8ff186c401f9c540b10321eb9733e5cf7d84c7f7
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
21 //! their individual docs for more. All three take a
22 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
23 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
24 //! The call site should, thus, look something like this:
25 //! ```
26 //! use tokio::sync::mpsc;
27 //! use std::net::TcpStream;
28 //! use bitcoin::secp256k1::key::PublicKey;
29 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
30 //! use std::net::SocketAddr;
31 //! use std::sync::Arc;
32 //!
33 //! // Define concrete types for our high-level objects:
34 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
35 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
36 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
37 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
38 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
39 //! type DataPersister = dyn lightning::chain::channelmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
40 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
41 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
42 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
43 //!
44 //! // Connect to node with pubkey their_node_id at addr:
45 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
46 //!     let (sender, mut receiver) = mpsc::channel(2);
47 //!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
48 //!     loop {
49 //!         receiver.recv().await;
50 //!         channel_manager.process_pending_events(&|event| {
51 //!             // Handle the event!
52 //!         });
53 //!         chain_monitor.process_pending_events(&|event| {
54 //!             // Handle the event!
55 //!         });
56 //!     }
57 //! }
58 //!
59 //! // Begin reading from a newly accepted socket and talk to the peer:
60 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
61 //!     let (sender, mut receiver) = mpsc::channel(2);
62 //!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
63 //!     loop {
64 //!         receiver.recv().await;
65 //!         channel_manager.process_pending_events(&|event| {
66 //!             // Handle the event!
67 //!         });
68 //!         chain_monitor.process_pending_events(&|event| {
69 //!             // Handle the event!
70 //!         });
71 //!     }
72 //! }
73 //! ```
74
75 #![deny(broken_intra_doc_links)]
76 #![deny(missing_docs)]
77
78 use bitcoin::secp256k1::key::PublicKey;
79
80 use tokio::net::TcpStream;
81 use tokio::{io, time};
82 use tokio::sync::mpsc;
83 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
84
85 use lightning::ln::peer_handler;
86 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
87 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
88 use lightning::util::logger::Logger;
89
90 use std::{task, thread};
91 use std::net::SocketAddr;
92 use std::net::TcpStream as StdTcpStream;
93 use std::sync::{Arc, Mutex, MutexGuard};
94 use std::sync::atomic::{AtomicU64, Ordering};
95 use std::time::Duration;
96 use std::hash::Hash;
97
98 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
99
100 /// Connection contains all our internal state for a connection - we hold a reference to the
101 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
102 /// read future (which is returned by schedule_read).
103 struct Connection {
104         writer: Option<io::WriteHalf<TcpStream>>,
105         event_notify: mpsc::Sender<()>,
106         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
107         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
108         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
109         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
110         // the schedule_read stack.
111         //
112         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
113         // runtime with functions templated by the Arc<PeerManager> type, calling
114         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
115         // more unsafe voodo than I really feel like writing.
116         write_avail: mpsc::Sender<()>,
117         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
118         // so by setting read_paused. At that point, the read task will stop reading bytes from the
119         // socket. To wake it up (without otherwise changing its state, we can push a value into this
120         // Sender.
121         read_waker: mpsc::Sender<()>,
122         // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
123         // are sure we won't call any more read/write PeerManager functions with the same connection.
124         // This is set to true if we're in such a condition (with disconnect checked before with the
125         // top-level mutex held) and false when we can return.
126         block_disconnect_socket: bool,
127         read_paused: bool,
128         rl_requested_disconnect: bool,
129         id: u64,
130 }
131 impl Connection {
132         fn event_trigger(us: &mut MutexGuard<Self>) {
133                 match us.event_notify.try_send(()) {
134                         Ok(_) => {},
135                         Err(mpsc::error::TrySendError::Full(_)) => {
136                                 // Ignore full errors as we just need the user to poll after this point, so if they
137                                 // haven't received the last send yet, it doesn't matter.
