1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
21 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
22 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
23 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
24 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
26 use crate::routing::utxo::{self, UtxoLookup};
27 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
28 use crate::util::logger::{Logger, Level};
29 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
31 use crate::util::string::PrintableString;
32 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
35 use crate::io_extras::{copy, sink};
36 use crate::prelude::*;
38 use crate::sync::{RwLock, RwLockReadGuard};
39 #[cfg(feature = "std")]
40 use core::sync::atomic::{AtomicUsize, Ordering};
41 use crate::sync::Mutex;
42 use core::ops::{Bound, Deref};
44 #[cfg(feature = "std")]
45 use std::time::{SystemTime, UNIX_EPOCH};
47 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
49 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
51 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
52 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
54 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
55 /// refuse to relay the message.
56 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
58 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
59 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
60 const MAX_SCIDS_PER_REPLY: usize = 8000;
62 /// Represents the compressed public key of a node
63 #[derive(Clone, Copy)]
64 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
67 /// Create a new NodeId from a public key
68 pub fn from_pubkey(pubkey: &PublicKey) -> Self {
69 NodeId(pubkey.serialize())
72 /// Get the public key slice from this NodeId
73 pub fn as_slice(&self) -> &[u8] {
78 impl fmt::Debug for NodeId {
79 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
80 write!(f, "NodeId({})", log_bytes!(self.0))
83 impl fmt::Display for NodeId {
84 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85 write!(f, "{}", log_bytes!(self.0))
89 impl core::hash::Hash for NodeId {
90 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
97 impl PartialEq for NodeId {
98 fn eq(&self, other: &Self) -> bool {
99 self.0[..] == other.0[..]
103 impl cmp::PartialOrd for NodeId {
104 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
105 Some(self.cmp(other))
109 impl Ord for NodeId {
110 fn cmp(&self, other: &Self) -> cmp::Ordering {
111 self.0[..].cmp(&other.0[..])
115 impl Writeable for NodeId {
116 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
117 writer.write_all(&self.0)?;
122 impl Readable for NodeId {
123 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
124 let mut buf = [0; PUBLIC_KEY_SIZE];
125 reader.read_exact(&mut buf)?;
130 /// Represents the network as nodes and channels between them
131 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
132 secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
133 last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
134 genesis_hash: BlockHash,
136 // Lock order: channels -> nodes
137 channels: RwLock<IndexedMap<u64, ChannelInfo>>,
138 nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
139 // Lock order: removed_channels -> removed_nodes
141 // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
142 // of `std::time::Instant`s for a few reasons:
143 // * We want it to be possible to do tracking in no-std environments where we can compare
144 // a provided current UNIX timestamp with the time at which we started tracking.
145 // * In the future, if we decide to persist these maps, they will already be serializable.
146 // * Although we lose out on the platform's monotonic clock, the system clock in a std
147 // environment should be practical over the time period we are considering (on the order of a
150 /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
151 /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
152 /// it was removed so that once some time passes, we can potentially resync it from gossip again.
153 removed_channels: Mutex<HashMap<u64, Option<u64>>>,
154 /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
155 /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
156 /// that once some time passes, we can potentially resync it from gossip again.
157 removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
158 /// Announcement messages which are awaiting an on-chain lookup to be processed.
159 pub(super) pending_checks: utxo::PendingChecks,
162 /// A read-only view of [`NetworkGraph`].
163 pub struct ReadOnlyNetworkGraph<'a> {
164 channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
165 nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
168 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
169 /// return packet by a node along the route. See [BOLT #4] for details.
171 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
172 #[derive(Clone, Debug, PartialEq, Eq)]
173 pub enum NetworkUpdate {
174 /// An error indicating a `channel_update` messages should be applied via
175 /// [`NetworkGraph::update_channel`].
176 ChannelUpdateMessage {
177 /// The update to apply via [`NetworkGraph::update_channel`].
180 /// An error indicating that a channel failed to route a payment, which should be applied via
181 /// [`NetworkGraph::channel_failed`].
183 /// The short channel id of the closed channel.
184 short_channel_id: u64,
185 /// Whether the channel should be permanently removed or temporarily disabled until a new
186 /// `channel_update` message is received.
189 /// An error indicating that a node failed to route a payment, which should be applied via
190 /// [`NetworkGraph::node_failed_permanent`] if permanent.
192 /// The node id of the failed node.
194 /// Whether the node should be permanently removed from consideration or can be restored
195 /// when a new `channel_update` message is received.
200 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
201 (0, ChannelUpdateMessage) => {
204 (2, ChannelFailure) => {
205 (0, short_channel_id, required),
206 (2, is_permanent, required),
208 (4, NodeFailure) => {
209 (0, node_id, required),
210 (2, is_permanent, required),
214 /// Receives and validates network updates from peers,
215 /// stores authentic and relevant data as a network graph.
216 /// This network graph is then used for routing payments.
217 /// Provides interface to help with initial routing sync by
218 /// serving historical announcements.
219 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
220 where U::Target: UtxoLookup, L::Target: Logger
223 utxo_lookup: Option<U>,
224 #[cfg(feature = "std")]
225 full_syncs_requested: AtomicUsize,
226 pending_events: Mutex<Vec<MessageSendEvent>>,
230 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
231 where U::Target: UtxoLookup, L::Target: Logger
233 /// Creates a new tracker of the actual state of the network of channels and nodes,
234 /// assuming an existing Network Graph.
235 /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
236 /// correct, and the announcement is signed with channel owners' keys.
237 pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
240 #[cfg(feature = "std")]
241 full_syncs_requested: AtomicUsize::new(0),
243 pending_events: Mutex::new(vec![]),
248 /// Adds a provider used to check new announcements. Does not affect
249 /// existing announcements unless they are updated.
250 /// Add, update or remove the provider would replace the current one.
251 pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
252 self.utxo_lookup = utxo_lookup;
255 /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
256 /// [`P2PGossipSync::new`].
258 /// (C-not exported) as bindings don't support a reference-to-a-reference yet
259 pub fn network_graph(&self) -> &G {
263 #[cfg(feature = "std")]
264 /// Returns true when a full routing table sync should be performed with a peer.
265 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
266 //TODO: Determine whether to request a full sync based on the network map.
267 const FULL_SYNCS_TO_REQUEST: usize = 5;
268 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
269 self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
276 /// Used to broadcast forward gossip messages which were validated async.
278 /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
280 pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
282 MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
283 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
284 if update_msg.as_ref()
285 .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
290 MessageSendEvent::BroadcastChannelUpdate { msg } => {
291 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
293 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
294 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
295 msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
296 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
303 self.pending_events.lock().unwrap().push(ev);
307 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
308 /// Handles any network updates originating from [`Event`]s.
310 /// [`Event`]: crate::util::events::Event
311 pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
312 match *network_update {
313 NetworkUpdate::ChannelUpdateMessage { ref msg } => {
314 let short_channel_id = msg.contents.short_channel_id;
315 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
316 let status = if is_enabled { "enabled" } else { "disabled" };
317 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
318 let _ = self.update_channel(msg);
320 NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
321 let action = if is_permanent { "Removing" } else { "Disabling" };
322 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
323 self.channel_failed(short_channel_id, is_permanent);
325 NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
327 log_debug!(self.logger,
328 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
329 self.node_failed_permanent(node_id);
336 macro_rules! secp_verify_sig {
337 ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
338 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
341 return Err(LightningError {
342 err: format!("Invalid signature on {} message", $msg_type),
343 action: ErrorAction::SendWarningMessage {
344 msg: msgs::WarningMessage {
346 data: format!("Invalid signature on {} message", $msg_type),
348 log_level: Level::Trace,
356 macro_rules! get_pubkey_from_node_id {
357 ( $node_id: expr, $msg_type: expr ) => {
358 PublicKey::from_slice($node_id.as_slice())
359 .map_err(|_| LightningError {
360 err: format!("Invalid public key on {} message", $msg_type),
361 action: ErrorAction::SendWarningMessage {
362 msg: msgs::WarningMessage {
364 data: format!("Invalid public key on {} message", $msg_type),
366 log_level: Level::Trace
372 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
373 where U::Target: UtxoLookup, L::Target: Logger
375 fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
376 self.network_graph.update_node_from_announcement(msg)?;
377 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
378 msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
379 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
382 fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
383 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
384 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
387 fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
388 self.network_graph.update_channel(msg)?;
389 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
392 fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
393 let mut channels = self.network_graph.channels.write().unwrap();
394 for (_, ref chan) in channels.range(starting_point..) {
395 if chan.announcement_message.is_some() {
396 let chan_announcement = chan.announcement_message.clone().unwrap();
397 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
398 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
399 if let Some(one_to_two) = chan.one_to_two.as_ref() {
400 one_to_two_announcement = one_to_two.last_update_message.clone();
402 if let Some(two_to_one) = chan.two_to_one.as_ref() {
403 two_to_one_announcement = two_to_one.last_update_message.clone();
405 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
407 // TODO: We may end up sending un-announced channel_updates if we are sending
408 // initial sync data while receiving announce/updates for this channel.
414 fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
415 let mut nodes = self.network_graph.nodes.write().unwrap();
416 let iter = if let Some(node_id) = starting_point {
417 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
421 for (_, ref node) in iter {
422 if let Some(node_info) = node.announcement_info.as_ref() {
423 if let Some(msg) = node_info.announcement_message.clone() {
431 /// Initiates a stateless sync of routing gossip information with a peer
432 /// using gossip_queries. The default strategy used by this implementation
433 /// is to sync the full block range with several peers.
435 /// We should expect one or more reply_channel_range messages in response
436 /// to our query_channel_range. Each reply will enqueue a query_scid message
437 /// to request gossip messages for each channel. The sync is considered complete
438 /// when the final reply_scids_end message is received, though we are not
439 /// tracking this directly.
