                 }
573
574                 // Creates channel batches. We are not checking if the channel is routable
575                 // (has at least one update). A peer may still want to know the channel
576                 // exists even if its not yet routable.
577                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
578                 let mut channels = self.network_graph.channels.write().unwrap();
579                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
580                         if let Some(chan_announcement) = &chan.announcement_message {
581                                 // Construct a new batch if last one is full
582                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
583                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
584                                 }
585
586                                 let batch = batches.last_mut().unwrap();
587                                 batch.push(chan_announcement.contents.short_channel_id);
588                         }
589                 }
590                 drop(channels);
591
592                 let mut pending_events = self.pending_events.lock().unwrap();
593                 let batch_count = batches.len();
594                 let mut prev_batch_endblock = msg.first_blocknum;
595                 for (batch_index, batch) in batches.into_iter().enumerate() {
596                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
597                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
598                         //
599                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
600                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
601                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
602                         // significant diversion from the requirements set by the spec, and, in case of blocks
603                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
604                         // and *not* derive the first_blocknum from the actual first block of the reply.
605                         let first_blocknum = prev_batch_endblock;
606
607                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
608                         // fit in. Though there is no requirement that we use exactly the number of blocks its
609                         // contents are from, except for the bogus requirements c-lightning enforces, above.
610                         //
611                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
612                         // >= the query's end block. Thus, for the last reply, we calculate the difference
613                         // between the query's end block and the start of the reply.
614                         //
615                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
616                         // first_blocknum will be either msg.first_blocknum or a higher block height.
617                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
618                                 (true, msg.end_blocknum() - first_blocknum)
619                         }
620                         // Prior replies should use the number of blocks that fit into the reply. Overflow
621                         // safe since first_blocknum is always <= last SCID's block.
622                         else {
623                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
624                         };
625
626                         prev_batch_endblock = first_blocknum + number_of_blocks;
627
628                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
629                                 node_id: their_node_id.clone(),
630                                 msg: ReplyChannelRange {
631                                         chain_hash: msg.chain_hash.clone(),
632                                         first_blocknum,
633                                         number_of_blocks,
634                                         sync_complete,
635                                         short_channel_ids: batch,
636                                 }
637                         });
638                 }
639
640                 Ok(())
641         }
642
643         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
644                 // TODO
645                 Err(LightningError {
646                         err: String::from("Not implemented"),
647                         action: ErrorAction::IgnoreError,
648                 })
649         }
650
651         fn provided_node_features(&self) -> NodeFeatures {
652                 let mut features = NodeFeatures::empty();
653                 features.set_gossip_queries_optional();
654                 features
655         }
656
657         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
658                 let mut features = InitFeatures::empty();
659                 features.set_gossip_queries_optional();
660                 features
661         }
662
663         fn processing_queue_high(&self) -> bool {
664                 self.network_graph.pending_checks.too_many_checks_pending()
665         }
666 }
667
668 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
669 where
670         U::Target: UtxoLookup,
671         L::Target: Logger,
672 {
673         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
674                 let mut ret = Vec::new();
675                 let mut pending_events = self.pending_events.lock().unwrap();
676                 core::mem::swap(&mut ret, &mut pending_events);
677                 ret
678         }
679 }
680
681 #[derive(Clone, Debug, PartialEq, Eq)]
682 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
683 pub struct ChannelUpdateInfo {
684         /// When the last update to the channel direction was issued.
685         /// Value is opaque, as set in the announcement.
686         pub last_update: u32,
687         /// Whether the channel can be currently used for payments (in this one direction).
688         pub enabled: bool,
689         /// The difference in CLTV values that you must have when routing through this channel.
690         pub cltv_expiry_delta: u16,
691         /// The minimum value, which must be relayed to the next hop via the channel
692         pub htlc_minimum_msat: u64,
693         /// The maximum value which may be relayed to the next hop via the channel.
694         pub htlc_maximum_msat: u64,
695         /// Fees charged when the channel is used for routing
696         pub fees: RoutingFees,
697         /// Most recent update for the channel received from the network
698         /// Mostly redundant with the data we store in fields explicitly.
699         /// Everything else is useful only for sending out for initial routing sync.
700         /// Not stored if contains excess data to prevent DoS.
701         pub last_update_message: Option<ChannelUpdate>,
702 }
703
704 impl fmt::Display for ChannelUpdateInfo {
705         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
706                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
707                 Ok(())
708         }
709 }
710
711 impl Writeable for ChannelUpdateInfo {
712         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
713                 write_tlv_fields!(writer, {
714                         (0, self.last_update, required),
715                         (2, self.enabled, required),
716                         (4, self.cltv_expiry_delta, required),
717                         (6, self.htlc_minimum_msat, required),
718                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
719                         // compatibility with LDK versions prior to v0.0.110.
720                         (8, Some(self.htlc_maximum_msat), required),
721                         (10, self.fees, required),
722                         (12, self.last_update_message, required),
723                 });
724                 Ok(())
725         }
726 }
727
728 impl Readable for ChannelUpdateInfo {
729         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
730                 _init_tlv_field_var!(last_update, required);
731                 _init_tlv_field_var!(enabled, required);
732                 _init_tlv_field_var!(cltv_expiry_delta, required);
733                 _init_tlv_field_var!(htlc_minimum_msat, required);
734                 _init_tlv_field_var!(htlc_maximum_msat, option);
735                 _init_tlv_field_var!(fees, required);
736                 _init_tlv_field_var!(last_update_message, required);
737
738                 read_tlv_fields!(reader, {
739                         (0, last_update, required),
740                         (2, enabled, required),
741                         (4, cltv_expiry_delta, required),
742                         (6, htlc_minimum_msat, required),
743                         (8, htlc_maximum_msat, required),
744                         (10, fees, required),
745                         (12, last_update_message, required)
746                 });
747
748                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
749                         Ok(ChannelUpdateInfo {
750                                 last_update: _init_tlv_based_struct_field!(last_update, required),
751                                 enabled: _init_tlv_based_struct_field!(enabled, required),
752                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
753                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
754                                 htlc_maximum_msat,
755                                 fees: _init_tlv_based_struct_field!(fees, required),
756                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
757                         })
758                 } else {
759                         Err(DecodeError::InvalidValue)
760                 }
761         }
762 }
763
764 #[derive(Clone, Debug, PartialEq, Eq)]
765 /// Details about a channel (both directions).
766 /// Received within a channel announcement.
767 pub struct ChannelInfo {
768         /// Protocol features of a channel communicated during its announcement
769         pub features: ChannelFeatures,
770         /// Source node of the first direction of a channel
771         pub node_one: NodeId,
772         /// Details about the first direction of a channel
773         pub one_to_two: Option<ChannelUpdateInfo>,
774         /// Source node of the second direction of a channel
775         pub node_two: NodeId,
776         /// Details about the second direction of a channel
777         pub two_to_one: Option<ChannelUpdateInfo>,
778         /// The channel capacity as seen on-chain, if chain lookup is available.
779         pub capacity_sats: Option<u64>,
780         /// An initial announcement of the channel
781         /// Mostly redundant with the data we store in fields explicitly.
782         /// Everything else is useful only for sending out for initial routing sync.
783         /// Not stored if contains excess data to prevent DoS.
784         pub announcement_message: Option<ChannelAnnouncement>,
785         /// The timestamp when we received the announcement, if we are running with feature = "std"
786         /// (which we can probably assume we are - no-std environments probably won't have a full
787         /// network graph in memory!).
788         announcement_received_time: u64,
789 }
790
791 impl ChannelInfo {
792         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
793         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
794         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
795                 let (direction, source) = {
796                         if target == &self.node_one {
797                                 (self.two_to_one.as_ref(), &self.node_two)
798                         } else if target == &self.node_two {
799                                 (self.one_to_two.as_ref(), &self.node_one)
800                         } else {
801                                 return None;
802                         }
803                 };
804                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
805         }
806
807         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
808         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
809         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
810                 let (direction, target) = {
811                         if source == &self.node_one {
812                                 (self.one_to_two.as_ref(), &self.node_two)
813                         } else if source == &self.node_two {
814                                 (self.two_to_one.as_ref(), &self.node_one)
815                         } else {
816                                 return None;
817                         }
818                 };
819                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
820         }
821
822         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
823         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
824                 let direction = channel_flags & 1u8;
825                 if direction == 0 {
826                         self.one_to_two.as_ref()
827                 } else {
828                         self.two_to_one.as_ref()
829                 }
830         }
831 }
832
833 impl fmt::Display for ChannelInfo {
834         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
835                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
836                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
837                 Ok(())
838         }
839 }
840
841 impl Writeable for ChannelInfo {
842         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
843                 write_tlv_fields!(writer, {
844                         (0, self.features, required),
845                         (1, self.announcement_received_time, (default_value, 0)),
846                         (2, self.node_one, required),
847                         (4, self.one_to_two, required),
848                         (6, self.node_two, required),
849                         (8, self.two_to_one, required),
850                         (10, self.capacity_sats, required),
851                         (12, self.announcement_message, required),
852                 });
853                 Ok(())
854         }
855 }
856
857 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
858 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
859 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
860 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
861 // channel updates via the gossip network.
862 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
863
864 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
865         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
866                 match crate::util::ser::Readable::read(reader) {
867                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
868                         Err(DecodeError::ShortRead) => Ok(None),
869                         Err(DecodeError::InvalidValue) => Ok(None),
870                         Err(err) => Err(err),
871                 }
872         }
873 }
874
875 impl Readable for ChannelInfo {
876         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
877                 _init_tlv_field_var!(features, required);
878                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
879                 _init_tlv_field_var!(node_one, required);
880                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
881                 _init_tlv_field_var!(node_two, required);
882                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
883                 _init_tlv_field_var!(capacity_sats, required);
884                 _init_tlv_field_var!(announcement_message, required);
885                 read_tlv_fields!(reader, {
886                         (0, features, required),
887                         (1, announcement_received_time, (default_value, 0)),
888                         (2, node_one, required),
889                         (4, one_to_two_wrap, ignorable),
890                         (6, node_two, required),
891                         (8, two_to_one_wrap, ignorable),
892                         (10, capacity_sats, required),
893                         (12, announcement_message, required),
894                 });
895
896                 Ok(ChannelInfo {
897                         features: _init_tlv_based_struct_field!(features, required),
898                         node_one: _init_tlv_based_struct_field!(node_one, required),
899                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
900                         node_two: _init_tlv_based_struct_field!(node_two, required),
901                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
902                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
903                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
904                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
905                 })
906         }
907 }
908
909 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
910 /// source node to a target node.