138                         },
139                         _ => panic!()
140                 }
141         }
142         async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
143                         CMH: ChannelMessageHandler + 'static,
144                         RMH: RoutingMessageHandler + 'static,
145                         L: Logger + 'static + ?Sized {
146                 let peer_manager_ref = peer_manager.clone();
147                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
148                 let mut buf = [0; 8192];
149
150                 let mut our_descriptor = SocketDescriptor::new(us.clone());
151                 // An enum describing why we did/are disconnecting:
152                 enum Disconnect {
153                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
154                         // SocketDescriptor::disconnect_socket.
155                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
156                         // already knows we're disconnected.
157                         CloseConnection,
158                         // The connection was disconnected for some other reason, ie because the socket was
159                         // closed.
160                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
161                         // Rust-Lightning that the socket is gone.
162                         PeerDisconnected
163                 }
164                 let disconnect_type = loop {
165                         macro_rules! shutdown_socket {
166                                 ($err: expr, $need_disconnect: expr) => { {
167                                         println!("Disconnecting peer due to {}!", $err);
168                                         break $need_disconnect;
169                                 } }
170                         }
171
172                         macro_rules! prepare_read_write_call {
173                                 () => { {
174                                         let mut us_lock = us.lock().unwrap();
175                                         if us_lock.rl_requested_disconnect {
176                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
177                                         }
178                                         us_lock.block_disconnect_socket = true;
179                                 } }
180                         }
181
182                         let read_paused = us.lock().unwrap().read_paused;
183                         tokio::select! {
184                                 v = write_avail_receiver.recv() => {
185                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
186                                         prepare_read_write_call!();
187                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
188                                                 shutdown_socket!(e, Disconnect::CloseConnection);
189                                         }
190                                         us.lock().unwrap().block_disconnect_socket = false;
191                                 },
192                                 _ = read_wake_receiver.recv() => {},
193                                 read = reader.read(&mut buf), if !read_paused => match read {
194                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
195                                         Ok(len) => {
196                                                 prepare_read_write_call!();
197                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
198                                                 let mut us_lock = us.lock().unwrap();
199                                                 match read_res {
200                                                         Ok(pause_read) => {
201                                                                 if pause_read {
202                                                                         us_lock.read_paused = true;
203                                                                 }
204                                                                 Self::event_trigger(&mut us_lock);
205                                                         },
206                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
207                                                 }
208                                                 us_lock.block_disconnect_socket = false;
209                                         },
210                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
211                                 },
212                         }
213                 };
214                 let writer_option = us.lock().unwrap().writer.take();
215                 if let Some(mut writer) = writer_option {
216                         // If the socket is already closed, shutdown() will fail, so just ignore it.
217                         let _ = writer.shutdown().await;
218                 }
219                 if let Disconnect::PeerDisconnected = disconnect_type {
220                         peer_manager_ref.socket_disconnected(&our_descriptor);
221                         Self::event_trigger(&mut us.lock().unwrap());
222                 }
223         }
224
225         fn new(event_notify: mpsc::Sender<()>, stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
226                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
227                 // PeerManager, we will eventually get notified that there is room in the socket to write
228                 // new bytes, which will generate an event. That event will be popped off the queue before
229                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
230                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
231                 let (write_avail, write_receiver) = mpsc::channel(1);
232                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
233                 // we shove a value into the channel which comes after we've reset the read_paused bool to
234                 // false.
235                 let (read_waker, read_receiver) = mpsc::channel(1);
236                 stream.set_nonblocking(true).unwrap();
237                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
238
239                 (reader, write_receiver, read_receiver,
240                 Arc::new(Mutex::new(Self {
241                         writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
242                         block_disconnect_socket: false, rl_requested_disconnect: false,
243                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
244                 })))
245         }
246 }
247
248 /// Process incoming messages and feed outgoing messages on the provided socket generated by
249 /// accepting an incoming connection.
250 ///
251 /// The returned future will complete when the peer is disconnected and associated handling
252 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
253 /// not need to poll the provided future in order to make progress.