440 fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
441 // We will only perform a sync with peers that support gossip_queries.
442 if !init_msg.features.supports_gossip_queries() {
443 // Don't disconnect peers for not supporting gossip queries. We may wish to have
444 // channels with peers even without being able to exchange gossip.
448 // The lightning network's gossip sync system is completely broken in numerous ways.
450 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
451 // to do a full sync from the first few peers we connect to, and then receive gossip
452 // updates from all our peers normally.
454 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
455 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
456 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
459 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
460 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
461 // channel data which you are missing. Except there was no way at all to identify which
462 // `channel_update`s you were missing, so you still had to request everything, just in a
463 // very complicated way with some queries instead of just getting the dump.
465 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
466 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
467 // relying on it useless.
469 // After gossip queries were introduced, support for receiving a full gossip table dump on
470 // connection was removed from several nodes, making it impossible to get a full sync
471 // without using the "gossip queries" messages.
473 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
474 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
475 // message, as the name implies, tells the peer to not forward any gossip messages with a
476 // timestamp older than a given value (not the time the peer received the filter, but the
477 // timestamp in the update message, which is often hours behind when the peer received the
480 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
481 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
482 // tell a peer to send you any updates as it sees them, you have to also ask for the full
483 // routing graph to be synced. If you set a timestamp filter near the current time, peers
484 // will simply not forward any new updates they see to you which were generated some time
485 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
486 // ago), you will always get the full routing graph from all your peers.
488 // Most lightning nodes today opt to simply turn off receiving gossip data which only
489 // propagated some time after it was generated, and, worse, often disable gossiping with
490 // several peers after their first connection. The second behavior can cause gossip to not
491 // propagate fully if there are cuts in the gossiping subgraph.
493 // In an attempt to cut a middle ground between always fetching the full graph from all of
494 // our peers and never receiving gossip from peers at all, we send all of our peers a
495 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
497 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
498 #[allow(unused_mut, unused_assignments)]
499 let mut gossip_start_time = 0;
500 #[cfg(feature = "std")]
502 gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
503 if self.should_request_full_sync(&their_node_id) {
504 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
506 gossip_start_time -= 60 * 60; // an hour ago
510 let mut pending_events = self.pending_events.lock().unwrap();
511 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
512 node_id: their_node_id.clone(),
513 msg: GossipTimestampFilter {
514 chain_hash: self.network_graph.genesis_hash,
515 first_timestamp: gossip_start_time as u32, // 2106 issue!
516 timestamp_range: u32::max_value(),
522 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
523 // We don't make queries, so should never receive replies. If, in the future, the set
524 // reconciliation extensions to gossip queries become broadly supported, we should revert
525 // this code to its state pre-0.0.106.
529 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
530 // We don't make queries, so should never receive replies. If, in the future, the set
531 // reconciliation extensions to gossip queries become broadly supported, we should revert
532 // this code to its state pre-0.0.106.
536 /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
537 /// are in the specified block range. Due to message size limits, large range
538 /// queries may result in several reply messages. This implementation enqueues
539 /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
540 /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
541 /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
542 /// memory constrained systems.
543 fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
544 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
546 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
548 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
549 // If so, we manually cap the ending block to avoid this overflow.
550 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
552 // Per spec, we must reply to a query. Send an empty message when things are invalid.
553 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
554 let mut pending_events = self.pending_events.lock().unwrap();
555 pending_events.push(MessageSendEvent::SendReplyChannelRange {
556 node_id: their_node_id.clone(),
557 msg: ReplyChannelRange {
558 chain_hash: msg.chain_hash.clone(),
559 first_blocknum: msg.first_blocknum,
560 number_of_blocks: msg.number_of_blocks,
562 short_channel_ids: vec![],
565 return Err(LightningError {
566 err: String::from("query_channel_range could not be processed"),
567 action: ErrorAction::IgnoreError,
571 // Creates channel batches. We are not checking if the channel is routable
572 // (has at least one update). A peer may still want to know the channel
573 // exists even if its not yet routable.
574 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
575 let mut channels = self.network_graph.channels.write().unwrap();
576 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
577 if let Some(chan_announcement) = &chan.announcement_message {
578 // Construct a new batch if last one is full
579 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
580 batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
583 let batch = batches.last_mut().unwrap();
584 batch.push(chan_announcement.contents.short_channel_id);
589 let mut pending_events = self.pending_events.lock().unwrap();
590 let batch_count = batches.len();
591 let mut prev_batch_endblock = msg.first_blocknum;
592 for (batch_index, batch) in batches.into_iter().enumerate() {
593 // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
594 // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
596 // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
597 // reply is >= the previous reply's `first_blocknum` and either exactly the previous
598 // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
599 // significant diversion from the requirements set by the spec, and, in case of blocks
600 // with no channel opens (e.g. empty blocks), requires that we use the previous value
601 // and *not* derive the first_blocknum from the actual first block of the reply.
602 let first_blocknum = prev_batch_endblock;
604 // Each message carries the number of blocks (from the `first_blocknum`) its contents
605 // fit in. Though there is no requirement that we use exactly the number of blocks its
606 // contents are from, except for the bogus requirements c-lightning enforces, above.
608 // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
609 // >= the query's end block. Thus, for the last reply, we calculate the difference
610 // between the query's end block and the start of the reply.
612 // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
613 // first_blocknum will be either msg.first_blocknum or a higher block height.
614 let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
615 (true, msg.end_blocknum() - first_blocknum)
617 // Prior replies should use the number of blocks that fit into the reply. Overflow
618 // safe since first_blocknum is always <= last SCID's block.
620 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
623 prev_batch_endblock = first_blocknum + number_of_blocks;
625 pending_events.push(MessageSendEvent::SendReplyChannelRange {
626 node_id: their_node_id.clone(),
627 msg: ReplyChannelRange {
628 chain_hash: msg.chain_hash.clone(),
632 short_channel_ids: batch,
640 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
643 err: String::from("Not implemented"),
644 action: ErrorAction::IgnoreError,
648 fn provided_node_features(&self) -> NodeFeatures {
649 let mut features = NodeFeatures::empty();
650 features.set_gossip_queries_optional();
654 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
655 let mut features = InitFeatures::empty();
656 features.set_gossip_queries_optional();
660 fn processing_queue_high(&self) -> bool {
661 self.network_graph.pending_checks.too_many_checks_pending()
665 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
667 U::Target: UtxoLookup,
670 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
671 let mut ret = Vec::new();
672 let mut pending_events = self.pending_events.lock().unwrap();
673 core::mem::swap(&mut ret, &mut pending_events);
678 #[derive(Clone, Debug, PartialEq, Eq)]
679 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
680 pub struct ChannelUpdateInfo {
681 /// When the last update to the channel direction was issued.
682 /// Value is opaque, as set in the announcement.
683 pub last_update: u32,
684 /// Whether the channel can be currently used for payments (in this one direction).
686 /// The difference in CLTV values that you must have when routing through this channel.
687 pub cltv_expiry_delta: u16,
688 /// The minimum value, which must be relayed to the next hop via the channel
689 pub htlc_minimum_msat: u64,
690 /// The maximum value which may be relayed to the next hop via the channel.
691 pub htlc_maximum_msat: u64,
692 /// Fees charged when the channel is used for routing
693 pub fees: RoutingFees,
694 /// Most recent update for the channel received from the network
695 /// Mostly redundant with the data we store in fields explicitly.
696 /// Everything else is useful only for sending out for initial routing sync.
697 /// Not stored if contains excess data to prevent DoS.
698 pub last_update_message: Option<ChannelUpdate>,
701 impl fmt::Display for ChannelUpdateInfo {
702 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
703 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
708 impl Writeable for ChannelUpdateInfo {
709 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
710 write_tlv_fields!(writer, {
711 (0, self.last_update, required),
712 (2, self.enabled, required),
713 (4, self.cltv_expiry_delta, required),
714 (6, self.htlc_minimum_msat, required),
715 // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
716 // compatibility with LDK versions prior to v0.0.110.
717 (8, Some(self.htlc_maximum_msat), required),
718 (10, self.fees, required),
719 (12, self.last_update_message, required),
725 impl Readable for ChannelUpdateInfo {
726 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
727 _init_tlv_field_var!(last_update, required);
728 _init_tlv_field_var!(enabled, required);
729 _init_tlv_field_var!(cltv_expiry_delta, required);
730 _init_tlv_field_var!(htlc_minimum_msat, required);
731 _init_tlv_field_var!(htlc_maximum_msat, option);
732 _init_tlv_field_var!(fees, required);
733 _init_tlv_field_var!(last_update_message, required);
735 read_tlv_fields!(reader, {
736 (0, last_update, required),
737 (2, enabled, required),
738 (4, cltv_expiry_delta, required),
739 (6, htlc_minimum_msat, required),
740 (8, htlc_maximum_msat, required),
741 (10, fees, required),
742 (12, last_update_message, required)
745 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
746 Ok(ChannelUpdateInfo {
747 last_update: _init_tlv_based_struct_field!(last_update, required),
748 enabled: _init_tlv_based_struct_field!(enabled, required),
749 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
750 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
752 fees: _init_tlv_based_struct_field!(fees, required),
753 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
756 Err(DecodeError::InvalidValue)
761 #[derive(Clone, Debug, PartialEq, Eq)]
762 /// Details about a channel (both directions).
763 /// Received within a channel announcement.
764 pub struct ChannelInfo {
765 /// Protocol features of a channel communicated during its announcement
766 pub features: ChannelFeatures,
767 /// Source node of the first direction of a channel
768 pub node_one: NodeId,
769 /// Details about the first direction of a channel
770 pub one_to_two: Option<ChannelUpdateInfo>,
771 /// Source node of the second direction of a channel
772 pub node_two: NodeId,
773 /// Details about the second direction of a channel
774 pub two_to_one: Option<ChannelUpdateInfo>,
775 /// The channel capacity as seen on-chain, if chain lookup is available.