911 #[derive(Clone)]
912 pub struct DirectedChannelInfo<'a> {
913         channel: &'a ChannelInfo,
914         direction: &'a ChannelUpdateInfo,
915         htlc_maximum_msat: u64,
916         effective_capacity: EffectiveCapacity,
917 }
918
919 impl<'a> DirectedChannelInfo<'a> {
920         #[inline]
921         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
922                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
923                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
924
925                 let effective_capacity = match capacity_msat {
926                         Some(capacity_msat) => {
927                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
928                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
929                         },
930                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
931                 };
932
933                 Self {
934                         channel, direction, htlc_maximum_msat, effective_capacity
935                 }
936         }
937
938         /// Returns information for the channel.
939         #[inline]
940         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
941
942         /// Returns the maximum HTLC amount allowed over the channel in the direction.
943         #[inline]
944         pub fn htlc_maximum_msat(&self) -> u64 {
945                 self.htlc_maximum_msat
946         }
947
948         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
949         ///
950         /// This is either the total capacity from the funding transaction, if known, or the
951         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
952         /// otherwise.
953         pub fn effective_capacity(&self) -> EffectiveCapacity {
954                 self.effective_capacity
955         }
956
957         /// Returns information for the direction.
958         #[inline]
959         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
960 }
961
962 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
963         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
964                 f.debug_struct("DirectedChannelInfo")
965                         .field("channel", &self.channel)
966                         .finish()
967         }
968 }
969
970 /// The effective capacity of a channel for routing purposes.
971 ///
972 /// While this may be smaller than the actual channel capacity, amounts greater than
973 /// [`Self::as_msat`] should not be routed through the channel.
974 #[derive(Clone, Copy, Debug, PartialEq)]
975 pub enum EffectiveCapacity {
976         /// The available liquidity in the channel known from being a channel counterparty, and thus a
977         /// direct hop.
978         ExactLiquidity {
979                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
980                 /// millisatoshi.
981                 liquidity_msat: u64,
982         },
983         /// The maximum HTLC amount in one direction as advertised on the gossip network.
984         MaximumHTLC {
985                 /// The maximum HTLC amount denominated in millisatoshi.
986                 amount_msat: u64,
987         },
988         /// The total capacity of the channel as determined by the funding transaction.
989         Total {
990                 /// The funding amount denominated in millisatoshi.
991                 capacity_msat: u64,
992                 /// The maximum HTLC amount denominated in millisatoshi.
993                 htlc_maximum_msat: u64
994         },
995         /// A capacity sufficient to route any payment, typically used for private channels provided by
996         /// an invoice.
997         Infinite,
998         /// A capacity that is unknown possibly because either the chain state is unavailable to know
999         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1000         Unknown,
1001 }
1002
1003 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1004 /// use when making routing decisions.
1005 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1006
1007 impl EffectiveCapacity {
1008         /// Returns the effective capacity denominated in millisatoshi.
1009         pub fn as_msat(&self) -> u64 {
1010                 match self {
1011                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1012                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1013                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1014                         EffectiveCapacity::Infinite => u64::max_value(),
1015                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1016                 }
1017         }
1018 }
1019
1020 /// Fees for routing via a given channel or a node
1021 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1022 pub struct RoutingFees {
1023         /// Flat routing fee in satoshis
1024         pub base_msat: u32,
1025         /// Liquidity-based routing fee in millionths of a routed amount.
1026         /// In other words, 10000 is 1%.
1027         pub proportional_millionths: u32,
1028 }
1029
1030 impl_writeable_tlv_based!(RoutingFees, {
1031         (0, base_msat, required),
1032         (2, proportional_millionths, required)
1033 });
1034
1035 #[derive(Clone, Debug, PartialEq, Eq)]
1036 /// Information received in the latest node_announcement from this node.
1037 pub struct NodeAnnouncementInfo {
1038         /// Protocol features the node announced support for
1039         pub features: NodeFeatures,
1040         /// When the last known update to the node state was issued.
1041         /// Value is opaque, as set in the announcement.
1042         pub last_update: u32,
1043         /// Color assigned to the node
1044         pub rgb: [u8; 3],
1045         /// Moniker assigned to the node.
1046         /// May be invalid or malicious (eg control chars),
1047         /// should not be exposed to the user.
1048         pub alias: NodeAlias,
1049         /// Internet-level addresses via which one can connect to the node
1050         pub addresses: Vec<NetAddress>,
1051         /// An initial announcement of the node
1052         /// Mostly redundant with the data we store in fields explicitly.
1053         /// Everything else is useful only for sending out for initial routing sync.
1054         /// Not stored if contains excess data to prevent DoS.
1055         pub announcement_message: Option<NodeAnnouncement>
1056 }
1057
1058 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1059         (0, features, required),
1060         (2, last_update, required),
1061         (4, rgb, required),
1062         (6, alias, required),
1063         (8, announcement_message, option),
1064         (10, addresses, vec_type),
1065 });
1066
1067 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1068 ///
1069 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1070 /// attacks. Care must be taken when processing.
1071 #[derive(Clone, Debug, PartialEq, Eq)]
1072 pub struct NodeAlias(pub [u8; 32]);
1073
1074 impl fmt::Display for NodeAlias {
1075         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1076                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1077                 let bytes = self.0.split_at(first_null).0;
1078                 match core::str::from_utf8(bytes) {
1079                         Ok(alias) => PrintableString(alias).fmt(f)?,
1080                         Err(_) => {
1081                                 use core::fmt::Write;
1082                                 for c in bytes.iter().map(|b| *b as char) {
1083                                         // Display printable ASCII characters
1084                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1085                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1086                                         f.write_char(c)?;
1087                                 }
1088                         },
1089                 };
1090                 Ok(())
1091         }
1092 }
1093
1094 impl Writeable for NodeAlias {
1095         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1096                 self.0.write(w)
1097         }
1098 }
1099
1100 impl Readable for NodeAlias {
1101         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1102                 Ok(NodeAlias(Readable::read(r)?))
1103         }
1104 }
1105
1106 #[derive(Clone, Debug, PartialEq, Eq)]
1107 /// Details about a node in the network, known from the network announcement.
1108 pub struct NodeInfo {
1109         /// All valid channels a node has announced
1110         pub channels: Vec<u64>,
1111         /// More information about a node from node_announcement.
1112         /// Optional because we store a Node entry after learning about it from
1113         /// a channel announcement, but before receiving a node announcement.
1114         pub announcement_info: Option<NodeAnnouncementInfo>
1115 }
1116
1117 impl fmt::Display for NodeInfo {
1118         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1119                 write!(f, " channels: {:?}, announcement_info: {:?}",
1120                         &self.channels[..], self.announcement_info)?;
1121                 Ok(())
1122         }
1123 }
1124
1125 impl Writeable for NodeInfo {
1126         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1127                 write_tlv_fields!(writer, {
1128                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1129                         (2, self.announcement_info, option),
1130                         (4, self.channels, vec_type),
1131                 });
1132                 Ok(())
1133         }
1134 }
1135
1136 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1137 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1138 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1139 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1140 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1141
1142 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1143         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1144                 match crate::util::ser::Readable::read(reader) {
1145                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1146                         Err(_) => {
1147                                 copy(reader, &mut sink()).unwrap();
1148                                 return Ok(None)
1149                         },
1150                 };
1151         }
1152 }
1153
1154 impl Readable for NodeInfo {
1155         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1156                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1157                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1158                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1159                 // requires additional complexity and lookups during routing, it ends up being a
1160                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1161                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1162                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1163                 _init_tlv_field_var!(channels, vec_type);
1164
1165                 read_tlv_fields!(reader, {
1166                         (0, _lowest_inbound_channel_fees, option),
1167                         (2, announcement_info_wrap, ignorable),
1168                         (4, channels, vec_type),
1169                 });
1170
1171                 Ok(NodeInfo {
1172                         announcement_info: announcement_info_wrap.map(|w| w.0),
1173                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1174                 })
1175         }
1176 }
1177
1178 const SERIALIZATION_VERSION: u8 = 1;
1179 const MIN_SERIALIZATION_VERSION: u8 = 1;
1180
1181 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1182         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1183                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1184
1185                 self.genesis_hash.write(writer)?;
1186                 let channels = self.channels.read().unwrap();
1187                 (channels.len() as u64).write(writer)?;
1188                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1189                         (*chan_id).write(writer)?;
1190                         chan_info.write(writer)?;
1191                 }
1192                 let nodes = self.nodes.read().unwrap();
1193                 (nodes.len() as u64).write(writer)?;
1194                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1195                         node_id.write(writer)?;
1196                         node_info.write(writer)?;
1197                 }
1198
1199                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1200                 write_tlv_fields!(writer, {
1201                         (1, last_rapid_gossip_sync_timestamp, option),
1202                 });
1203                 Ok(())
1204         }
1205 }
1206
1207 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1208         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1209                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1210
1211                 let genesis_hash: BlockHash = Readable::read(reader)?;
1212                 let channels_count: u64 = Readable::read(reader)?;
1213                 let mut channels = IndexedMap::new();
1214                 for _ in 0..channels_count {
1215                         let chan_id: u64 = Readable::read(reader)?;
1216                         let chan_info = Readable::read(reader)?;
1217                         channels.insert(chan_id, chan_info);
1218                 }
1219                 let nodes_count: u64 = Readable::read(reader)?;
1220                 let mut nodes = IndexedMap::new();
1221                 for _ in 0..nodes_count {
1222                         let node_id = Readable::read(reader)?;
1223                         let node_info = Readable::read(reader)?;
1224                         nodes.insert(node_id, node_info);
1225                 }
1226
1227                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1228                 read_tlv_fields!(reader, {
1229                         (1, last_rapid_gossip_sync_timestamp, option),
1230                 });
1231
1232                 Ok(NetworkGraph {
1233                         secp_ctx: Secp256k1::verification_only(),
1234                         genesis_hash,
1235                         logger,
1236                         channels: RwLock::new(channels),
1237                         nodes: RwLock::new(nodes),
1238                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1239                         removed_nodes: Mutex::new(HashMap::new()),
1240                         removed_channels: Mutex::new(HashMap::new()),
1241                         pending_checks: utxo::PendingChecks::new(),
1242                 })
1243         }
1244 }
1245
1246 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1247         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1248                 writeln!(f, "Network map\n[Channels]")?;
1249                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1250                         writeln!(f, " {}: {}", key, val)?;
1251                 }
1252                 writeln!(f, "[Nodes]")?;
1253                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1254                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1255                 }
1256                 Ok(())
1257         }
1258 }
1259
1260 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1261 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1262         fn eq(&self, other: &Self) -> bool {
1263                 self.genesis_hash == other.genesis_hash &&
1264                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1265                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1266         }
1267 }
1268
1269 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1270         /// Creates a new, empty, network graph.