254 ///
255 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
256 pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
257                 CMH: ChannelMessageHandler + 'static + Send + Sync,
258                 RMH: RoutingMessageHandler + 'static + Send + Sync,
259                 L: Logger + 'static + ?Sized + Send + Sync {
260         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
261         #[cfg(debug_assertions)]
262         let last_us = Arc::clone(&us);
263
264         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
265                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
266         } else {
267                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
268                 // requirements.
269                 None
270         };
271
272         async move {
273                 if let Some(handle) = handle_opt {
274                         if let Err(e) = handle.await {
275                                 assert!(e.is_cancelled());
276                         } else {
277                                 // This is certainly not guaranteed to always be true - the read loop may exit
278                                 // while there are still pending write wakers that need to be woken up after the
279                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
280                                 // keep too many wakers around, this makes sense. The race should be rare (we do
281                                 // some work after shutdown()) and an error would be a major memory leak.
282                                 #[cfg(debug_assertions)]
283                                 assert!(Arc::try_unwrap(last_us).is_ok());
284                         }
285                 }
286         }
287 }
288
289 /// Process incoming messages and feed outgoing messages on the provided socket generated by
290 /// making an outbound connection which is expected to be accepted by a peer with the given
291 /// public key. The relevant processing is set to run free (via tokio::spawn).
292 ///
293 /// The returned future will complete when the peer is disconnected and associated handling
294 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
295 /// not need to poll the provided future in order to make progress.
296 ///
297 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
298 pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
299                 CMH: ChannelMessageHandler + 'static + Send + Sync,
300                 RMH: RoutingMessageHandler + 'static + Send + Sync,
301                 L: Logger + 'static + ?Sized + Send + Sync {
302         let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
303         #[cfg(debug_assertions)]
304         let last_us = Arc::clone(&us);
305
306         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
307                 Some(tokio::spawn(async move {
308                         // We should essentially always have enough room in a TCP socket buffer to send the
309                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
310                         // fail writes and wake us back up later to write. Thus, we handle a single
311                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
312                         // and use a relatively tight timeout.
313                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
314                                 loop {
315                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
316                                                 v if v == initial_send.len() => break Ok(()),
317                                                 0 => {
318                                                         write_receiver.recv().await;
319                                                         // In theory we could check for if we've been instructed to disconnect
320                                                         // the peer here, but its OK to just skip it - we'll check for it in
321                                                         // schedule_read prior to any relevant calls into RL.
322                                                 },
323                                                 _ => {
324                                                         eprintln!("Failed to write first full message to socket!");
325                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
326                                                         break Err(());
327                                                 }
328                                         }
329                                 }
330                         }).await {
331                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
332                         }
333                 }))
334         } else {
335                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
336                 // requirements.
337                 None
338         };
339
340         async move {
341                 if let Some(handle) = handle_opt {
342                         if let Err(e) = handle.await {
343                                 assert!(e.is_cancelled());
344                         } else {
345                                 // This is certainly not guaranteed to always be true - the read loop may exit
346                                 // while there are still pending write wakers that need to be woken up after the
347                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
348                                 // keep too many wakers around, this makes sense. The race should be rare (we do
349                                 // some work after shutdown()) and an error would be a major memory leak.
350                                 #[cfg(debug_assertions)]
351                                 assert!(Arc::try_unwrap(last_us).is_ok());
352                         }
353                 }
354         }
355 }
356
357 /// Process incoming messages and feed outgoing messages on a new connection made to the given
358 /// socket address which is expected to be accepted by a peer with the given public key (by
359 /// scheduling futures with tokio::spawn).
360 ///
361 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
362 ///
363 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
364 /// connection setup. That future then returns a future which will complete when the peer is
365 /// disconnected and associated handling futures are freed, though, because all processing in said
366 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
367 /// make progress.
368 ///
369 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
370 pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
371                 CMH: ChannelMessageHandler + 'static + Send + Sync,
372                 RMH: RoutingMessageHandler + 'static + Send + Sync,
373                 L: Logger + 'static + ?Sized + Send + Sync {
374         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
375                 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
376         } else { None }
377 }
378
379 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
380         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
381
382 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
383         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
384 }
385 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
386 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
387 // sending thread may have already gone away due to a socket close, in which case there's nothing
388 // to wake up anyway.