776 pub capacity_sats: Option<u64>,
777 /// An initial announcement of the channel
778 /// Mostly redundant with the data we store in fields explicitly.
779 /// Everything else is useful only for sending out for initial routing sync.
780 /// Not stored if contains excess data to prevent DoS.
781 pub announcement_message: Option<ChannelAnnouncement>,
782 /// The timestamp when we received the announcement, if we are running with feature = "std"
783 /// (which we can probably assume we are - no-std environments probably won't have a full
784 /// network graph in memory!).
785 announcement_received_time: u64,
789 /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
790 /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
791 pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
792 let (direction, source) = {
793 if target == &self.node_one {
794 (self.two_to_one.as_ref(), &self.node_two)
795 } else if target == &self.node_two {
796 (self.one_to_two.as_ref(), &self.node_one)
801 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
804 /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
805 /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
806 pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
807 let (direction, target) = {
808 if source == &self.node_one {
809 (self.one_to_two.as_ref(), &self.node_two)
810 } else if source == &self.node_two {
811 (self.two_to_one.as_ref(), &self.node_one)
816 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
819 /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
820 pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
821 let direction = channel_flags & 1u8;
823 self.one_to_two.as_ref()
825 self.two_to_one.as_ref()
830 impl fmt::Display for ChannelInfo {
831 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
832 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
833 log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
838 impl Writeable for ChannelInfo {
839 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
840 write_tlv_fields!(writer, {
841 (0, self.features, required),
842 (1, self.announcement_received_time, (default_value, 0)),
843 (2, self.node_one, required),
844 (4, self.one_to_two, required),
845 (6, self.node_two, required),
846 (8, self.two_to_one, required),
847 (10, self.capacity_sats, required),
848 (12, self.announcement_message, required),
854 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
855 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
856 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
857 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
858 // channel updates via the gossip network.
859 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
861 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
862 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
863 match crate::util::ser::Readable::read(reader) {
864 Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
865 Err(DecodeError::ShortRead) => Ok(None),
866 Err(DecodeError::InvalidValue) => Ok(None),
867 Err(err) => Err(err),
872 impl Readable for ChannelInfo {
873 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
874 _init_tlv_field_var!(features, required);
875 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
876 _init_tlv_field_var!(node_one, required);
877 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
878 _init_tlv_field_var!(node_two, required);
879 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
880 _init_tlv_field_var!(capacity_sats, required);
881 _init_tlv_field_var!(announcement_message, required);
882 read_tlv_fields!(reader, {
883 (0, features, required),
884 (1, announcement_received_time, (default_value, 0)),
885 (2, node_one, required),
886 (4, one_to_two_wrap, upgradable_option),
887 (6, node_two, required),
888 (8, two_to_one_wrap, upgradable_option),
889 (10, capacity_sats, required),
890 (12, announcement_message, required),
894 features: _init_tlv_based_struct_field!(features, required),
895 node_one: _init_tlv_based_struct_field!(node_one, required),
896 one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
897 node_two: _init_tlv_based_struct_field!(node_two, required),
898 two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
899 capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
900 announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
901 announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
906 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
907 /// source node to a target node.
909 pub struct DirectedChannelInfo<'a> {
910 channel: &'a ChannelInfo,
911 direction: &'a ChannelUpdateInfo,
912 htlc_maximum_msat: u64,
913 effective_capacity: EffectiveCapacity,
916 impl<'a> DirectedChannelInfo<'a> {
918 fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
919 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
920 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
922 let effective_capacity = match capacity_msat {
923 Some(capacity_msat) => {
924 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
925 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
927 None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
931 channel, direction, htlc_maximum_msat, effective_capacity
935 /// Returns information for the channel.
937 pub fn channel(&self) -> &'a ChannelInfo { self.channel }
939 /// Returns the maximum HTLC amount allowed over the channel in the direction.
941 pub fn htlc_maximum_msat(&self) -> u64 {
942 self.htlc_maximum_msat
945 /// Returns the [`EffectiveCapacity`] of the channel in the direction.
947 /// This is either the total capacity from the funding transaction, if known, or the
948 /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
950 pub fn effective_capacity(&self) -> EffectiveCapacity {
951 self.effective_capacity
954 /// Returns information for the direction.
956 pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
959 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
960 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
961 f.debug_struct("DirectedChannelInfo")
962 .field("channel", &self.channel)
967 /// The effective capacity of a channel for routing purposes.
969 /// While this may be smaller than the actual channel capacity, amounts greater than
970 /// [`Self::as_msat`] should not be routed through the channel.
971 #[derive(Clone, Copy, Debug, PartialEq)]
972 pub enum EffectiveCapacity {
973 /// The available liquidity in the channel known from being a channel counterparty, and thus a
976 /// Either the inbound or outbound liquidity depending on the direction, denominated in
980 /// The maximum HTLC amount in one direction as advertised on the gossip network.
982 /// The maximum HTLC amount denominated in millisatoshi.
985 /// The total capacity of the channel as determined by the funding transaction.
987 /// The funding amount denominated in millisatoshi.
989 /// The maximum HTLC amount denominated in millisatoshi.
990 htlc_maximum_msat: u64
992 /// A capacity sufficient to route any payment, typically used for private channels provided by
995 /// A capacity that is unknown possibly because either the chain state is unavailable to know
996 /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1000 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1001 /// use when making routing decisions.
1002 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1004 impl EffectiveCapacity {
1005 /// Returns the effective capacity denominated in millisatoshi.
1006 pub fn as_msat(&self) -> u64 {
1008 EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1009 EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1010 EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1011 EffectiveCapacity::Infinite => u64::max_value(),
1012 EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1017 /// Fees for routing via a given channel or a node
1018 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1019 pub struct RoutingFees {
1020 /// Flat routing fee in satoshis
1022 /// Liquidity-based routing fee in millionths of a routed amount.
1023 /// In other words, 10000 is 1%.
1024 pub proportional_millionths: u32,
1027 impl_writeable_tlv_based!(RoutingFees, {
1028 (0, base_msat, required),
1029 (2, proportional_millionths, required)
1032 #[derive(Clone, Debug, PartialEq, Eq)]
1033 /// Information received in the latest node_announcement from this node.
1034 pub struct NodeAnnouncementInfo {
1035 /// Protocol features the node announced support for
1036 pub features: NodeFeatures,
1037 /// When the last known update to the node state was issued.
1038 /// Value is opaque, as set in the announcement.
1039 pub last_update: u32,
1040 /// Color assigned to the node
1042 /// Moniker assigned to the node.
1043 /// May be invalid or malicious (eg control chars),
1044 /// should not be exposed to the user.
1045 pub alias: NodeAlias,
1046 /// Internet-level addresses via which one can connect to the node
1047 pub addresses: Vec<NetAddress>,
1048 /// An initial announcement of the node
1049 /// Mostly redundant with the data we store in fields explicitly.
1050 /// Everything else is useful only for sending out for initial routing sync.
1051 /// Not stored if contains excess data to prevent DoS.
1052 pub announcement_message: Option<NodeAnnouncement>
1055 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1056 (0, features, required),
1057 (2, last_update, required),
1059 (6, alias, required),
1060 (8, announcement_message, option),
1061 (10, addresses, vec_type),
1064 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1066 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1067 /// attacks. Care must be taken when processing.
1068 #[derive(Clone, Debug, PartialEq, Eq)]
1069 pub struct NodeAlias(pub [u8; 32]);
1071 impl fmt::Display for NodeAlias {
1072 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1073 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1074 let bytes = self.0.split_at(first_null).0;
1075 match core::str::from_utf8(bytes) {
1076 Ok(alias) => PrintableString(alias).fmt(f)?,
1078 use core::fmt::Write;
1079 for c in bytes.iter().map(|b| *b as char) {
1080 // Display printable ASCII characters
1081 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1082 let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1091 impl Writeable for NodeAlias {
1092 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1097 impl Readable for NodeAlias {
1098 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1099 Ok(NodeAlias(Readable::read(r)?))
1103 #[derive(Clone, Debug, PartialEq, Eq)]
1104 /// Details about a node in the network, known from the network announcement.
1105 pub struct NodeInfo {
1106 /// All valid channels a node has announced
1107 pub channels: Vec<u64>,
1108 /// More information about a node from node_announcement.
1109 /// Optional because we store a Node entry after learning about it from
1110 /// a channel announcement, but before receiving a node announcement.