1271         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1272                 Self {
1273                         secp_ctx: Secp256k1::verification_only(),
1274                         genesis_hash: genesis_block(network).header.block_hash(),
1275                         logger,
1276                         channels: RwLock::new(IndexedMap::new()),
1277                         nodes: RwLock::new(IndexedMap::new()),
1278                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1279                         removed_channels: Mutex::new(HashMap::new()),
1280                         removed_nodes: Mutex::new(HashMap::new()),
1281                         pending_checks: utxo::PendingChecks::new(),
1282                 }
1283         }
1284
1285         /// Returns a read-only view of the network graph.
1286         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1287                 let channels = self.channels.read().unwrap();
1288                 let nodes = self.nodes.read().unwrap();
1289                 ReadOnlyNetworkGraph {
1290                         channels,
1291                         nodes,
1292                 }
1293         }
1294
1295         /// The unix timestamp provided by the most recent rapid gossip sync.
1296         /// It will be set by the rapid sync process after every sync completion.
1297         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1298                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1299         }
1300
1301         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1302         /// This should be done automatically by the rapid sync process after every sync completion.
1303         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1304                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1305         }
1306
1307         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1308         /// purposes.
1309         #[cfg(test)]
1310         pub fn clear_nodes_announcement_info(&self) {
1311                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1312                         node.1.announcement_info = None;
1313                 }
1314         }
1315
1316         /// For an already known node (from channel announcements), update its stored properties from a
1317         /// given node announcement.
1318         ///
1319         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1320         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1321         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1322         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1323                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1324                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1325                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1326         }
1327
1328         /// For an already known node (from channel announcements), update its stored properties from a
1329         /// given node announcement without verifying the associated signatures. Because we aren't
1330         /// given the associated signatures here we cannot relay the node announcement to any of our
1331         /// peers.
1332         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1333                 self.update_node_from_announcement_intern(msg, None)
1334         }
1335
1336         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1337                 let mut nodes = self.nodes.write().unwrap();
1338                 match nodes.get_mut(&msg.node_id) {
1339                         None => {
1340                                 core::mem::drop(nodes);
1341                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1342                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1343                         },
1344                         Some(node) => {
1345                                 if let Some(node_info) = node.announcement_info.as_ref() {
1346                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1347                                         // updates to ensure you always have the latest one, only vaguely suggesting
1348                                         // that it be at least the current time.
1349                                         if node_info.last_update  > msg.timestamp {
1350                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1351                                         } else if node_info.last_update  == msg.timestamp {
1352                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1353                                         }
1354                                 }
1355
1356                                 let should_relay =
1357                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1358                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1359                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1360                                 node.announcement_info = Some(NodeAnnouncementInfo {
1361                                         features: msg.features.clone(),
1362                                         last_update: msg.timestamp,
1363                                         rgb: msg.rgb,
1364                                         alias: NodeAlias(msg.alias),
1365                                         addresses: msg.addresses.clone(),
1366                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1367                                 });
1368
1369                                 Ok(())
1370                         }
1371                 }
1372         }
1373
1374         /// Store or update channel info from a channel announcement.
1375         ///
1376         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1377         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1378         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1379         ///
1380         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1381         /// the corresponding UTXO exists on chain and is correctly-formatted.
1382         pub fn update_channel_from_announcement<U: Deref>(
1383                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1384         ) -> Result<(), LightningError>
1385         where
1386                 U::Target: UtxoLookup,
1387         {
1388                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1389                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1390                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1391                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1392                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1393                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1394         }
1395
1396         /// Store or update channel info from a channel announcement without verifying the associated
1397         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1398         /// channel announcement to any of our peers.
1399         ///
1400         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1401         /// the corresponding UTXO exists on chain and is correctly-formatted.
1402         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1403                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1404         ) -> Result<(), LightningError>
1405         where
1406                 U::Target: UtxoLookup,
1407         {
1408                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1409         }
1410
1411         /// Update channel from partial announcement data received via rapid gossip sync
1412         ///
1413         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1414         /// rapid gossip sync server)
1415         ///
1416         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1417         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1418                 if node_id_1 == node_id_2 {
1419                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1420                 };
1421
1422                 let node_1 = NodeId::from_pubkey(&node_id_1);
1423                 let node_2 = NodeId::from_pubkey(&node_id_2);
1424                 let channel_info = ChannelInfo {
1425                         features,
1426                         node_one: node_1.clone(),
1427                         one_to_two: None,
1428                         node_two: node_2.clone(),
1429                         two_to_one: None,
1430                         capacity_sats: None,
1431                         announcement_message: None,
1432                         announcement_received_time: timestamp,
1433                 };
1434
1435                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1436         }
1437
1438         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1439                 let mut channels = self.channels.write().unwrap();
1440                 let mut nodes = self.nodes.write().unwrap();
1441
1442                 let node_id_a = channel_info.node_one.clone();
1443                 let node_id_b = channel_info.node_two.clone();
1444
1445                 match channels.entry(short_channel_id) {
1446                         IndexedMapEntry::Occupied(mut entry) => {
1447                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1448                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1449                                 //exactly how...
1450                                 if utxo_value.is_some() {
1451                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1452                                         // only sometimes returns results. In any case remove the previous entry. Note
1453                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1454                                         // do that because
1455                                         // a) we don't *require* a UTXO provider that always returns results.
1456                                         // b) we don't track UTXOs of channels we know about and remove them if they
1457                                         //    get reorg'd out.
1458                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1459                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1460                                         *entry.get_mut() = channel_info;
1461                                 } else {
1462                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1463                                 }
1464                         },
1465                         IndexedMapEntry::Vacant(entry) => {
1466                                 entry.insert(channel_info);
1467                         }
1468                 };
1469
1470                 for current_node_id in [node_id_a, node_id_b].iter() {
1471                         match nodes.entry(current_node_id.clone()) {
1472                                 IndexedMapEntry::Occupied(node_entry) => {
1473                                         node_entry.into_mut().channels.push(short_channel_id);
1474                                 },
1475                                 IndexedMapEntry::Vacant(node_entry) => {
1476                                         node_entry.insert(NodeInfo {
1477                                                 channels: vec!(short_channel_id),
1478                                                 announcement_info: None,
1479                                         });
1480                                 }
1481                         };
1482                 };
1483
1484                 Ok(())
1485         }
1486
1487         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1488                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1489         ) -> Result<(), LightningError>
1490         where
1491                 U::Target: UtxoLookup,
1492         {
1493                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1494                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1495                 }
1496
1497                 {
1498                         let channels = self.channels.read().unwrap();
1499
1500                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1501                                 if chan.capacity_sats.is_some() {
1502                                         // If we'd previously looked up the channel on-chain and checked the script
1503                                         // against what appears on-chain, ignore the duplicate announcement.
1504                                         //
1505                                         // Because a reorg could replace one channel with another at the same SCID, if
1506                                         // the channel appears to be different, we re-validate. This doesn't expose us
1507                                         // to any more DoS risk than not, as a peer can always flood us with
1508                                         // randomly-generated SCID values anyway.
1509                                         //
1510                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1511                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1512                                         // if the peers on the channel changed anyway.
1513                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1514                                                 return Err(LightningError {
1515                                                         err: "Already have chain-validated channel".to_owned(),
1516                                                         action: ErrorAction::IgnoreDuplicateGossip
1517                                                 });
1518                                         }
1519                                 } else if utxo_lookup.is_none() {
1520                                         // Similarly, if we can't check the chain right now anyway, ignore the
1521                                         // duplicate announcement without bothering to take the channels write lock.
