]> git.bitcoin.ninja Git - rust-lightning/commitdiff
Remove event channel from lightning-net-tokio
authorJeffrey Czyz <jkczyz@gmail.com>
Tue, 18 May 2021 23:06:13 +0000 (16:06 -0700)
committerJeffrey Czyz <jkczyz@gmail.com>
Tue, 25 May 2021 07:28:59 +0000 (00:28 -0700)
It is unnecessary since ChannelManager has a notification interface as
of 12c735ab3af8f09dc402f8147594afcc4569be61.

lightning-net-tokio/src/lib.rs

index 8ff186c401f9c540b10321eb9733e5cf7d84c7f7..d102778a460f20d202fe772920d1c0ee3418e40b 100644 (file)
 //!
 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
-//! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
+//! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
 //!
 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
 //!
-//! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
-//! their individual docs for more. All three take a
-//! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
-//! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
-//! The call site should, thus, look something like this:
+//! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
+//! their individual docs for details.
+//!
+//! # Example
 //! ```
-//! use tokio::sync::mpsc;
 //! use std::net::TcpStream;
 //! use bitcoin::secp256k1::key::PublicKey;
 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
 //!
 //! // Connect to node with pubkey their_node_id at addr:
 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
-//!     let (sender, mut receiver) = mpsc::channel(2);
-//!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
-//!     loop {
-//!         receiver.recv().await;
-//!         channel_manager.process_pending_events(&|event| {
-//!            // Handle the event!
-//!         });
-//!         chain_monitor.process_pending_events(&|event| {
-//!            // Handle the event!
-//!         });
-//!     }
+//!    lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
+//!    loop {
+//!            channel_manager.await_persistable_update();
+//!            channel_manager.process_pending_events(&|event| {
+//!                    // Handle the event!
+//!            });
+//!            chain_monitor.process_pending_events(&|event| {
+//!                    // Handle the event!
+//!            });
+//!    }
 //! }
 //!
 //! // Begin reading from a newly accepted socket and talk to the peer:
 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
-//!     let (sender, mut receiver) = mpsc::channel(2);
-//!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
-//!     loop {
-//!         receiver.recv().await;
-//!         channel_manager.process_pending_events(&|event| {
-//!            // Handle the event!
-//!         });
-//!         chain_monitor.process_pending_events(&|event| {
-//!            // Handle the event!
-//!         });
-//!     }
+//!    lightning_net_tokio::setup_inbound(peer_manager, socket);
+//!    loop {
+//!            channel_manager.await_persistable_update();
+//!            channel_manager.process_pending_events(&|event| {
+//!                    // Handle the event!
+//!            });
+//!            chain_monitor.process_pending_events(&|event| {
+//!                    // Handle the event!
+//!            });
+//!    }
 //! }
 //! ```
 
@@ -90,7 +86,7 @@ use lightning::util::logger::Logger;
 use std::{task, thread};
 use std::net::SocketAddr;
 use std::net::TcpStream as StdTcpStream;
-use std::sync::{Arc, Mutex, MutexGuard};
+use std::sync::{Arc, Mutex};
 use std::sync::atomic::{AtomicU64, Ordering};
 use std::time::Duration;
 use std::hash::Hash;
@@ -102,7 +98,6 @@ static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
 /// read future (which is returned by schedule_read).
 struct Connection {
        writer: Option<io::WriteHalf<TcpStream>>,
-       event_notify: mpsc::Sender<()>,
        // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
        // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
        // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
@@ -129,21 +124,10 @@ struct Connection {
        id: u64,
 }
 impl Connection {
-       fn event_trigger(us: &mut MutexGuard<Self>) {
-               match us.event_notify.try_send(()) {
-                       Ok(_) => {},
-                       Err(mpsc::error::TrySendError::Full(_)) => {
-                               // Ignore full errors as we just need the user to poll after this point, so if they
-                               // haven't received the last send yet, it doesn't matter.
-                       },
-                       _ => panic!()
-               }
-       }
        async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
                        CMH: ChannelMessageHandler + 'static,
                        RMH: RoutingMessageHandler + 'static,
                        L: Logger + 'static + ?Sized {
-               let peer_manager_ref = peer_manager.clone();
                // 8KB is nice and big but also should never cause any issues with stack overflowing.
                let mut buf = [0; 8192];
 