1111 pub announcement_info: Option<NodeAnnouncementInfo>
1114 impl fmt::Display for NodeInfo {
1115 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1116 write!(f, " channels: {:?}, announcement_info: {:?}",
1117 &self.channels[..], self.announcement_info)?;
1122 impl Writeable for NodeInfo {
1123 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1124 write_tlv_fields!(writer, {
1125 // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1126 (2, self.announcement_info, option),
1127 (4, self.channels, vec_type),
1133 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1134 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1135 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1136 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1137 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1139 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1140 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1141 match crate::util::ser::Readable::read(reader) {
1142 Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1144 copy(reader, &mut sink()).unwrap();
1151 impl Readable for NodeInfo {
1152 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1153 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1154 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1155 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1156 // requires additional complexity and lookups during routing, it ends up being a
1157 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1158 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1159 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1160 _init_tlv_field_var!(channels, vec_type);
1162 read_tlv_fields!(reader, {
1163 (0, _lowest_inbound_channel_fees, option),
1164 (2, announcement_info_wrap, upgradable_option),
1165 (4, channels, vec_type),
1169 announcement_info: announcement_info_wrap.map(|w| w.0),
1170 channels: _init_tlv_based_struct_field!(channels, vec_type),
1175 const SERIALIZATION_VERSION: u8 = 1;
1176 const MIN_SERIALIZATION_VERSION: u8 = 1;
1178 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1179 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1180 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1182 self.genesis_hash.write(writer)?;
1183 let channels = self.channels.read().unwrap();
1184 (channels.len() as u64).write(writer)?;
1185 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1186 (*chan_id).write(writer)?;
1187 chan_info.write(writer)?;
1189 let nodes = self.nodes.read().unwrap();
1190 (nodes.len() as u64).write(writer)?;
1191 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1192 node_id.write(writer)?;
1193 node_info.write(writer)?;
1196 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1197 write_tlv_fields!(writer, {
1198 (1, last_rapid_gossip_sync_timestamp, option),
1204 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1205 fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1206 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1208 let genesis_hash: BlockHash = Readable::read(reader)?;
1209 let channels_count: u64 = Readable::read(reader)?;
1210 let mut channels = IndexedMap::new();
1211 for _ in 0..channels_count {
1212 let chan_id: u64 = Readable::read(reader)?;
1213 let chan_info = Readable::read(reader)?;
1214 channels.insert(chan_id, chan_info);
1216 let nodes_count: u64 = Readable::read(reader)?;
1217 let mut nodes = IndexedMap::new();
1218 for _ in 0..nodes_count {
1219 let node_id = Readable::read(reader)?;
1220 let node_info = Readable::read(reader)?;
1221 nodes.insert(node_id, node_info);
1224 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1225 read_tlv_fields!(reader, {
1226 (1, last_rapid_gossip_sync_timestamp, option),
1230 secp_ctx: Secp256k1::verification_only(),
1233 channels: RwLock::new(channels),
1234 nodes: RwLock::new(nodes),
1235 last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1236 removed_nodes: Mutex::new(HashMap::new()),
1237 removed_channels: Mutex::new(HashMap::new()),
1238 pending_checks: utxo::PendingChecks::new(),
1243 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1244 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1245 writeln!(f, "Network map\n[Channels]")?;
1246 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1247 writeln!(f, " {}: {}", key, val)?;
1249 writeln!(f, "[Nodes]")?;
1250 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1251 writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1257 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1258 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1259 fn eq(&self, other: &Self) -> bool {
1260 self.genesis_hash == other.genesis_hash &&
1261 *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1262 *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1266 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1267 /// Creates a new, empty, network graph.
1268 pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1270 secp_ctx: Secp256k1::verification_only(),
1273 channels: RwLock::new(IndexedMap::new()),
1274 nodes: RwLock::new(IndexedMap::new()),
1275 last_rapid_gossip_sync_timestamp: Mutex::new(None),
1276 removed_channels: Mutex::new(HashMap::new()),
1277 removed_nodes: Mutex::new(HashMap::new()),
1278 pending_checks: utxo::PendingChecks::new(),
1282 /// Returns a read-only view of the network graph.
1283 pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1284 let channels = self.channels.read().unwrap();
1285 let nodes = self.nodes.read().unwrap();
1286 ReadOnlyNetworkGraph {
1292 /// The unix timestamp provided by the most recent rapid gossip sync.
1293 /// It will be set by the rapid sync process after every sync completion.
1294 pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1295 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1298 /// Update the unix timestamp provided by the most recent rapid gossip sync.
1299 /// This should be done automatically by the rapid sync process after every sync completion.
1300 pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1301 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1304 /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1307 pub fn clear_nodes_announcement_info(&self) {
1308 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1309 node.1.announcement_info = None;
1313 /// For an already known node (from channel announcements), update its stored properties from a
1314 /// given node announcement.
1316 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1317 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1318 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1319 pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1320 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1321 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1322 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1325 /// For an already known node (from channel announcements), update its stored properties from a
1326 /// given node announcement without verifying the associated signatures. Because we aren't
1327 /// given the associated signatures here we cannot relay the node announcement to any of our
1329 pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1330 self.update_node_from_announcement_intern(msg, None)
1333 fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1334 let mut nodes = self.nodes.write().unwrap();
1335 match nodes.get_mut(&msg.node_id) {
1337 core::mem::drop(nodes);
1338 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1339 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1342 if let Some(node_info) = node.announcement_info.as_ref() {
1343 // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1344 // updates to ensure you always have the latest one, only vaguely suggesting
1345 // that it be at least the current time.
1346 if node_info.last_update > msg.timestamp {
1347 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1348 } else if node_info.last_update == msg.timestamp {
1349 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1354 msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1355 msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1356 msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1357 node.announcement_info = Some(NodeAnnouncementInfo {
1358 features: msg.features.clone(),
1359 last_update: msg.timestamp,
1361 alias: NodeAlias(msg.alias),
1362 addresses: msg.addresses.clone(),
1363 announcement_message: if should_relay { full_msg.cloned() } else { None },
1371 /// Store or update channel info from a channel announcement.
1373 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1374 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1375 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1377 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1378 /// the corresponding UTXO exists on chain and is correctly-formatted.
1379 pub fn update_channel_from_announcement<U: Deref>(
1380 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1381 ) -> Result<(), LightningError>
1383 U::Target: UtxoLookup,
1385 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1386 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1387 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1388 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1389 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1390 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1393 /// Store or update channel info from a channel announcement without verifying the associated
1394 /// signatures. Because we aren't given the associated signatures here we cannot relay the
1395 /// channel announcement to any of our peers.
1397 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1398 /// the corresponding UTXO exists on chain and is correctly-formatted.
1399 pub fn update_channel_from_unsigned_announcement<U: Deref>(
1400 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1401 ) -> Result<(), LightningError>
1403 U::Target: UtxoLookup,
1405 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1408 /// Update channel from partial announcement data received via rapid gossip sync
1410 /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1411 /// rapid gossip sync server)
1413 /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1414 pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1415 if node_id_1 == node_id_2 {
1416 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1419 let node_1 = NodeId::from_pubkey(&node_id_1);
1420 let node_2 = NodeId::from_pubkey(&node_id_2);
1421 let channel_info = ChannelInfo {
1423 node_one: node_1.clone(),
1425 node_two: node_2.clone(),
1427 capacity_sats: None,
1428 announcement_message: None,
1429 announcement_received_time: timestamp,
1432 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1435 fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1436 let mut channels = self.channels.write().unwrap();
1437 let mut nodes = self.nodes.write().unwrap();
1439 let node_id_a = channel_info.node_one.clone();
1440 let node_id_b = channel_info.node_two.clone();
1442 match channels.entry(short_channel_id) {
1443 IndexedMapEntry::Occupied(mut entry) => {
1444 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1445 //in the blockchain API, we need to handle it smartly here, though it's unclear
1447 if utxo_value.is_some() {
1448 // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1449 // only sometimes returns results. In any case remove the previous entry. Note
1450 // that the spec expects us to "blacklist" the node_ids involved, but we can't
1452 // a) we don't *require* a UTXO provider that always returns results.
1453 // b) we don't track UTXOs of channels we know about and remove them if they
1455 // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1456 Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1457 *entry.get_mut() = channel_info;
1459 return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1462 IndexedMapEntry::Vacant(entry) => {
1463 entry.insert(channel_info);
1467 for current_node_id in [node_id_a, node_id_b].iter() {
1468 match nodes.entry(current_node_id.clone()) {
1469 IndexedMapEntry::Occupied(node_entry) => {
1470 node_entry.into_mut().channels.push(short_channel_id);
1472 IndexedMapEntry::Vacant(node_entry) => {
1473 node_entry.insert(NodeInfo {
1474 channels: vec!(short_channel_id),
1475 announcement_info: None,
1484 fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1485 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1486 ) -> Result<(), LightningError>
1488 U::Target: UtxoLookup,
1490 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1491 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1495 let channels = self.channels.read().unwrap();
1497 if let Some(chan) = channels.get(&msg.short_channel_id) {
1498 if chan.capacity_sats.is_some() {
1499 // If we'd previously looked up the channel on-chain and checked the script
1500 // against what appears on-chain, ignore the duplicate announcement.
1502 // Because a reorg could replace one channel with another at the same SCID, if
1503 // the channel appears to be different, we re-validate. This doesn't expose us
1504 // to any more DoS risk than not, as a peer can always flood us with
1505 // randomly-generated SCID values anyway.
1507 // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1508 // as we didn't (necessarily) store the bitcoin keys, and we only really care
1509 // if the peers on the channel changed anyway.
1510 if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1511 return Err(LightningError {
1512 err: "Already have chain-validated channel".to_owned(),
1513 action: ErrorAction::IgnoreDuplicateGossip
1516 } else if utxo_lookup.is_none() {
1517 // Similarly, if we can't check the chain right now anyway, ignore the
1518 // duplicate announcement without bothering to take the channels write lock.
1519 return Err(LightningError {
1520 err: "Already have non-chain-validated channel".to_owned(),
1521 action: ErrorAction::IgnoreDuplicateGossip
1528 let removed_channels = self.removed_channels.lock().unwrap();
1529 let removed_nodes = self.removed_nodes.lock().unwrap();
1530 if removed_channels.contains_key(&msg.short_channel_id) ||
1531 removed_nodes.contains_key(&msg.node_id_1) ||
1532 removed_nodes.contains_key(&msg.node_id_2) {
1533 return Err(LightningError{
1534 err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1535 action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1539 let utxo_value = self.pending_checks.check_channel_announcement(
1540 utxo_lookup, msg, full_msg)?;
1542 #[allow(unused_mut, unused_assignments)]
1543 let mut announcement_received_time = 0;
1544 #[cfg(feature = "std")]
1546 announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1549 let chan_info = ChannelInfo {
1550 features: msg.features.clone(),
1551 node_one: msg.node_id_1,
1553 node_two: msg.node_id_2,
1555 capacity_sats: utxo_value,
1556 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1557 { full_msg.cloned() } else { None },
1558 announcement_received_time,
1561 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1563 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1567 /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1568 /// If permanent, removes a channel from the local storage.