1522                                         return Err(LightningError {
1523                                                 err: "Already have non-chain-validated channel".to_owned(),
1524                                                 action: ErrorAction::IgnoreDuplicateGossip
1525                                         });
1526                                 }
1527                         }
1528                 }
1529
1530                 {
1531                         let removed_channels = self.removed_channels.lock().unwrap();
1532                         let removed_nodes = self.removed_nodes.lock().unwrap();
1533                         if removed_channels.contains_key(&msg.short_channel_id) ||
1534                                 removed_nodes.contains_key(&msg.node_id_1) ||
1535                                 removed_nodes.contains_key(&msg.node_id_2) {
1536                                 return Err(LightningError{
1537                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1538                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1539                         }
1540                 }
1541
1542                 let utxo_value = self.pending_checks.check_channel_announcement(
1543                         utxo_lookup, msg, full_msg)?;
1544
1545                 #[allow(unused_mut, unused_assignments)]
1546                 let mut announcement_received_time = 0;
1547                 #[cfg(feature = "std")]
1548                 {
1549                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1550                 }
1551
1552                 let chan_info = ChannelInfo {
1553                         features: msg.features.clone(),
1554                         node_one: msg.node_id_1,
1555                         one_to_two: None,
1556                         node_two: msg.node_id_2,
1557                         two_to_one: None,
1558                         capacity_sats: utxo_value,
1559                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1560                                 { full_msg.cloned() } else { None },
1561                         announcement_received_time,
1562                 };
1563
1564                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1565
1566                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1567                 Ok(())
1568         }
1569
1570         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1571         /// If permanent, removes a channel from the local storage.
1572         /// May cause the removal of nodes too, if this was their last channel.
1573         /// If not permanent, makes channels unavailable for routing.
1574         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1575                 #[cfg(feature = "std")]
1576                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1577                 #[cfg(not(feature = "std"))]
1578                 let current_time_unix = None;
1579
1580                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1581         }
1582
1583         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1584         /// If permanent, removes a channel from the local storage.
1585         /// May cause the removal of nodes too, if this was their last channel.
1586         /// If not permanent, makes channels unavailable for routing.
1587         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1588                 let mut channels = self.channels.write().unwrap();
1589                 if is_permanent {
1590                         if let Some(chan) = channels.remove(&short_channel_id) {
1591                                 let mut nodes = self.nodes.write().unwrap();
1592                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1593                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1594                         }
1595                 } else {
1596                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1597                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1598                                         one_to_two.enabled = false;
1599                                 }
1600                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1601                                         two_to_one.enabled = false;
1602                                 }
1603                         }
1604                 }
1605         }
1606
1607         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1608         /// from local storage.
1609         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1610                 #[cfg(feature = "std")]
1611                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1612                 #[cfg(not(feature = "std"))]
1613                 let current_time_unix = None;
1614
1615                 let node_id = NodeId::from_pubkey(node_id);
1616                 let mut channels = self.channels.write().unwrap();
1617                 let mut nodes = self.nodes.write().unwrap();
1618                 let mut removed_channels = self.removed_channels.lock().unwrap();
1619                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1620
1621                 if let Some(node) = nodes.remove(&node_id) {
1622                         for scid in node.channels.iter() {
1623                                 if let Some(chan_info) = channels.remove(scid) {
1624                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1625                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1626                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1627                                                         *scid != *chan_id
1628                                                 });
1629                                                 if other_node_entry.get().channels.is_empty() {
1630                                                         other_node_entry.remove_entry();
1631                                                 }
1632                                         }
1633                                         removed_channels.insert(*scid, current_time_unix);
1634                                 }
1635                         }
1636                         removed_nodes.insert(node_id, current_time_unix);
1637                 }
1638         }
1639
1640         #[cfg(feature = "std")]
1641         /// Removes information about channels that we haven't heard any updates about in some time.
1642         /// This can be used regularly to prune the network graph of channels that likely no longer
1643         /// exist.
1644         ///
1645         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1646         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1647         /// pruning occur for updates which are at least two weeks old, which we implement here.
1648         ///
1649         /// Note that for users of the `lightning-background-processor` crate this method may be
1650         /// automatically called regularly for you.
1651         ///
1652         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1653         /// in the map for a while so that these can be resynced from gossip in the future.
1654         ///
1655         /// This method is only available with the `std` feature. See
1656         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1657         pub fn remove_stale_channels_and_tracking(&self) {
1658                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1659                 self.remove_stale_channels_and_tracking_with_time(time);
1660         }
1661
1662         /// Removes information about channels that we haven't heard any updates about in some time.
1663         /// This can be used regularly to prune the network graph of channels that likely no longer
1664         /// exist.
1665         ///
1666         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1667         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1668         /// pruning occur for updates which are at least two weeks old, which we implement here.
1669         ///
1670         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1671         /// in the map for a while so that these can be resynced from gossip in the future.
1672         ///
1673         /// This function takes the current unix time as an argument. For users with the `std` feature
1674         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1675         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1676                 let mut channels = self.channels.write().unwrap();
1677                 // Time out if we haven't received an update in at least 14 days.
1678                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1679                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1680                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1681                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1682                 // time.
1683                 let mut scids_to_remove = Vec::new();
1684                 for (scid, info) in channels.unordered_iter_mut() {
1685                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1686                                 info.one_to_two = None;
1687                         }
1688                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1689                                 info.two_to_one = None;
1690                         }
1691                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1692                                 // We check the announcement_received_time here to ensure we don't drop
1693                                 // announcements that we just received and are just waiting for our peer to send a
1694                                 // channel_update for.
1695                                 if info.announcement_received_time < min_time_unix as u64 {
1696                                         scids_to_remove.push(*scid);
1697                                 }
1698                         }
1699                 }
1700                 if !scids_to_remove.is_empty() {
1701                         let mut nodes = self.nodes.write().unwrap();
1702                         for scid in scids_to_remove {
1703                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1704                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1705                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1706                         }
1707                 }
1708
1709                 let should_keep_tracking = |time: &mut Option<u64>| {
1710                         if let Some(time) = time {
1711                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1712                         } else {
1713                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1714                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1715                                 // of this function.
1716                                 #[cfg(feature = "no-std")]
1717                                 {
1718                                         let mut tracked_time = Some(current_time_unix);
1719                                         core::mem::swap(time, &mut tracked_time);
1720                                         return true;
1721                                 }
1722                                 #[allow(unreachable_code)]
1723                                 false
1724                         }};
1725
1726                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1727                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1728         }
1729
1730         /// For an already known (from announcement) channel, update info about one of the directions
1731         /// of the channel.
1732         ///
1733         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1734         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1735         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1736         ///
1737         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1738         /// materially in the future will be rejected.
1739         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1740                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1741         }
1742
1743         /// For an already known (from announcement) channel, update info about one of the directions
1744         /// of the channel without verifying the associated signatures. Because we aren't given the
1745         /// associated signatures here we cannot relay the channel update to any of our peers.
1746         ///
1747         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1748         /// materially in the future will be rejected.
1749         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1750                 self.update_channel_intern(msg, None, None)
1751         }
1752
1753         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1754                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1755
1756                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1757                 {
1758                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1759                         // disable this check during tests!
1760                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1761                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1762                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1763                         }
1764                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1765                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1766                         }
1767                 }
1768
1769                 let mut channels = self.channels.write().unwrap();
1770                 match channels.get_mut(&msg.short_channel_id) {
1771                         None => {
1772                                 core::mem::drop(channels);
1773                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1774                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1775                         },
1776                         Some(channel) => {
1777                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1778                                         return Err(LightningError{err:
1779                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1780                                                 action: ErrorAction::IgnoreError});
1781                                 }
1782
1783                                 if let Some(capacity_sats) = channel.capacity_sats {
1784                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1785                                         // Don't query UTXO set here to reduce DoS risks.
1786                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1787                                                 return Err(LightningError{err:
1788                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1789                                                         action: ErrorAction::IgnoreError});
1790                                         }
1791                                 }
1792                                 macro_rules! check_update_latest {
1793                                         ($target: expr) => {
1794                                                 if let Some(existing_chan_info) = $target.as_ref() {
1795                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1796                                                         // order updates to ensure you always have the latest one, only
1797                                                         // suggesting  that it be at least the current time. For
1798                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1799                                                         // pruning based on the timestamp field being more than two weeks old,
1800                                                         // but only in the non-normative section.
1801                                                         if existing_chan_info.last_update > msg.timestamp {
1802                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1803                                                         } else if existing_chan_info.last_update == msg.timestamp {
1804                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1805                                                         }
1806                                                 }
1807                                         }
1808                                 }
1809
1810                                 macro_rules! get_new_channel_info {
1811                                         () => { {
1812                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1813                                                         { full_msg.cloned() } else { None };
1814
1815                                                 let updated_channel_update_info = ChannelUpdateInfo {
1816                                                         enabled: chan_enabled,
1817                                                         last_update: msg.timestamp,
1818                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1819                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1820                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1821                                                         fees: RoutingFees {
1822                                                                 base_msat: msg.fee_base_msat,
1823                                                                 proportional_millionths: msg.fee_proportional_millionths,
1824                                                         },
1825                                                         last_update_message
1826                                                 };
1827                                                 Some(updated_channel_update_info)
1828                                         } }
1829                                 }
1830
1831                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1832                                 if msg.flags & 1 == 1 {
1833                                         check_update_latest!(channel.two_to_one);
1834                                         if let Some(sig) = sig {
1835                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1836                                                         err: "Couldn't parse source node pubkey".to_owned(),
1837                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1838                                                 })?, "channel_update");
1839                                         }
1840                                         channel.two_to_one = get_new_channel_info!();
1841                                 } else {
1842                                         check_update_latest!(channel.one_to_two);
1843                                         if let Some(sig) = sig {
1844                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1845                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1846                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1847                                                 })?, "channel_update");
1848                                         }
1849                                         channel.one_to_two = get_new_channel_info!();
1850                                 }
1851                         }
1852                 }
1853
1854                 Ok(())
1855         }
1856
1857         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1858                 macro_rules! remove_from_node {
1859                         ($node_id: expr) => {
1860                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1861                                         entry.get_mut().channels.retain(|chan_id| {
1862                                                 short_channel_id != *chan_id
1863                                         });
1864                                         if entry.get().channels.is_empty() {
1865                                                 entry.remove_entry();
1866                                         }
1867                                 } else {
1868                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1869                                 }
1870                         }
1871                 }
1872
1873                 remove_from_node!(chan.node_one);
1874                 remove_from_node!(chan.node_two);
1875         }
1876 }
1877
1878 impl ReadOnlyNetworkGraph<'_> {
1879         /// Returns all known valid channels' short ids along with announced channel info.