@@ -201,7 +185,6 @@ impl Connection {
                                                                if pause_read {
                                                                        us_lock.read_paused = true;
                                                                }
-                                                               Self::event_trigger(&mut us_lock);
                                                        },
                                                        Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
                                                }
@@ -210,6 +193,7 @@ impl Connection {
                                        Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
                                },
                        }
+                       peer_manager.process_events();
                };
                let writer_option = us.lock().unwrap().writer.take();
                if let Some(mut writer) = writer_option {
@@ -217,12 +201,12 @@ impl Connection {
                        let _ = writer.shutdown().await;
                }
                if let Disconnect::PeerDisconnected = disconnect_type {
-                       peer_manager_ref.socket_disconnected(&our_descriptor);
-                       Self::event_trigger(&mut us.lock().unwrap());
+                       peer_manager.socket_disconnected(&our_descriptor);
+                       peer_manager.process_events();
                }
        }
 
-       fn new(event_notify: mpsc::Sender<()>, stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
+       fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
                // We only ever need a channel of depth 1 here: if we returned a non-full write to the
                // PeerManager, we will eventually get notified that there is room in the socket to write
                // new bytes, which will generate an event. That event will be popped off the queue before
@@ -238,7 +222,7 @@ impl Connection {
 
                (reader, write_receiver, read_receiver,
                Arc::new(Mutex::new(Self {
-                       writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
+                       writer: Some(writer), write_avail, read_waker, read_paused: false,
                        block_disconnect_socket: false, rl_requested_disconnect: false,
                        id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
                })))
@@ -251,13 +235,11 @@ impl Connection {
 /// The returned future will complete when the peer is disconnected and associated handling
 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
 /// not need to poll the provided future in order to make progress.
-///
-/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
-pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
+pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
                CMH: ChannelMessageHandler + 'static + Send + Sync,
                RMH: RoutingMessageHandler + 'static + Send + Sync,
                L: Logger + 'static + ?Sized + Send + Sync {
-       let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
+       let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
        #[cfg(debug_assertions)]
        let last_us = Arc::clone(&us);
 
@@ -293,13 +275,11 @@ pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<So
 /// The returned future will complete when the peer is disconnected and associated handling
 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
 /// not need to poll the provided future in order to make progress.
-///
-/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
-pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
+pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
                CMH: ChannelMessageHandler + 'static + Send + Sync,
                RMH: RoutingMessageHandler + 'static + Send + Sync,
                L: Logger + 'static + ?Sized + Send + Sync {
-       let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
+       let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
        #[cfg(debug_assertions)]
        let last_us = Arc::clone(&us);
 
@@ -365,14 +345,12 @@ pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<S
 /// disconnected and associated handling futures are freed, though, because all processing in said
 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
 /// make progress.
-///
-/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
-pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
+pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
                CMH: ChannelMessageHandler + 'static + Send + Sync,
                RMH: RoutingMessageHandler + 'static + Send + Sync,
                L: Logger + 'static + ?Sized + Send + Sync {
        if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
-               Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
+               Some(setup_outbound(peer_manager, their_node_id, stream))
        } else { None }
 }
 
@@ -634,9 +612,8 @@ mod tests {
                        (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
                } else { panic!("Failed to bind to v4 localhost on common ports"); };
 
-               let (sender, _receiver) = mpsc::channel(2);
-               let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, conn_a);
-               let fut_b = super::setup_inbound(b_manager, sender, conn_b);
+               let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
+               let fut_b = super::setup_inbound(b_manager, conn_b);
 
                tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
                tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();