1569 /// May cause the removal of nodes too, if this was their last channel.
1570 /// If not permanent, makes channels unavailable for routing.
1571 pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1572 #[cfg(feature = "std")]
1573 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1574 #[cfg(not(feature = "std"))]
1575 let current_time_unix = None;
1577 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1580 /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1581 /// If permanent, removes a channel from the local storage.
1582 /// May cause the removal of nodes too, if this was their last channel.
1583 /// If not permanent, makes channels unavailable for routing.
1584 fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1585 let mut channels = self.channels.write().unwrap();
1587 if let Some(chan) = channels.remove(&short_channel_id) {
1588 let mut nodes = self.nodes.write().unwrap();
1589 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1590 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1593 if let Some(chan) = channels.get_mut(&short_channel_id) {
1594 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1595 one_to_two.enabled = false;
1597 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1598 two_to_one.enabled = false;
1604 /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1605 /// from local storage.
1606 pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1607 #[cfg(feature = "std")]
1608 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1609 #[cfg(not(feature = "std"))]
1610 let current_time_unix = None;
1612 let node_id = NodeId::from_pubkey(node_id);
1613 let mut channels = self.channels.write().unwrap();
1614 let mut nodes = self.nodes.write().unwrap();
1615 let mut removed_channels = self.removed_channels.lock().unwrap();
1616 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1618 if let Some(node) = nodes.remove(&node_id) {
1619 for scid in node.channels.iter() {
1620 if let Some(chan_info) = channels.remove(scid) {
1621 let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1622 if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1623 other_node_entry.get_mut().channels.retain(|chan_id| {
1626 if other_node_entry.get().channels.is_empty() {
1627 other_node_entry.remove_entry();
1630 removed_channels.insert(*scid, current_time_unix);
1633 removed_nodes.insert(node_id, current_time_unix);
1637 #[cfg(feature = "std")]
1638 /// Removes information about channels that we haven't heard any updates about in some time.
1639 /// This can be used regularly to prune the network graph of channels that likely no longer
1642 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1643 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1644 /// pruning occur for updates which are at least two weeks old, which we implement here.
1646 /// Note that for users of the `lightning-background-processor` crate this method may be
1647 /// automatically called regularly for you.
1649 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1650 /// in the map for a while so that these can be resynced from gossip in the future.
1652 /// This method is only available with the `std` feature. See
1653 /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1654 pub fn remove_stale_channels_and_tracking(&self) {
1655 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1656 self.remove_stale_channels_and_tracking_with_time(time);
1659 /// Removes information about channels that we haven't heard any updates about in some time.
1660 /// This can be used regularly to prune the network graph of channels that likely no longer
1663 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1664 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1665 /// pruning occur for updates which are at least two weeks old, which we implement here.
1667 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1668 /// in the map for a while so that these can be resynced from gossip in the future.
1670 /// This function takes the current unix time as an argument. For users with the `std` feature
1671 /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1672 pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1673 let mut channels = self.channels.write().unwrap();
1674 // Time out if we haven't received an update in at least 14 days.
1675 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1676 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1677 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1678 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1680 let mut scids_to_remove = Vec::new();
1681 for (scid, info) in channels.unordered_iter_mut() {
1682 if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1683 info.one_to_two = None;
1685 if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1686 info.two_to_one = None;
1688 if info.one_to_two.is_none() || info.two_to_one.is_none() {
1689 // We check the announcement_received_time here to ensure we don't drop
1690 // announcements that we just received and are just waiting for our peer to send a
1691 // channel_update for.
1692 if info.announcement_received_time < min_time_unix as u64 {
1693 scids_to_remove.push(*scid);
1697 if !scids_to_remove.is_empty() {
1698 let mut nodes = self.nodes.write().unwrap();
1699 for scid in scids_to_remove {
1700 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1701 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1702 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1706 let should_keep_tracking = |time: &mut Option<u64>| {
1707 if let Some(time) = time {
1708 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1710 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1711 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1712 // of this function.
1713 #[cfg(feature = "no-std")]
1715 let mut tracked_time = Some(current_time_unix);
1716 core::mem::swap(time, &mut tracked_time);
1719 #[allow(unreachable_code)]
1723 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1724 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1727 /// For an already known (from announcement) channel, update info about one of the directions
1730 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1731 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1732 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1734 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1735 /// materially in the future will be rejected.
1736 pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1737 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1740 /// For an already known (from announcement) channel, update info about one of the directions
1741 /// of the channel without verifying the associated signatures. Because we aren't given the
1742 /// associated signatures here we cannot relay the channel update to any of our peers.
1744 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1745 /// materially in the future will be rejected.
1746 pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1747 self.update_channel_intern(msg, None, None)
1750 fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1751 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1753 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1755 // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1756 // disable this check during tests!
1757 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1758 if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1759 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1761 if msg.timestamp as u64 > time + 60 * 60 * 24 {
1762 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1766 let mut channels = self.channels.write().unwrap();
1767 match channels.get_mut(&msg.short_channel_id) {
1769 core::mem::drop(channels);
1770 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1771 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1774 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1775 return Err(LightningError{err:
1776 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1777 action: ErrorAction::IgnoreError});
1780 if let Some(capacity_sats) = channel.capacity_sats {
1781 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1782 // Don't query UTXO set here to reduce DoS risks.
1783 if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1784 return Err(LightningError{err:
1785 "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1786 action: ErrorAction::IgnoreError});
1789 macro_rules! check_update_latest {
1790 ($target: expr) => {
1791 if let Some(existing_chan_info) = $target.as_ref() {
1792 // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1793 // order updates to ensure you always have the latest one, only
1794 // suggesting that it be at least the current time. For
1795 // channel_updates specifically, the BOLTs discuss the possibility of
1796 // pruning based on the timestamp field being more than two weeks old,
1797 // but only in the non-normative section.
1798 if existing_chan_info.last_update > msg.timestamp {
1799 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1800 } else if existing_chan_info.last_update == msg.timestamp {
1801 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1807 macro_rules! get_new_channel_info {
1809 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1810 { full_msg.cloned() } else { None };
1812 let updated_channel_update_info = ChannelUpdateInfo {
1813 enabled: chan_enabled,
1814 last_update: msg.timestamp,
1815 cltv_expiry_delta: msg.cltv_expiry_delta,
1816 htlc_minimum_msat: msg.htlc_minimum_msat,
1817 htlc_maximum_msat: msg.htlc_maximum_msat,
1819 base_msat: msg.fee_base_msat,
1820 proportional_millionths: msg.fee_proportional_millionths,
1824 Some(updated_channel_update_info)
1828 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1829 if msg.flags & 1 == 1 {
1830 check_update_latest!(channel.two_to_one);
1831 if let Some(sig) = sig {
1832 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1833 err: "Couldn't parse source node pubkey".to_owned(),
1834 action: ErrorAction::IgnoreAndLog(Level::Debug)
1835 })?, "channel_update");
1837 channel.two_to_one = get_new_channel_info!();
1839 check_update_latest!(channel.one_to_two);
1840 if let Some(sig) = sig {
1841 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1842 err: "Couldn't parse destination node pubkey".to_owned(),
1843 action: ErrorAction::IgnoreAndLog(Level::Debug)
1844 })?, "channel_update");
1846 channel.one_to_two = get_new_channel_info!();
1854 fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1855 macro_rules! remove_from_node {
1856 ($node_id: expr) => {
1857 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1858 entry.get_mut().channels.retain(|chan_id| {
1859 short_channel_id != *chan_id
1861 if entry.get().channels.is_empty() {
1862 entry.remove_entry();
1865 panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1870 remove_from_node!(chan.node_one);
1871 remove_from_node!(chan.node_two);
1875 impl ReadOnlyNetworkGraph<'_> {
1876 /// Returns all known valid channels' short ids along with announced channel info.
1878 /// (C-not exported) because we don't want to return lifetime'd references
1879 pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1883 /// Returns information on a channel with the given id.
1884 pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1885 self.channels.get(&short_channel_id)
1888 #[cfg(c_bindings)] // Non-bindings users should use `channels`
1889 /// Returns the list of channels in the graph
1890 pub fn list_channels(&self) -> Vec<u64> {
1891 self.channels.unordered_keys().map(|c| *c).collect()
1894 /// Returns all known nodes' public keys along with announced node info.
1896 /// (C-not exported) because we don't want to return lifetime'd references
1897 pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1901 /// Returns information on a node with the given id.
1902 pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1903 self.nodes.get(node_id)
1906 #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1907 /// Returns the list of nodes in the graph
1908 pub fn list_nodes(&self) -> Vec<NodeId> {
1909 self.nodes.unordered_keys().map(|n| *n).collect()
1912 /// Get network addresses by node id.
1913 /// Returns None if the requested node is completely unknown,
1914 /// or if node announcement for the node was never received.