1880         ///
1881         /// (C-not exported) because we don't want to return lifetime'd references
1882         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1883                 &*self.channels
1884         }
1885
1886         /// Returns information on a channel with the given id.
1887         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1888                 self.channels.get(&short_channel_id)
1889         }
1890
1891         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1892         /// Returns the list of channels in the graph
1893         pub fn list_channels(&self) -> Vec<u64> {
1894                 self.channels.unordered_keys().map(|c| *c).collect()
1895         }
1896
1897         /// Returns all known nodes' public keys along with announced node info.
1898         ///
1899         /// (C-not exported) because we don't want to return lifetime'd references
1900         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1901                 &*self.nodes
1902         }
1903
1904         /// Returns information on a node with the given id.
1905         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1906                 self.nodes.get(node_id)
1907         }
1908
1909         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1910         /// Returns the list of nodes in the graph
1911         pub fn list_nodes(&self) -> Vec<NodeId> {
1912                 self.nodes.unordered_keys().map(|n| *n).collect()
1913         }
1914
1915         /// Get network addresses by node id.
1916         /// Returns None if the requested node is completely unknown,
1917         /// or if node announcement for the node was never received.
1918         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1919                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1920                         if let Some(node_info) = node.announcement_info.as_ref() {
1921                                 return Some(node_info.addresses.clone())
1922                         }
1923                 }
1924                 None
1925         }
1926 }
1927
1928 #[cfg(test)]
1929 pub(crate) mod tests {
1930         use crate::ln::channelmanager;
1931         use crate::ln::chan_utils::make_funding_redeemscript;
1932         #[cfg(feature = "std")]
1933         use crate::ln::features::InitFeatures;
1934         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1935         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1936         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1937                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1938                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1939         use crate::util::config::UserConfig;
1940         use crate::util::test_utils;
1941         use crate::util::ser::{ReadableArgs, Writeable};
1942         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1943         use crate::util::scid_utils::scid_from_parts;
1944
1945         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1946         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1947
1948         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1949         use bitcoin::hashes::Hash;
1950         use bitcoin::network::constants::Network;
1951         use bitcoin::blockdata::constants::genesis_block;
1952         use bitcoin::blockdata::script::Script;
1953         use bitcoin::blockdata::transaction::TxOut;
1954
1955         use hex;
1956
1957         use bitcoin::secp256k1::{PublicKey, SecretKey};
1958         use bitcoin::secp256k1::{All, Secp256k1};
1959
1960         use crate::io;
1961         use bitcoin::secp256k1;
1962         use crate::prelude::*;
1963         use crate::sync::Arc;
1964
1965         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1966                 let logger = Arc::new(test_utils::TestLogger::new());
1967                 NetworkGraph::new(Network::Testnet, logger)
1968         }
1969
1970         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1971                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1972                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1973         ) {
1974                 let secp_ctx = Secp256k1::new();
1975                 let logger = Arc::new(test_utils::TestLogger::new());
1976                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1977                 (secp_ctx, gossip_sync)
1978         }
1979
1980         #[test]
1981         #[cfg(feature = "std")]
1982         fn request_full_sync_finite_times() {
1983                 let network_graph = create_network_graph();
1984                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1985                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1986
1987                 assert!(gossip_sync.should_request_full_sync(&node_id));
1988                 assert!(gossip_sync.should_request_full_sync(&node_id));
1989                 assert!(gossip_sync.should_request_full_sync(&node_id));
1990                 assert!(gossip_sync.should_request_full_sync(&node_id));
1991                 assert!(gossip_sync.should_request_full_sync(&node_id));
1992                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1993         }
1994
1995         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1996                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
1997                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1998                         features: channelmanager::provided_node_features(&UserConfig::default()),
1999                         timestamp: 100,
2000                         node_id,
2001                         rgb: [0; 3],
2002                         alias: [0; 32],
2003                         addresses: Vec::new(),
2004                         excess_address_data: Vec::new(),
2005                         excess_data: Vec::new(),
2006                 };
2007                 f(&mut unsigned_announcement);
2008                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2009                 NodeAnnouncement {
2010                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2011                         contents: unsigned_announcement
2012                 }
2013         }
2014
2015         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2016                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2017                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2018                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2019                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2020
2021                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2022                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2023                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2024                         short_channel_id: 0,
2025                         node_id_1: NodeId::from_pubkey(&node_id_1),
2026                         node_id_2: NodeId::from_pubkey(&node_id_2),
2027                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2028                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2029                         excess_data: Vec::new(),
2030                 };
2031                 f(&mut unsigned_announcement);
2032                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2033                 ChannelAnnouncement {
2034                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2035                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2036                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2037                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2038                         contents: unsigned_announcement,
2039                 }
2040         }
2041
2042         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2043                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2044                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2045                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2046                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2047         }
2048
2049         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2050                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2051                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2052                         short_channel_id: 0,
2053                         timestamp: 100,
2054                         flags: 0,
2055                         cltv_expiry_delta: 144,
2056                         htlc_minimum_msat: 1_000_000,
2057                         htlc_maximum_msat: 1_000_000,
2058                         fee_base_msat: 10_000,
2059                         fee_proportional_millionths: 20,
2060                         excess_data: Vec::new()
2061                 };
2062                 f(&mut unsigned_channel_update);
2063                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2064                 ChannelUpdate {
2065                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2066                         contents: unsigned_channel_update
2067                 }
2068         }
2069
2070         #[test]
2071         fn handling_node_announcements() {
2072                 let network_graph = create_network_graph();
2073                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2074
2075                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2076                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2077                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2078
2079                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2080                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2081                         Ok(_) => panic!(),
2082                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2083                 };
2084
2085                 {
2086                         // Announce a channel to add a corresponding node.
2087                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2088                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2089                                 Ok(res) => assert!(res),
2090                                 _ => panic!()
2091                         };
2092                 }
2093
2094                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2095                         Ok(res) => assert!(res),
2096                         Err(_) => panic!()
2097                 };
2098
2099                 let fake_msghash = hash_to_message!(&zero_hash);
2100                 match gossip_sync.handle_node_announcement(
2101                         &NodeAnnouncement {
2102                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2103                                 contents: valid_announcement.contents.clone()
2104                 }) {
2105                         Ok(_) => panic!(),
2106                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2107                 };
2108
2109                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2110                         unsigned_announcement.timestamp += 1000;
2111                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2112                 }, node_1_privkey, &secp_ctx);
2113                 // Return false because contains excess data.
2114                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2115                         Ok(res) => assert!(!res),
2116                         Err(_) => panic!()
2117                 };
2118
2119                 // Even though previous announcement was not relayed further, we still accepted it,
2120                 // so we now won't accept announcements before the previous one.
2121                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2122                         unsigned_announcement.timestamp += 1000 - 10;
2123                 }, node_1_privkey, &secp_ctx);
2124                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2125                         Ok(_) => panic!(),
2126                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2127                 };
2128         }
2129
2130         #[test]
2131         fn handling_channel_announcements() {
2132                 let secp_ctx = Secp256k1::new();
2133                 let logger = test_utils::TestLogger::new();
2134
2135                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2136                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2137
2138                 let good_script = get_channel_script(&secp_ctx);
2139                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2140
2141                 // Test if the UTXO lookups were not supported
2142                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2143                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2144                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2145                         Ok(res) => assert!(res),
2146                         _ => panic!()
2147                 };
2148
2149                 {
2150                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2151                                 None => panic!(),
2152                                 Some(_) => ()
2153                         };
2154                 }
2155
2156                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2157                 // drop new one on the floor, since we can't see any changes.
2158                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2159                         Ok(_) => panic!(),
2160                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2161                 };
2162
2163                 // Test if an associated transaction were not on-chain (or not confirmed).
2164                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2165                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2166                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2167                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2168
2169                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2170                         unsigned_announcement.short_channel_id += 1;
2171                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2172                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2173                         Ok(_) => panic!(),
2174                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2175                 };
2176
2177                 // Now test if the transaction is found in the UTXO set and the script is correct.
2178                 *chain_source.utxo_ret.lock().unwrap() =
2179                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2180                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2181                         unsigned_announcement.short_channel_id += 2;
2182                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2183                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2184                         Ok(res) => assert!(res),
2185                         _ => panic!()
2186                 };
2187
2188                 {
2189                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2190                                 None => panic!(),
2191                                 Some(_) => ()
2192                         };
2193                 }
2194
2195                 // If we receive announcement for the same channel, once we've validated it against the
2196                 // chain, we simply ignore all new (duplicate) announcements.
2197                 *chain_source.utxo_ret.lock().unwrap() =
2198                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2199                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2200                         Ok(_) => panic!(),
2201                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2202                 };
2203
2204                 #[cfg(feature = "std")]
2205                 {
2206                         use std::time::{SystemTime, UNIX_EPOCH};
2207
2208                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2209                         // Mark a node as permanently failed so it's tracked as removed.
2210                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2211
2212                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2213                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2214                                 unsigned_announcement.short_channel_id += 3;
2215                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2216                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2217                                 Ok(_) => panic!(),
2218                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2219                         }
2220
2221                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2222
2223                         // The above channel announcement should be handled as per normal now.