389 fn wake_socket_waker(orig_ptr: *const ()) {
390         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
391         let _ = sender.try_send(());
392         drop_socket_waker(orig_ptr);
393 }
394 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
395         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
396         let sender = unsafe { (*sender_ptr).clone() };
397         let _ = sender.try_send(());
398 }
399 fn drop_socket_waker(orig_ptr: *const ()) {
400         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
401         // _orig_box is now dropped
402 }
403 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
404         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
405         let new_ptr = new_box as *const mpsc::Sender<()>;
406         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
407 }
408
409 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
410 /// type in the template of PeerHandler.
411 pub struct SocketDescriptor {
412         conn: Arc<Mutex<Connection>>,
413         id: u64,
414 }
415 impl SocketDescriptor {
416         fn new(conn: Arc<Mutex<Connection>>) -> Self {
417                 let id = conn.lock().unwrap().id;
418                 Self { conn, id }
419         }
420 }
421 impl peer_handler::SocketDescriptor for SocketDescriptor {
422         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
423                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
424                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
425                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
426                 // processing future which will call write_buffer_space_avail and we'll end up back here.
427                 let mut us = self.conn.lock().unwrap();
428                 if us.writer.is_none() {
429                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
430                         return 0;
431                 }
432
433                 if resume_read && us.read_paused {
434                         // The schedule_read future may go to lock up but end up getting woken up by there
435                         // being more room in the write buffer, dropping the other end of this Sender
436                         // before we get here, so we ignore any failures to wake it up.
437                         us.read_paused = false;
438                         let _ = us.read_waker.try_send(());
439                 }
440                 if data.is_empty() { return 0; }
441                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
442                 let mut ctx = task::Context::from_waker(&waker);
443                 let mut written_len = 0;
444                 loop {
445                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
446                                 task::Poll::Ready(Ok(res)) => {
447                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
448                                         // know how to handle it if it does (cause it should be a Poll::Pending
449                                         // instead):
450                                         assert_ne!(res, 0);
451                                         written_len += res;
452                                         if written_len == data.len() { return written_len; }
453                                 },
454                                 task::Poll::Ready(Err(e)) => {
455                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
456                                         // know how to handle it if it does (cause it should be a Poll::Pending
457                                         // instead):
458                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
459                                         // Probably we've already been closed, just return what we have and let the
460                                         // read thread handle closing logic.
461                                         return written_len;
462                                 },
463                                 task::Poll::Pending => {
464                                         // We're queued up for a write event now, but we need to make sure we also
465                                         // pause read given we're now waiting on the remote end to ACK (and in
466                                         // accordance with the send_data() docs).
467                                         us.read_paused = true;
468                                         return written_len;
469                                 },
470                         }
471                 }
472         }
473
474         fn disconnect_socket(&mut self) {
475                 {
476                         let mut us = self.conn.lock().unwrap();
477                         us.rl_requested_disconnect = true;
478                         us.read_paused = true;
479                         // Wake up the sending thread, assuming it is still alive
480                         let _ = us.write_avail.try_send(());
481                         // Happy-path return:
482                         if !us.block_disconnect_socket { return; }
483                 }
484                 while self.conn.lock().unwrap().block_disconnect_socket {
485                         thread::yield_now();
486                 }
487         }
488 }
489 impl Clone for SocketDescriptor {
490         fn clone(&self) -> Self {
491                 Self {
492                         conn: Arc::clone(&self.conn),
493                         id: self.id,
494                 }
495         }
496 }
497 impl Eq for SocketDescriptor {}
498 impl PartialEq for SocketDescriptor {
499         fn eq(&self, o: &Self) -> bool {
500                 self.id == o.id
501         }
502 }
503 impl Hash for SocketDescriptor {
504         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
505                 self.id.hash(state);
506         }
507 }
508
509 #[cfg(test)]
510 mod tests {
511         use lightning::ln::features::*;
512         use lightning::ln::msgs::*;
513         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
514         use lightning::util::events::*;
515         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
516
517         use tokio::sync::mpsc;
518
519         use std::mem;
520         use std::sync::atomic::{AtomicBool, Ordering};
521         use std::sync::{Arc, Mutex};
522         use std::time::Duration;
523
524         pub struct TestLogger();
525         impl lightning::util::logger::Logger for TestLogger {
526                 fn log(&self, record: &lightning::util::logger::Record) {
527                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
528                 }
529         }
530
531         struct MsgHandler{
532                 expected_pubkey: PublicKey,
533                 pubkey_connected: mpsc::Sender<()>,
534                 pubkey_disconnected: mpsc::Sender<()>,
535                 disconnected_flag: AtomicBool,
536                 msg_events: Mutex<Vec<MessageSendEvent>>,
537         }
538         impl RoutingMessageHandler for MsgHandler {
539                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
540                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
541                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