1915 pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1916 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1917 if let Some(node_info) = node.announcement_info.as_ref() {
1918 return Some(node_info.addresses.clone())
1926 pub(crate) mod tests {
1927 use crate::ln::channelmanager;
1928 use crate::ln::chan_utils::make_funding_redeemscript;
1929 #[cfg(feature = "std")]
1930 use crate::ln::features::InitFeatures;
1931 use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1932 use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1933 use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1934 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1935 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1936 use crate::util::config::UserConfig;
1937 use crate::util::test_utils;
1938 use crate::util::ser::{ReadableArgs, Writeable};
1939 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1940 use crate::util::scid_utils::scid_from_parts;
1942 use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1943 use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1945 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1946 use bitcoin::hashes::Hash;
1947 use bitcoin::network::constants::Network;
1948 use bitcoin::blockdata::constants::genesis_block;
1949 use bitcoin::blockdata::script::Script;
1950 use bitcoin::blockdata::transaction::TxOut;
1954 use bitcoin::secp256k1::{PublicKey, SecretKey};
1955 use bitcoin::secp256k1::{All, Secp256k1};
1958 use bitcoin::secp256k1;
1959 use crate::prelude::*;
1960 use crate::sync::Arc;
1962 fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1963 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1964 let logger = Arc::new(test_utils::TestLogger::new());
1965 NetworkGraph::new(genesis_hash, logger)
1968 fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1969 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1970 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1972 let secp_ctx = Secp256k1::new();
1973 let logger = Arc::new(test_utils::TestLogger::new());
1974 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1975 (secp_ctx, gossip_sync)
1979 #[cfg(feature = "std")]
1980 fn request_full_sync_finite_times() {
1981 let network_graph = create_network_graph();
1982 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1983 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1985 assert!(gossip_sync.should_request_full_sync(&node_id));
1986 assert!(gossip_sync.should_request_full_sync(&node_id));
1987 assert!(gossip_sync.should_request_full_sync(&node_id));
1988 assert!(gossip_sync.should_request_full_sync(&node_id));
1989 assert!(gossip_sync.should_request_full_sync(&node_id));
1990 assert!(!gossip_sync.should_request_full_sync(&node_id));
1993 pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1994 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
1995 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1996 features: channelmanager::provided_node_features(&UserConfig::default()),
2001 addresses: Vec::new(),
2002 excess_address_data: Vec::new(),
2003 excess_data: Vec::new(),
2005 f(&mut unsigned_announcement);
2006 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2008 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2009 contents: unsigned_announcement
2013 pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2014 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2015 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2016 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2017 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2019 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2020 features: channelmanager::provided_channel_features(&UserConfig::default()),
2021 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2022 short_channel_id: 0,
2023 node_id_1: NodeId::from_pubkey(&node_id_1),
2024 node_id_2: NodeId::from_pubkey(&node_id_2),
2025 bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2026 bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2027 excess_data: Vec::new(),
2029 f(&mut unsigned_announcement);
2030 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2031 ChannelAnnouncement {
2032 node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2033 node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2034 bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2035 bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2036 contents: unsigned_announcement,
2040 pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2041 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2042 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2043 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2044 &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2047 pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2048 let mut unsigned_channel_update = UnsignedChannelUpdate {
2049 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2050 short_channel_id: 0,
2053 cltv_expiry_delta: 144,
2054 htlc_minimum_msat: 1_000_000,
2055 htlc_maximum_msat: 1_000_000,
2056 fee_base_msat: 10_000,
2057 fee_proportional_millionths: 20,
2058 excess_data: Vec::new()
2060 f(&mut unsigned_channel_update);
2061 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2063 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2064 contents: unsigned_channel_update
2069 fn handling_node_announcements() {
2070 let network_graph = create_network_graph();
2071 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2073 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2074 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2075 let zero_hash = Sha256dHash::hash(&[0; 32]);
2077 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2078 match gossip_sync.handle_node_announcement(&valid_announcement) {
2080 Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2084 // Announce a channel to add a corresponding node.
2085 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2086 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2087 Ok(res) => assert!(res),
2092 match gossip_sync.handle_node_announcement(&valid_announcement) {
2093 Ok(res) => assert!(res),
2097 let fake_msghash = hash_to_message!(&zero_hash);
2098 match gossip_sync.handle_node_announcement(
2100 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2101 contents: valid_announcement.contents.clone()
2104 Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2107 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2108 unsigned_announcement.timestamp += 1000;
2109 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2110 }, node_1_privkey, &secp_ctx);
2111 // Return false because contains excess data.
2112 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2113 Ok(res) => assert!(!res),
2117 // Even though previous announcement was not relayed further, we still accepted it,
2118 // so we now won't accept announcements before the previous one.
2119 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2120 unsigned_announcement.timestamp += 1000 - 10;
2121 }, node_1_privkey, &secp_ctx);
2122 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2124 Err(e) => assert_eq!(e.err, "Update older than last processed update")
2129 fn handling_channel_announcements() {
2130 let secp_ctx = Secp256k1::new();
2131 let logger = test_utils::TestLogger::new();
2133 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2134 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2136 let good_script = get_channel_script(&secp_ctx);
2137 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2139 // Test if the UTXO lookups were not supported
2140 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2141 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2142 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2143 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2144 Ok(res) => assert!(res),
2149 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2155 // If we receive announcement for the same channel (with UTXO lookups disabled),
2156 // drop new one on the floor, since we can't see any changes.
2157 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2159 Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2162 // Test if an associated transaction were not on-chain (or not confirmed).
2163 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2164 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2165 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2166 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2168 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2169 unsigned_announcement.short_channel_id += 1;
2170 }, node_1_privkey, node_2_privkey, &secp_ctx);
2171 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2173 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2176 // Now test if the transaction is found in the UTXO set and the script is correct.
2177 *chain_source.utxo_ret.lock().unwrap() =
2178 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2179 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2180 unsigned_announcement.short_channel_id += 2;
2181 }, node_1_privkey, node_2_privkey, &secp_ctx);
2182 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2183 Ok(res) => assert!(res),
2188 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2194 // If we receive announcement for the same channel, once we've validated it against the
2195 // chain, we simply ignore all new (duplicate) announcements.
2196 *chain_source.utxo_ret.lock().unwrap() =
2197 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2198 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2200 Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2203 #[cfg(feature = "std")]
2205 use std::time::{SystemTime, UNIX_EPOCH};
2207 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2208 // Mark a node as permanently failed so it's tracked as removed.
2209 gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2211 // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2212 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2213 unsigned_announcement.short_channel_id += 3;
2214 }, node_1_privkey, node_2_privkey, &secp_ctx);
2215 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2217 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2220 gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2222 // The above channel announcement should be handled as per normal now.
2223 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2224 Ok(res) => assert!(res),
2229 // Don't relay valid channels with excess data
2230 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2231 unsigned_announcement.short_channel_id += 4;
2232 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2233 }, node_1_privkey, node_2_privkey, &secp_ctx);
2234 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2235 Ok(res) => assert!(!res),
2239 let mut invalid_sig_announcement = valid_announcement.clone();
2240 invalid_sig_announcement.contents.excess_data = Vec::new();
2241 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2243 Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2246 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2247 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2249 Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2254 fn handling_channel_update() {
2255 let secp_ctx = Secp256k1::new();
2256 let logger = test_utils::TestLogger::new();
2257 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2258 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2259 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2260 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2262 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2263 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2265 let amount_sats = 1000_000;
2266 let short_channel_id;
2269 // Announce a channel we will update
2270 let good_script = get_channel_script(&secp_ctx);
2271 *chain_source.utxo_ret.lock().unwrap() =
2272 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2274 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2275 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2276 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2283 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2284 match gossip_sync.handle_channel_update(&valid_channel_update) {
2285 Ok(res) => assert!(res),
2290 match network_graph.read_only().channels().get(&short_channel_id) {
2292 Some(channel_info) => {
2293 assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2294 assert!(channel_info.two_to_one.is_none());
2299 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2300 unsigned_channel_update.timestamp += 100;
2301 unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2302 }, node_1_privkey, &secp_ctx);
2303 // Return false because contains excess data
2304 match gossip_sync.handle_channel_update(&valid_channel_update) {
2305 Ok(res) => assert!(!res),
2309 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2310 unsigned_channel_update.timestamp += 110;
2311 unsigned_channel_update.short_channel_id += 1;
2312 }, node_1_privkey, &secp_ctx);
2313 match gossip_sync.handle_channel_update(&valid_channel_update) {
2315 Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2318 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2319 unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2320 unsigned_channel_update.timestamp += 110;
2321 }, node_1_privkey, &secp_ctx);
2322 match gossip_sync.handle_channel_update(&valid_channel_update) {
2324 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2327 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2328 unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2329 unsigned_channel_update.timestamp += 110;
2330 }, node_1_privkey, &secp_ctx);
2331 match gossip_sync.handle_channel_update(&valid_channel_update) {
2333 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2336 // Even though previous update was not relayed further, we still accepted it,
2337 // so we now won't accept update before the previous one.
2338 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2339 unsigned_channel_update.timestamp += 100;
2340 }, node_1_privkey, &secp_ctx);
2341 match gossip_sync.handle_channel_update(&valid_channel_update) {
2343 Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2346 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2347 unsigned_channel_update.timestamp += 500;
2348 }, node_1_privkey, &secp_ctx);
2349 let zero_hash = Sha256dHash::hash(&[0; 32]);
2350 let fake_msghash = hash_to_message!(&zero_hash);
2351 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2352 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2354 Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2359 fn handling_network_update() {
2360 let logger = test_utils::TestLogger::new();
2361 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2362 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2363 let secp_ctx = Secp256k1::new();
2365 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2366 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2367 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2370 // There is no nodes in the table at the beginning.
2371 assert_eq!(network_graph.read_only().nodes().len(), 0);
2374 let short_channel_id;
2376 // Announce a channel we will update
2377 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2378 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2379 let chain_source: Option<&test_utils::TestChainSource> = None;
2380 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2381 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2383 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2384 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2386 network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2387 msg: valid_channel_update,
2390 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2393 // Non-permanent closing just disables a channel
2395 match network_graph.read_only().channels().get(&short_channel_id) {
2397 Some(channel_info) => {
2398 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2402 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2404 is_permanent: false,
2407 match network_graph.read_only().channels().get(&short_channel_id) {
2409 Some(channel_info) => {
2410 assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2415 // Permanent closing deletes a channel
2416 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2421 assert_eq!(network_graph.read_only().channels().len(), 0);
2422 // Nodes are also deleted because there are no associated channels anymore
2423 assert_eq!(network_graph.read_only().nodes().len(), 0);
2426 // Get a new network graph since we don't want to track removed nodes in this test with "std"
2427 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2429 // Announce a channel to test permanent node failure
2430 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2431 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2432 let chain_source: Option<&test_utils::TestChainSource> = None;
2433 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2434 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2436 // Non-permanent node failure does not delete any nodes or channels
2437 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2439 is_permanent: false,
2442 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2443 assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2445 // Permanent node failure deletes node and its channels
2446 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2451 assert_eq!(network_graph.read_only().nodes().len(), 0);
2452 // Channels are also deleted because the associated node has been deleted
2453 assert_eq!(network_graph.read_only().channels().len(), 0);
2458 fn test_channel_timeouts() {
2459 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2460 let logger = test_utils::TestLogger::new();
2461 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2462 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2463 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2464 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2465 let secp_ctx = Secp256k1::new();
2467 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2468 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2470 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2471 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2472 let chain_source: Option<&test_utils::TestChainSource> = None;
2473 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2474 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2476 // Submit two channel updates for each channel direction (update.flags bit).