2224                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2225                                 Ok(res) => assert!(res),
2226                                 _ => panic!()
2227                         }
2228                 }
2229
2230                 // Don't relay valid channels with excess data
2231                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2232                         unsigned_announcement.short_channel_id += 4;
2233                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2234                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2235                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2236                         Ok(res) => assert!(!res),
2237                         _ => panic!()
2238                 };
2239
2240                 let mut invalid_sig_announcement = valid_announcement.clone();
2241                 invalid_sig_announcement.contents.excess_data = Vec::new();
2242                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2243                         Ok(_) => panic!(),
2244                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2245                 };
2246
2247                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2248                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2249                         Ok(_) => panic!(),
2250                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2251                 };
2252         }
2253
2254         #[test]
2255         fn handling_channel_update() {
2256                 let secp_ctx = Secp256k1::new();
2257                 let logger = test_utils::TestLogger::new();
2258                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2259                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2260                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2261
2262                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2263                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2264
2265                 let amount_sats = 1000_000;
2266                 let short_channel_id;
2267
2268                 {
2269                         // Announce a channel we will update
2270                         let good_script = get_channel_script(&secp_ctx);
2271                         *chain_source.utxo_ret.lock().unwrap() =
2272                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2273
2274                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2275                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2276                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2277                                 Ok(_) => (),
2278                                 Err(_) => panic!()
2279                         };
2280
2281                 }
2282
2283                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2284                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2285                         Ok(res) => assert!(res),
2286                         _ => panic!(),
2287                 };
2288
2289                 {
2290                         match network_graph.read_only().channels().get(&short_channel_id) {
2291                                 None => panic!(),
2292                                 Some(channel_info) => {
2293                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2294                                         assert!(channel_info.two_to_one.is_none());
2295                                 }
2296                         };
2297                 }
2298
2299                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2300                         unsigned_channel_update.timestamp += 100;
2301                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2302                 }, node_1_privkey, &secp_ctx);
2303                 // Return false because contains excess data
2304                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2305                         Ok(res) => assert!(!res),
2306                         _ => panic!()
2307                 };
2308
2309                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2310                         unsigned_channel_update.timestamp += 110;
2311                         unsigned_channel_update.short_channel_id += 1;
2312                 }, node_1_privkey, &secp_ctx);
2313                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2314                         Ok(_) => panic!(),
2315                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2316                 };
2317
2318                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2319                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2320                         unsigned_channel_update.timestamp += 110;
2321                 }, node_1_privkey, &secp_ctx);
2322                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2323                         Ok(_) => panic!(),
2324                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2325                 };
2326
2327                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2328                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2329                         unsigned_channel_update.timestamp += 110;
2330                 }, node_1_privkey, &secp_ctx);
2331                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2332                         Ok(_) => panic!(),
2333                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2334                 };
2335
2336                 // Even though previous update was not relayed further, we still accepted it,
2337                 // so we now won't accept update before the previous one.
2338                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2339                         unsigned_channel_update.timestamp += 100;
2340                 }, node_1_privkey, &secp_ctx);
2341                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2342                         Ok(_) => panic!(),
2343                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2344                 };
2345
2346                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2347                         unsigned_channel_update.timestamp += 500;
2348                 }, node_1_privkey, &secp_ctx);
2349                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2350                 let fake_msghash = hash_to_message!(&zero_hash);
2351                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2352                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2353                         Ok(_) => panic!(),
2354                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2355                 };
2356         }
2357
2358         #[test]
2359         fn handling_network_update() {
2360                 let logger = test_utils::TestLogger::new();
2361                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2362                 let secp_ctx = Secp256k1::new();
2363
2364                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2365                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2366                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2367
2368                 {
2369                         // There is no nodes in the table at the beginning.
2370                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2371                 }
2372
2373                 let short_channel_id;
2374                 {
2375                         // Announce a channel we will update
2376                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2377                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2378                         let chain_source: Option<&test_utils::TestChainSource> = None;
2379                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2380                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2381
2382                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2383                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2384
2385                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2386                                 msg: valid_channel_update,
2387                         });
2388
2389                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2390                 }
2391
2392                 // Non-permanent closing just disables a channel
2393                 {
2394                         match network_graph.read_only().channels().get(&short_channel_id) {
2395                                 None => panic!(),
2396                                 Some(channel_info) => {
2397                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2398                                 }
2399                         };
2400
2401                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2402                                 short_channel_id,
2403                                 is_permanent: false,
2404                         });
2405
2406                         match network_graph.read_only().channels().get(&short_channel_id) {
2407                                 None => panic!(),
2408                                 Some(channel_info) => {
2409                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2410                                 }
2411                         };
2412                 }
2413
2414                 // Permanent closing deletes a channel
2415                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2416                         short_channel_id,
2417                         is_permanent: true,
2418                 });
2419
2420                 assert_eq!(network_graph.read_only().channels().len(), 0);
2421                 // Nodes are also deleted because there are no associated channels anymore
2422                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2423
2424                 {
2425                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2426                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2427
2428                         // Announce a channel to test permanent node failure
2429                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2430                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2431                         let chain_source: Option<&test_utils::TestChainSource> = None;
2432                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2433                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2434
2435                         // Non-permanent node failure does not delete any nodes or channels
2436                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2437                                 node_id: node_2_id,
2438                                 is_permanent: false,
2439                         });
2440
2441                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2442                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2443
2444                         // Permanent node failure deletes node and its channels
2445                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2446                                 node_id: node_2_id,
2447                                 is_permanent: true,
2448                         });
2449
2450                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2451                         // Channels are also deleted because the associated node has been deleted
2452                         assert_eq!(network_graph.read_only().channels().len(), 0);
2453                 }
2454         }
2455
2456         #[test]
2457         fn test_channel_timeouts() {
2458                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2459                 let logger = test_utils::TestLogger::new();
2460                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2461                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2462                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2463                 let secp_ctx = Secp256k1::new();
2464
2465                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2466                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2467
2468                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2469                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2470                 let chain_source: Option<&test_utils::TestChainSource> = None;
2471                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2472                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2473
2474                 // Submit two channel updates for each channel direction (update.flags bit).
2475                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2476                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2477                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2478
2479                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2480                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2481                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2482
2483                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2484                 assert_eq!(network_graph.read_only().channels().len(), 1);
2485                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2486
2487                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2488                 #[cfg(not(feature = "std"))] {
2489                         // Make sure removed channels are tracked.
2490                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2491                 }
2492                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2493                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2494
2495                 #[cfg(feature = "std")]
2496                 {
2497                         // In std mode, a further check is performed before fully removing the channel -
2498                         // the channel_announcement must have been received at least two weeks ago. We
2499                         // fudge that here by indicating the time has jumped two weeks.
2500                         assert_eq!(network_graph.read_only().channels().len(), 1);
2501                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2502
2503                         // Note that the directional channel information will have been removed already..
2504                         // We want to check that this will work even if *one* of the channel updates is recent,
2505                         // so we should add it with a recent timestamp.
2506                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2507                         use std::time::{SystemTime, UNIX_EPOCH};
2508                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2509                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2510                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2511                         }, node_1_privkey, &secp_ctx);
2512                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2513                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2514                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2515                         // Make sure removed channels are tracked.
2516                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2517                         // Provide a later time so that sufficient time has passed
2518                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2519                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2520                 }
2521
2522                 assert_eq!(network_graph.read_only().channels().len(), 0);
2523                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2524                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2525
2526                 #[cfg(feature = "std")]
2527                 {
2528                         use std::time::{SystemTime, UNIX_EPOCH};
2529
2530                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2531
2532                         // Clear tracked nodes and channels for clean slate
2533                         network_graph.removed_channels.lock().unwrap().clear();
2534                         network_graph.removed_nodes.lock().unwrap().clear();
2535
2536                         // Add a channel and nodes from channel announcement. So our network graph will
2537                         // now only consist of two nodes and one channel between them.
2538                         assert!(network_graph.update_channel_from_announcement(
2539                                 &valid_channel_announcement, &chain_source).is_ok());
2540
2541                         // Mark the channel as permanently failed. This will also remove the two nodes
2542                         // and all of the entries will be tracked as removed.
2543                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2544
2545                         // Should not remove from tracking if insufficient time has passed
2546                         network_graph.remove_stale_channels_and_tracking_with_time(
2547                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2548                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2549
2550                         // Provide a later time so that sufficient time has passed
2551                         network_graph.remove_stale_channels_and_tracking_with_time(
2552                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2553                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2554                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2555                 }
2556
2557                 #[cfg(not(feature = "std"))]
2558                 {
2559                         // When we don't have access to the system clock, the time we started tracking removal will only
2560                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2561                         // only if sufficient time has passed after that first call, will the next call remove it from
2562                         // tracking.
2563                         let removal_time = 1664619654;
2564
2565                         // Clear removed nodes and channels for clean slate
2566                         network_graph.removed_channels.lock().unwrap().clear();
2567                         network_graph.removed_nodes.lock().unwrap().clear();
2568
2569                         // Add a channel and nodes from channel announcement. So our network graph will
2570                         // now only consist of two nodes and one channel between them.
2571                         assert!(network_graph.update_channel_from_announcement(
2572                                 &valid_channel_announcement, &chain_source).is_ok());
2573
2574                         // Mark the channel as permanently failed. This will also remove the two nodes
2575                         // and all of the entries will be tracked as removed.
2576                         network_graph.channel_failed(short_channel_id, true);
2577
2578                         // The first time we call the following, the channel will have a removal time assigned.
2579                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2580                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2581
2582                         // Provide a later time so that sufficient time has passed
2583                         network_graph.remove_stale_channels_and_tracking_with_time(
2584                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2585                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2586                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2587                 }
2588         }
2589
2590         #[test]
2591         fn getting_next_channel_announcements() {
2592                 let network_graph = create_network_graph();
2593                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2594                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2595                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2596
2597                 // Channels were not announced yet.
2598                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2599                 assert!(channels_with_announcements.is_none());
2600
2601                 let short_channel_id;
2602                 {
2603                         // Announce a channel we will update
2604                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2605                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2606                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2607                                 Ok(_) => (),
2608                                 Err(_) => panic!()
2609                         };
2610                 }
2611
2612                 // Contains initial channel announcement now.
2613                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2614                 if let Some(channel_announcements) = channels_with_announcements {
2615                         let (_, ref update_1, ref update_2) = channel_announcements;
2616                         assert_eq!(update_1, &None);
2617                         assert_eq!(update_2, &None);
2618                 } else {
2619                         panic!();
2620                 }
2621
2622                 {
2623                         // Valid channel update
2624                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2625                                 unsigned_channel_update.timestamp = 101;
2626                         }, node_1_privkey, &secp_ctx);
2627                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2628                                 Ok(_) => (),
2629                                 Err(_) => panic!()
2630                         };
2631                 }
2632
2633                 // Now contains an initial announcement and an update.