542                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
543                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
544                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
545                 fn sync_routing_table(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
546                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
547                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
548                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
549                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
550         }
551         impl ChannelMessageHandler for MsgHandler {
552                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
553                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
554                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
555                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
556                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
557                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
558                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
559                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
560                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
561                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
562                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
563                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
564                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
565                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
566                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
567                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
568                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
569                         if *their_node_id == self.expected_pubkey {
570                                 self.disconnected_flag.store(true, Ordering::SeqCst);
571                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
572                         }
573                 }
574                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
575                         if *their_node_id == self.expected_pubkey {
576                                 self.pubkey_connected.clone().try_send(()).unwrap();
577                         }
578                 }
579                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
580                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
581         }
582         impl MessageSendEventsProvider for MsgHandler {
583                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
584                         let mut ret = Vec::new();
585                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
586                         ret
587                 }
588         }
589
590         async fn do_basic_connection_test() {
591                 let secp_ctx = Secp256k1::new();
592                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
593                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
594                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
595                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
596
597                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
598                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
599                 let a_handler = Arc::new(MsgHandler {
600                         expected_pubkey: b_pub,
601                         pubkey_connected: a_connected_sender,
602                         pubkey_disconnected: a_disconnected_sender,
603                         disconnected_flag: AtomicBool::new(false),
604                         msg_events: Mutex::new(Vec::new()),
605                 });
606                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
607                         chan_handler: Arc::clone(&a_handler),
608                         route_handler: Arc::clone(&a_handler),
609                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
610
611                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
612                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
613                 let b_handler = Arc::new(MsgHandler {
614                         expected_pubkey: a_pub,
615                         pubkey_connected: b_connected_sender,
616                         pubkey_disconnected: b_disconnected_sender,
617                         disconnected_flag: AtomicBool::new(false),
618                         msg_events: Mutex::new(Vec::new()),
619                 });
620                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
621                         chan_handler: Arc::clone(&b_handler),
622                         route_handler: Arc::clone(&b_handler),
623                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
624
625                 // We bind on localhost, hoping the environment is properly configured with a local
626                 // address. This may not always be the case in containers and the like, so if this test is
627                 // failing for you check that you have a loopback interface and it is configured with
628                 // 127.0.0.1.
629                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
630                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
631                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
632                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
633                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
634                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
635                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
636
637                 let (sender, _receiver) = mpsc::channel(2);
638                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, conn_a);
639                 let fut_b = super::setup_inbound(b_manager, sender, conn_b);
640
641                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
642                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
643
644                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
645                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
646                 });
647                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
648                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
649
650                 a_manager.process_events();
651                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
652                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
653                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
654                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
655
656                 fut_a.await;
657                 fut_b.await;
658         }
659
660         #[tokio::test(flavor = "multi_thread")]
661         async fn basic_threaded_connection_test() {
662                 do_basic_connection_test().await;
663         }
664         #[tokio::test]
665         async fn basic_unthreaded_connection_test() {
666                 do_basic_connection_test().await;
667         }
668 }