2477 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2478 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2479 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2481 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2482 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2483 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2485 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2486 assert_eq!(network_graph.read_only().channels().len(), 1);
2487 assert_eq!(network_graph.read_only().nodes().len(), 2);
2489 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2490 #[cfg(not(feature = "std"))] {
2491 // Make sure removed channels are tracked.
2492 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2494 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2495 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2497 #[cfg(feature = "std")]
2499 // In std mode, a further check is performed before fully removing the channel -
2500 // the channel_announcement must have been received at least two weeks ago. We
2501 // fudge that here by indicating the time has jumped two weeks.
2502 assert_eq!(network_graph.read_only().channels().len(), 1);
2503 assert_eq!(network_graph.read_only().nodes().len(), 2);
2505 // Note that the directional channel information will have been removed already..
2506 // We want to check that this will work even if *one* of the channel updates is recent,
2507 // so we should add it with a recent timestamp.
2508 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2509 use std::time::{SystemTime, UNIX_EPOCH};
2510 let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2511 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2512 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2513 }, node_1_privkey, &secp_ctx);
2514 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2515 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2516 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2517 // Make sure removed channels are tracked.
2518 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2519 // Provide a later time so that sufficient time has passed
2520 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2521 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2524 assert_eq!(network_graph.read_only().channels().len(), 0);
2525 assert_eq!(network_graph.read_only().nodes().len(), 0);
2526 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2528 #[cfg(feature = "std")]
2530 use std::time::{SystemTime, UNIX_EPOCH};
2532 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2534 // Clear tracked nodes and channels for clean slate
2535 network_graph.removed_channels.lock().unwrap().clear();
2536 network_graph.removed_nodes.lock().unwrap().clear();
2538 // Add a channel and nodes from channel announcement. So our network graph will
2539 // now only consist of two nodes and one channel between them.
2540 assert!(network_graph.update_channel_from_announcement(
2541 &valid_channel_announcement, &chain_source).is_ok());
2543 // Mark the channel as permanently failed. This will also remove the two nodes
2544 // and all of the entries will be tracked as removed.
2545 network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2547 // Should not remove from tracking if insufficient time has passed
2548 network_graph.remove_stale_channels_and_tracking_with_time(
2549 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2550 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count ≠1 with tracking_time {}", tracking_time);
2552 // Provide a later time so that sufficient time has passed
2553 network_graph.remove_stale_channels_and_tracking_with_time(
2554 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2555 assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2556 assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2559 #[cfg(not(feature = "std"))]
2561 // When we don't have access to the system clock, the time we started tracking removal will only
2562 // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2563 // only if sufficient time has passed after that first call, will the next call remove it from
2565 let removal_time = 1664619654;
2567 // Clear removed nodes and channels for clean slate
2568 network_graph.removed_channels.lock().unwrap().clear();
2569 network_graph.removed_nodes.lock().unwrap().clear();
2571 // Add a channel and nodes from channel announcement. So our network graph will
2572 // now only consist of two nodes and one channel between them.
2573 assert!(network_graph.update_channel_from_announcement(
2574 &valid_channel_announcement, &chain_source).is_ok());
2576 // Mark the channel as permanently failed. This will also remove the two nodes
2577 // and all of the entries will be tracked as removed.
2578 network_graph.channel_failed(short_channel_id, true);
2580 // The first time we call the following, the channel will have a removal time assigned.
2581 network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2582 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2584 // Provide a later time so that sufficient time has passed
2585 network_graph.remove_stale_channels_and_tracking_with_time(
2586 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2587 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2588 assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2593 fn getting_next_channel_announcements() {
2594 let network_graph = create_network_graph();
2595 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2596 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2597 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2599 // Channels were not announced yet.
2600 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2601 assert!(channels_with_announcements.is_none());
2603 let short_channel_id;
2605 // Announce a channel we will update
2606 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2607 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2608 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2614 // Contains initial channel announcement now.
2615 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2616 if let Some(channel_announcements) = channels_with_announcements {
2617 let (_, ref update_1, ref update_2) = channel_announcements;
2618 assert_eq!(update_1, &None);
2619 assert_eq!(update_2, &None);
2625 // Valid channel update
2626 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2627 unsigned_channel_update.timestamp = 101;
2628 }, node_1_privkey, &secp_ctx);
2629 match gossip_sync.handle_channel_update(&valid_channel_update) {
2635 // Now contains an initial announcement and an update.
2636 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2637 if let Some(channel_announcements) = channels_with_announcements {
2638 let (_, ref update_1, ref update_2) = channel_announcements;
2639 assert_ne!(update_1, &None);
2640 assert_eq!(update_2, &None);
2646 // Channel update with excess data.
2647 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2648 unsigned_channel_update.timestamp = 102;
2649 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2650 }, node_1_privkey, &secp_ctx);
2651 match gossip_sync.handle_channel_update(&valid_channel_update) {
2657 // Test that announcements with excess data won't be returned
2658 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2659 if let Some(channel_announcements) = channels_with_announcements {
2660 let (_, ref update_1, ref update_2) = channel_announcements;
2661 assert_eq!(update_1, &None);
2662 assert_eq!(update_2, &None);
2667 // Further starting point have no channels after it
2668 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2669 assert!(channels_with_announcements.is_none());
2673 fn getting_next_node_announcements() {
2674 let network_graph = create_network_graph();
2675 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2676 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2677 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2678 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2681 let next_announcements = gossip_sync.get_next_node_announcement(None);
2682 assert!(next_announcements.is_none());
2685 // Announce a channel to add 2 nodes
2686 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2687 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2693 // Nodes were never announced
2694 let next_announcements = gossip_sync.get_next_node_announcement(None);
2695 assert!(next_announcements.is_none());
2698 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2699 match gossip_sync.handle_node_announcement(&valid_announcement) {
2704 let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2705 match gossip_sync.handle_node_announcement(&valid_announcement) {
2711 let next_announcements = gossip_sync.get_next_node_announcement(None);
2712 assert!(next_announcements.is_some());
2714 // Skip the first node.
2715 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2716 assert!(next_announcements.is_some());
2719 // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2720 let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2721 unsigned_announcement.timestamp += 10;
2722 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2723 }, node_2_privkey, &secp_ctx);
2724 match gossip_sync.handle_node_announcement(&valid_announcement) {
2725 Ok(res) => assert!(!res),
2730 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2731 assert!(next_announcements.is_none());
2735 fn network_graph_serialization() {
2736 let network_graph = create_network_graph();
2737 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2739 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2740 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2742 // Announce a channel to add a corresponding node.