2634                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2635                 if let Some(channel_announcements) = channels_with_announcements {
2636                         let (_, ref update_1, ref update_2) = channel_announcements;
2637                         assert_ne!(update_1, &None);
2638                         assert_eq!(update_2, &None);
2639                 } else {
2640                         panic!();
2641                 }
2642
2643                 {
2644                         // Channel update with excess data.
2645                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2646                                 unsigned_channel_update.timestamp = 102;
2647                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2648                         }, node_1_privkey, &secp_ctx);
2649                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2650                                 Ok(_) => (),
2651                                 Err(_) => panic!()
2652                         };
2653                 }
2654
2655                 // Test that announcements with excess data won't be returned
2656                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2657                 if let Some(channel_announcements) = channels_with_announcements {
2658                         let (_, ref update_1, ref update_2) = channel_announcements;
2659                         assert_eq!(update_1, &None);
2660                         assert_eq!(update_2, &None);
2661                 } else {
2662                         panic!();
2663                 }
2664
2665                 // Further starting point have no channels after it
2666                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2667                 assert!(channels_with_announcements.is_none());
2668         }
2669
2670         #[test]
2671         fn getting_next_node_announcements() {
2672                 let network_graph = create_network_graph();
2673                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2674                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2675                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2676                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2677
2678                 // No nodes yet.
2679                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2680                 assert!(next_announcements.is_none());
2681
2682                 {
2683                         // Announce a channel to add 2 nodes
2684                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2685                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2686                                 Ok(_) => (),
2687                                 Err(_) => panic!()
2688                         };
2689                 }
2690
2691                 // Nodes were never announced
2692                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2693                 assert!(next_announcements.is_none());
2694
2695                 {
2696                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2697                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2698                                 Ok(_) => (),
2699                                 Err(_) => panic!()
2700                         };
2701
2702                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2703                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2704                                 Ok(_) => (),
2705                                 Err(_) => panic!()
2706                         };
2707                 }
2708
2709                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2710                 assert!(next_announcements.is_some());
2711
2712                 // Skip the first node.
2713                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2714                 assert!(next_announcements.is_some());
2715
2716                 {
2717                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2718                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2719                                 unsigned_announcement.timestamp += 10;
2720                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2721                         }, node_2_privkey, &secp_ctx);
2722                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2723                                 Ok(res) => assert!(!res),
2724                                 Err(_) => panic!()
2725                         };
2726                 }
2727
2728                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2729                 assert!(next_announcements.is_none());
2730         }
2731
2732         #[test]
2733         fn network_graph_serialization() {
2734                 let network_graph = create_network_graph();
2735                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2736
2737                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2738                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2739
2740                 // Announce a channel to add a corresponding node.
2741                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2742                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2743                         Ok(res) => assert!(res),
2744                         _ => panic!()
2745                 };
2746
2747                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2748                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2749                         Ok(_) => (),
2750                         Err(_) => panic!()
2751                 };
2752
2753                 let mut w = test_utils::TestVecWriter(Vec::new());
2754                 assert!(!network_graph.read_only().nodes().is_empty());
2755                 assert!(!network_graph.read_only().channels().is_empty());
2756                 network_graph.write(&mut w).unwrap();
2757
2758                 let logger = Arc::new(test_utils::TestLogger::new());
2759                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2760         }
2761
2762         #[test]
2763         fn network_graph_tlv_serialization() {
2764                 let network_graph = create_network_graph();
2765                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2766
2767                 let mut w = test_utils::TestVecWriter(Vec::new());
2768                 network_graph.write(&mut w).unwrap();
2769
2770                 let logger = Arc::new(test_utils::TestLogger::new());
2771                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2772                 assert!(reassembled_network_graph == network_graph);
2773                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2774         }
2775
2776         #[test]
2777         #[cfg(feature = "std")]
2778         fn calling_sync_routing_table() {
2779                 use std::time::{SystemTime, UNIX_EPOCH};
2780                 use crate::ln::msgs::Init;
2781
2782                 let network_graph = create_network_graph();
2783                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2784                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2785                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2786
2787                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2788
2789                 // It should ignore if gossip_queries feature is not enabled
2790                 {
2791                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2792                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2793                         let events = gossip_sync.get_and_clear_pending_msg_events();
2794                         assert_eq!(events.len(), 0);
2795                 }
2796
2797                 // It should send a gossip_timestamp_filter with the correct information
2798                 {
2799                         let mut features = InitFeatures::empty();
2800                         features.set_gossip_queries_optional();
2801                         let init_msg = Init { features, remote_network_address: None };
2802                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2803                         let events = gossip_sync.get_and_clear_pending_msg_events();
2804                         assert_eq!(events.len(), 1);
2805                         match &events[0] {
2806                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2807                                         assert_eq!(node_id, &node_id_1);
2808                                         assert_eq!(msg.chain_hash, chain_hash);
2809                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2810                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2811                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2812                                         assert_eq!(msg.timestamp_range, u32::max_value());
2813                                 },
2814                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2815                         };
2816                 }
2817         }
2818
2819         #[test]
2820         fn handling_query_channel_range() {
2821                 let network_graph = create_network_graph();
2822                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2823
2824                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2825                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2826                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2827                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2828
2829                 let mut scids: Vec<u64> = vec![
2830                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2831                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2832                 ];
2833
2834                 // used for testing multipart reply across blocks
2835                 for block in 100000..=108001 {
2836                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2837                 }
2838
2839                 // used for testing resumption on same block
2840                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2841
2842                 for scid in scids {
2843                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2844                                 unsigned_announcement.short_channel_id = scid;
2845                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2846                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2847                                 Ok(_) => (),
2848                                 _ => panic!()
2849                         };
2850                 }
2851
2852                 // Error when number_of_blocks=0
2853                 do_handling_query_channel_range(
2854                         &gossip_sync,
2855                         &node_id_2,
2856                         QueryChannelRange {
2857                                 chain_hash: chain_hash.clone(),
2858                                 first_blocknum: 0,
2859                                 number_of_blocks: 0,
2860                         },
2861                         false,
2862                         vec![ReplyChannelRange {
2863                                 chain_hash: chain_hash.clone(),
2864                                 first_blocknum: 0,
2865                                 number_of_blocks: 0,
2866                                 sync_complete: true,
2867                                 short_channel_ids: vec![]
2868                         }]
2869                 );
2870
2871                 // Error when wrong chain
2872                 do_handling_query_channel_range(
2873                         &gossip_sync,
2874                         &node_id_2,
2875                         QueryChannelRange {
2876                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2877                                 first_blocknum: 0,
2878                                 number_of_blocks: 0xffff_ffff,
2879                         },
2880                         false,
2881                         vec![ReplyChannelRange {
2882                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2883                                 first_blocknum: 0,
2884                                 number_of_blocks: 0xffff_ffff,
2885                                 sync_complete: true,
2886                                 short_channel_ids: vec![],
2887                         }]
2888                 );
2889
2890                 // Error when first_blocknum > 0xffffff
2891                 do_handling_query_channel_range(
2892                         &gossip_sync,
2893                         &node_id_2,
2894                         QueryChannelRange {
2895                                 chain_hash: chain_hash.clone(),
2896                                 first_blocknum: 0x01000000,
2897                                 number_of_blocks: 0xffff_ffff,
2898                         },
2899                         false,
2900                         vec![ReplyChannelRange {
2901                                 chain_hash: chain_hash.clone(),
2902                                 first_blocknum: 0x01000000,
2903                                 number_of_blocks: 0xffff_ffff,
2904                                 sync_complete: true,
2905                                 short_channel_ids: vec![]
2906                         }]
2907                 );
2908
2909                 // Empty reply when max valid SCID block num
2910                 do_handling_query_channel_range(
2911                         &gossip_sync,
2912                         &node_id_2,
2913                         QueryChannelRange {
2914                                 chain_hash: chain_hash.clone(),
2915                                 first_blocknum: 0xffffff,
2916                                 number_of_blocks: 1,
2917                         },
2918                         true,
2919                         vec![
2920                                 ReplyChannelRange {
2921                                         chain_hash: chain_hash.clone(),
2922                                         first_blocknum: 0xffffff,
2923                                         number_of_blocks: 1,
2924                                         sync_complete: true,
2925                                         short_channel_ids: vec![]
2926                                 },
2927                         ]
2928                 );
2929
2930                 // No results in valid query range
2931                 do_handling_query_channel_range(
2932                         &gossip_sync,
2933                         &node_id_2,
2934                         QueryChannelRange {
2935                                 chain_hash: chain_hash.clone(),
2936                                 first_blocknum: 1000,
2937                                 number_of_blocks: 1000,
2938                         },
2939                         true,
2940                         vec![
2941                                 ReplyChannelRange {
2942                                         chain_hash: chain_hash.clone(),
2943                                         first_blocknum: 1000,
2944                                         number_of_blocks: 1000,
2945                                         sync_complete: true,
2946                                         short_channel_ids: vec![],
2947                                 }
2948                         ]
2949                 );
2950
2951                 // Overflow first_blocknum + number_of_blocks
2952                 do_handling_query_channel_range(
2953                         &gossip_sync,
2954                         &node_id_2,
2955                         QueryChannelRange {
2956                                 chain_hash: chain_hash.clone(),
2957                                 first_blocknum: 0xfe0000,
2958                                 number_of_blocks: 0xffffffff,
2959                         },
2960                         true,
2961                         vec![
2962                                 ReplyChannelRange {
2963                                         chain_hash: chain_hash.clone(),
2964                                         first_blocknum: 0xfe0000,
2965                                         number_of_blocks: 0xffffffff - 0xfe0000,
2966                                         sync_complete: true,
2967                                         short_channel_ids: vec![
2968                                                 0xfffffe_ffffff_ffff, // max
2969                                         ]
2970                                 }
2971                         ]
2972                 );
2973
2974                 // Single block exactly full
2975                 do_handling_query_channel_range(
2976                         &gossip_sync,
2977                         &node_id_2,
2978                         QueryChannelRange {
2979                                 chain_hash: chain_hash.clone(),