2743 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2744 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2745 Ok(res) => assert!(res),
2749 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2750 match gossip_sync.handle_node_announcement(&valid_announcement) {
2755 let mut w = test_utils::TestVecWriter(Vec::new());
2756 assert!(!network_graph.read_only().nodes().is_empty());
2757 assert!(!network_graph.read_only().channels().is_empty());
2758 network_graph.write(&mut w).unwrap();
2760 let logger = Arc::new(test_utils::TestLogger::new());
2761 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2765 fn network_graph_tlv_serialization() {
2766 let network_graph = create_network_graph();
2767 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2769 let mut w = test_utils::TestVecWriter(Vec::new());
2770 network_graph.write(&mut w).unwrap();
2772 let logger = Arc::new(test_utils::TestLogger::new());
2773 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2774 assert!(reassembled_network_graph == network_graph);
2775 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2779 #[cfg(feature = "std")]
2780 fn calling_sync_routing_table() {
2781 use std::time::{SystemTime, UNIX_EPOCH};
2782 use crate::ln::msgs::Init;
2784 let network_graph = create_network_graph();
2785 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2786 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2787 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2789 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2791 // It should ignore if gossip_queries feature is not enabled
2793 let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2794 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2795 let events = gossip_sync.get_and_clear_pending_msg_events();
2796 assert_eq!(events.len(), 0);
2799 // It should send a gossip_timestamp_filter with the correct information
2801 let mut features = InitFeatures::empty();
2802 features.set_gossip_queries_optional();
2803 let init_msg = Init { features, remote_network_address: None };
2804 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2805 let events = gossip_sync.get_and_clear_pending_msg_events();
2806 assert_eq!(events.len(), 1);
2808 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2809 assert_eq!(node_id, &node_id_1);
2810 assert_eq!(msg.chain_hash, chain_hash);
2811 let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2812 assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2813 assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2814 assert_eq!(msg.timestamp_range, u32::max_value());
2816 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2822 fn handling_query_channel_range() {
2823 let network_graph = create_network_graph();
2824 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2826 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2827 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2828 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2829 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2831 let mut scids: Vec<u64> = vec![
2832 scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2833 scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2836 // used for testing multipart reply across blocks
2837 for block in 100000..=108001 {
2838 scids.push(scid_from_parts(block, 0, 0).unwrap());
2841 // used for testing resumption on same block
2842 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2845 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2846 unsigned_announcement.short_channel_id = scid;
2847 }, node_1_privkey, node_2_privkey, &secp_ctx);
2848 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2854 // Error when number_of_blocks=0
2855 do_handling_query_channel_range(
2859 chain_hash: chain_hash.clone(),
2861 number_of_blocks: 0,
2864 vec![ReplyChannelRange {
2865 chain_hash: chain_hash.clone(),
2867 number_of_blocks: 0,
2868 sync_complete: true,
2869 short_channel_ids: vec![]
2873 // Error when wrong chain
2874 do_handling_query_channel_range(
2878 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2880 number_of_blocks: 0xffff_ffff,
2883 vec![ReplyChannelRange {
2884 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2886 number_of_blocks: 0xffff_ffff,
2887 sync_complete: true,
2888 short_channel_ids: vec![],
2892 // Error when first_blocknum > 0xffffff
2893 do_handling_query_channel_range(
2897 chain_hash: chain_hash.clone(),
2898 first_blocknum: 0x01000000,
2899 number_of_blocks: 0xffff_ffff,
2902 vec![ReplyChannelRange {
2903 chain_hash: chain_hash.clone(),
2904 first_blocknum: 0x01000000,
2905 number_of_blocks: 0xffff_ffff,
2906 sync_complete: true,
2907 short_channel_ids: vec![]
2911 // Empty reply when max valid SCID block num
2912 do_handling_query_channel_range(
2916 chain_hash: chain_hash.clone(),
2917 first_blocknum: 0xffffff,
2918 number_of_blocks: 1,
2923 chain_hash: chain_hash.clone(),
2924 first_blocknum: 0xffffff,
2925 number_of_blocks: 1,
2926 sync_complete: true,
2927 short_channel_ids: vec![]
2932 // No results in valid query range
2933 do_handling_query_channel_range(
2937 chain_hash: chain_hash.clone(),
2938 first_blocknum: 1000,
2939 number_of_blocks: 1000,
2944 chain_hash: chain_hash.clone(),
2945 first_blocknum: 1000,
2946 number_of_blocks: 1000,
2947 sync_complete: true,
2948 short_channel_ids: vec![],
2953 // Overflow first_blocknum + number_of_blocks
2954 do_handling_query_channel_range(
2958 chain_hash: chain_hash.clone(),
2959 first_blocknum: 0xfe0000,
2960 number_of_blocks: 0xffffffff,
2965 chain_hash: chain_hash.clone(),
2966 first_blocknum: 0xfe0000,
2967 number_of_blocks: 0xffffffff - 0xfe0000,
2968 sync_complete: true,
2969 short_channel_ids: vec![
2970 0xfffffe_ffffff_ffff, // max
2976 // Single block exactly full
2977 do_handling_query_channel_range(
2981 chain_hash: chain_hash.clone(),
2982 first_blocknum: 100000,
2983 number_of_blocks: 8000,
2988 chain_hash: chain_hash.clone(),
2989 first_blocknum: 100000,
2990 number_of_blocks: 8000,
2991 sync_complete: true,
2992 short_channel_ids: (100000..=107999)
2993 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2999 // Multiple split on new block
3000 do_handling_query_channel_range(
3004 chain_hash: chain_hash.clone(),
3005 first_blocknum: 100000,
3006 number_of_blocks: 8001,
3011 chain_hash: chain_hash.clone(),
3012 first_blocknum: 100000,
3013 number_of_blocks: 7999,
3014 sync_complete: false,
3015 short_channel_ids: (100000..=107999)
3016 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3020 chain_hash: chain_hash.clone(),
3021 first_blocknum: 107999,
3022 number_of_blocks: 2,
3023 sync_complete: true,
3024 short_channel_ids: vec![
3025 scid_from_parts(108000, 0, 0).unwrap(),
3031 // Multiple split on same block
3032 do_handling_query_channel_range(
3036 chain_hash: chain_hash.clone(),
3037 first_blocknum: 100002,
3038 number_of_blocks: 8000,
3043 chain_hash: chain_hash.clone(),
3044 first_blocknum: 100002,
3045 number_of_blocks: 7999,
3046 sync_complete: false,
3047 short_channel_ids: (100002..=108001)
3048 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3052 chain_hash: chain_hash.clone(),
3053 first_blocknum: 108001,
3054 number_of_blocks: 1,
3055 sync_complete: true,
3056 short_channel_ids: vec![
3057 scid_from_parts(108001, 1, 0).unwrap(),
3064 fn do_handling_query_channel_range(
3065 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3066 test_node_id: &PublicKey,
3067 msg: QueryChannelRange,
3069 expected_replies: Vec<ReplyChannelRange>
3071 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3072 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3073 let query_end_blocknum = msg.end_blocknum();
3074 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3077 assert!(result.is_ok());
3079 assert!(result.is_err());
3082 let events = gossip_sync.get_and_clear_pending_msg_events();
3083 assert_eq!(events.len(), expected_replies.len());
3085 for i in 0..events.len() {
3086 let expected_reply = &expected_replies[i];
3088 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3089 assert_eq!(node_id, test_node_id);
3090 assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3091 assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3092 assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3093 assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3094 assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3096 // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3097 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3098 assert!(msg.first_blocknum >= max_firstblocknum);
3099 max_firstblocknum = msg.first_blocknum;
3100 c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3102 // Check that the last block count is >= the query's end_blocknum
3103 if i == events.len() - 1 {
3104 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3107 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3113 fn handling_query_short_channel_ids() {
3114 let network_graph = create_network_graph();
3115 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3116 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3117 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3119 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3121 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3123 short_channel_ids: vec![0x0003e8_000000_0000],
3125 assert!(result.is_err());
3129 fn displays_node_alias() {
3130 let format_str_alias = |alias: &str| {
3131 let mut bytes = [0u8; 32];
3132 bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3133 format!("{}", NodeAlias(bytes))
3136 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3137 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3138 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3140 let format_bytes_alias = |alias: &[u8]| {
3141 let mut bytes = [0u8; 32];
3142 bytes[..alias.len()].copy_from_slice(alias);
3143 format!("{}", NodeAlias(bytes))
3146 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3147 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3148 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3152 fn channel_info_is_readable() {
3153 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3154 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3155 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3156 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3157 let config = crate::ln::functional_test_utils::test_default_channel_config();
3159 // 1. Test encoding/decoding of ChannelUpdateInfo
3160 let chan_update_info = ChannelUpdateInfo {
3163 cltv_expiry_delta: 42,
3164 htlc_minimum_msat: 1234,
3165 htlc_maximum_msat: 5678,
3166 fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3167 last_update_message: None,
3170 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3171 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3173 // First make sure we can read ChannelUpdateInfos we just wrote
3174 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3175 assert_eq!(chan_update_info, read_chan_update_info);
3177 // Check the serialization hasn't changed.
3178 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3179 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3181 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3182 // or the ChannelUpdate enclosed with `last_update_message`.
3183 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3184 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3185 assert!(read_chan_update_info_res.is_err());
3187 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3188 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3189 assert!(read_chan_update_info_res.is_err());
3191 // 2. Test encoding/decoding of ChannelInfo
3192 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3193 let chan_info_none_updates = ChannelInfo {
3194 features: channelmanager::provided_channel_features(&config),
3195 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3197 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3199 capacity_sats: None,
3200 announcement_message: None,
3201 announcement_received_time: 87654,
3204 let mut encoded_chan_info: Vec<u8> = Vec::new();
3205 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3207 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3208 assert_eq!(chan_info_none_updates, read_chan_info);
3210 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3211 let chan_info_some_updates = ChannelInfo {
3212 features: channelmanager::provided_channel_features(&config),
3213 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3214 one_to_two: Some(chan_update_info.clone()),
3215 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3216 two_to_one: Some(chan_update_info.clone()),
3217 capacity_sats: None,
3218 announcement_message: None,
3219 announcement_received_time: 87654,
3222 let mut encoded_chan_info: Vec<u8> = Vec::new();
3223 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3225 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3226 assert_eq!(chan_info_some_updates, read_chan_info);
3228 // Check the serialization hasn't changed.
3229 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3230 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3232 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3233 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3234 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3235 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3236 assert_eq!(read_chan_info.announcement_received_time, 87654);
3237 assert_eq!(read_chan_info.one_to_two, None);
3238 assert_eq!(read_chan_info.two_to_one, None);
3240 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3241 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3242 assert_eq!(read_chan_info.announcement_received_time, 87654);
3243 assert_eq!(read_chan_info.one_to_two, None);
3244 assert_eq!(read_chan_info.two_to_one, None);
3248 fn node_info_is_readable() {
3249 use std::convert::TryFrom;
3251 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3252 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3253 let valid_node_ann_info = NodeAnnouncementInfo {
3254 features: channelmanager::provided_node_features(&UserConfig::default()),
3257 alias: NodeAlias([0u8; 32]),
3258 addresses: vec![valid_netaddr],
3259 announcement_message: None,
3262 let mut encoded_valid_node_ann_info = Vec::new();
3263 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3264 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3265 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3267 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3268 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3269 assert!(read_invalid_node_ann_info_res.is_err());
3271 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3272 let valid_node_info = NodeInfo {
3273 channels: Vec::new(),
3274 announcement_info: Some(valid_node_ann_info),
3277 let mut encoded_valid_node_info = Vec::new();
3278 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3279 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3280 assert_eq!(read_valid_node_info, valid_node_info);
3282 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3283 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3284 assert_eq!(read_invalid_node_info.announcement_info, None);
3288 #[cfg(all(test, feature = "_bench_unstable"))]
3296 fn read_network_graph(bench: &mut Bencher) {
3297 let logger = crate::util::test_utils::TestLogger::new();
3298 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3299 let mut v = Vec::new();
3300 d.read_to_end(&mut v).unwrap();
3302 let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3307 fn write_network_graph(bench: &mut Bencher) {
3308 let logger = crate::util::test_utils::TestLogger::new();
3309 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3310 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3312 let _ = net_graph.encode();