2980                                 first_blocknum: 100000,
2981                                 number_of_blocks: 8000,
2982                         },
2983                         true,
2984                         vec![
2985                                 ReplyChannelRange {
2986                                         chain_hash: chain_hash.clone(),
2987                                         first_blocknum: 100000,
2988                                         number_of_blocks: 8000,
2989                                         sync_complete: true,
2990                                         short_channel_ids: (100000..=107999)
2991                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2992                                                 .collect(),
2993                                 },
2994                         ]
2995                 );
2996
2997                 // Multiple split on new block
2998                 do_handling_query_channel_range(
2999                         &gossip_sync,
3000                         &node_id_2,
3001                         QueryChannelRange {
3002                                 chain_hash: chain_hash.clone(),
3003                                 first_blocknum: 100000,
3004                                 number_of_blocks: 8001,
3005                         },
3006                         true,
3007                         vec![
3008                                 ReplyChannelRange {
3009                                         chain_hash: chain_hash.clone(),
3010                                         first_blocknum: 100000,
3011                                         number_of_blocks: 7999,
3012                                         sync_complete: false,
3013                                         short_channel_ids: (100000..=107999)
3014                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3015                                                 .collect(),
3016                                 },
3017                                 ReplyChannelRange {
3018                                         chain_hash: chain_hash.clone(),
3019                                         first_blocknum: 107999,
3020                                         number_of_blocks: 2,
3021                                         sync_complete: true,
3022                                         short_channel_ids: vec![
3023                                                 scid_from_parts(108000, 0, 0).unwrap(),
3024                                         ],
3025                                 }
3026                         ]
3027                 );
3028
3029                 // Multiple split on same block
3030                 do_handling_query_channel_range(
3031                         &gossip_sync,
3032                         &node_id_2,
3033                         QueryChannelRange {
3034                                 chain_hash: chain_hash.clone(),
3035                                 first_blocknum: 100002,
3036                                 number_of_blocks: 8000,
3037                         },
3038                         true,
3039                         vec![
3040                                 ReplyChannelRange {
3041                                         chain_hash: chain_hash.clone(),
3042                                         first_blocknum: 100002,
3043                                         number_of_blocks: 7999,
3044                                         sync_complete: false,
3045                                         short_channel_ids: (100002..=108001)
3046                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3047                                                 .collect(),
3048                                 },
3049                                 ReplyChannelRange {
3050                                         chain_hash: chain_hash.clone(),
3051                                         first_blocknum: 108001,
3052                                         number_of_blocks: 1,
3053                                         sync_complete: true,
3054                                         short_channel_ids: vec![
3055                                                 scid_from_parts(108001, 1, 0).unwrap(),
3056                                         ],
3057                                 }
3058                         ]
3059                 );
3060         }
3061
3062         fn do_handling_query_channel_range(
3063                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3064                 test_node_id: &PublicKey,
3065                 msg: QueryChannelRange,
3066                 expected_ok: bool,
3067                 expected_replies: Vec<ReplyChannelRange>
3068         ) {
3069                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3070                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3071                 let query_end_blocknum = msg.end_blocknum();
3072                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3073
3074                 if expected_ok {
3075                         assert!(result.is_ok());
3076                 } else {
3077                         assert!(result.is_err());
3078                 }
3079
3080                 let events = gossip_sync.get_and_clear_pending_msg_events();
3081                 assert_eq!(events.len(), expected_replies.len());
3082
3083                 for i in 0..events.len() {
3084                         let expected_reply = &expected_replies[i];
3085                         match &events[i] {
3086                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3087                                         assert_eq!(node_id, test_node_id);
3088                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3089                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3090                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3091                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3092                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3093
3094                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3095                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3096                                         assert!(msg.first_blocknum >= max_firstblocknum);
3097                                         max_firstblocknum = msg.first_blocknum;
3098                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3099
3100                                         // Check that the last block count is >= the query's end_blocknum
3101                                         if i == events.len() - 1 {
3102                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3103                                         }
3104                                 },
3105                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3106                         }
3107                 }
3108         }
3109
3110         #[test]
3111         fn handling_query_short_channel_ids() {
3112                 let network_graph = create_network_graph();
3113                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3114                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3115                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3116
3117                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3118
3119                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3120                         chain_hash,
3121                         short_channel_ids: vec![0x0003e8_000000_0000],
3122                 });
3123                 assert!(result.is_err());
3124         }
3125
3126         #[test]
3127         fn displays_node_alias() {
3128                 let format_str_alias = |alias: &str| {
3129                         let mut bytes = [0u8; 32];
3130                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3131                         format!("{}", NodeAlias(bytes))
3132                 };
3133
3134                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3135                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3136                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3137
3138                 let format_bytes_alias = |alias: &[u8]| {
3139                         let mut bytes = [0u8; 32];
3140                         bytes[..alias.len()].copy_from_slice(alias);
3141                         format!("{}", NodeAlias(bytes))
3142                 };
3143
3144                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3145                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3146                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3147         }
3148
3149         #[test]
3150         fn channel_info_is_readable() {
3151                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3152                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3153                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3154                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3155                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3156
3157                 // 1. Test encoding/decoding of ChannelUpdateInfo
3158                 let chan_update_info = ChannelUpdateInfo {
3159                         last_update: 23,
3160                         enabled: true,
3161                         cltv_expiry_delta: 42,
3162                         htlc_minimum_msat: 1234,
3163                         htlc_maximum_msat: 5678,
3164                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3165                         last_update_message: None,
3166                 };
3167
3168                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3169                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3170
3171                 // First make sure we can read ChannelUpdateInfos we just wrote
3172                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3173                 assert_eq!(chan_update_info, read_chan_update_info);
3174
3175                 // Check the serialization hasn't changed.
3176                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3177                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3178
3179                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3180                 // or the ChannelUpdate enclosed with `last_update_message`.
3181                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3182                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3183                 assert!(read_chan_update_info_res.is_err());
3184
3185                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3186                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3187                 assert!(read_chan_update_info_res.is_err());
3188
3189                 // 2. Test encoding/decoding of ChannelInfo
3190                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3191                 let chan_info_none_updates = ChannelInfo {
3192                         features: channelmanager::provided_channel_features(&config),
3193                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3194                         one_to_two: None,
3195                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3196                         two_to_one: None,
3197                         capacity_sats: None,
3198                         announcement_message: None,
3199                         announcement_received_time: 87654,
3200                 };
3201
3202                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3203                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3204
3205                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3206                 assert_eq!(chan_info_none_updates, read_chan_info);
3207
3208                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3209                 let chan_info_some_updates = ChannelInfo {
3210                         features: channelmanager::provided_channel_features(&config),
3211                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3212                         one_to_two: Some(chan_update_info.clone()),
3213                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3214                         two_to_one: Some(chan_update_info.clone()),
3215                         capacity_sats: None,
3216                         announcement_message: None,
3217                         announcement_received_time: 87654,
3218                 };
3219
3220                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3221                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3222
3223                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3224                 assert_eq!(chan_info_some_updates, read_chan_info);
3225
3226                 // Check the serialization hasn't changed.
3227                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3228                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3229
3230                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3231                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3232                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3233                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3234                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3235                 assert_eq!(read_chan_info.one_to_two, None);
3236                 assert_eq!(read_chan_info.two_to_one, None);
3237
3238                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3239                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3240                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3241                 assert_eq!(read_chan_info.one_to_two, None);
3242                 assert_eq!(read_chan_info.two_to_one, None);
3243         }
3244
3245         #[test]
3246         fn node_info_is_readable() {
3247                 use std::convert::TryFrom;
3248
3249                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3250                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3251                 let valid_node_ann_info = NodeAnnouncementInfo {
3252                         features: channelmanager::provided_node_features(&UserConfig::default()),
3253                         last_update: 0,
3254                         rgb: [0u8; 3],
3255                         alias: NodeAlias([0u8; 32]),
3256                         addresses: vec![valid_netaddr],
3257                         announcement_message: None,
3258                 };
3259
3260                 let mut encoded_valid_node_ann_info = Vec::new();
3261                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3262                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3263                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3264
3265                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3266                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3267                 assert!(read_invalid_node_ann_info_res.is_err());
3268
3269                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3270                 let valid_node_info = NodeInfo {
3271                         channels: Vec::new(),
3272                         announcement_info: Some(valid_node_ann_info),
3273                 };
3274
3275                 let mut encoded_valid_node_info = Vec::new();
3276                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3277                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3278                 assert_eq!(read_valid_node_info, valid_node_info);
3279
3280                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3281                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3282                 assert_eq!(read_invalid_node_info.announcement_info, None);
3283         }
3284 }
3285
3286 #[cfg(all(test, feature = "_bench_unstable"))]
3287 mod benches {
3288         use super::*;
3289
3290         use test::Bencher;
3291         use std::io::Read;
3292
3293         #[bench]
3294         fn read_network_graph(bench: &mut Bencher) {
3295                 let logger = crate::util::test_utils::TestLogger::new();
3296                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3297                 let mut v = Vec::new();
3298                 d.read_to_end(&mut v).unwrap();
3299                 bench.iter(|| {
3300                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3301                 });
3302         }
3303
3304         #[bench]
3305         fn write_network_graph(bench: &mut Bencher) {
3306                 let logger = crate::util::test_utils::TestLogger::new();
3307                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3308                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3309                 bench.iter(|| {
3310                         let _ = net_graph.encode();
3311                 });
3312         }
3313 }