0cc442577bf6648ebf4b8ad45e5bbb92e14ce1a1
[ldk-c-bindings] / c-bindings-gen / src / types.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE>
5 // or the MIT license <LICENSE-MIT>, at your option.
6 // You may not use this file except in accordance with one or both of these
7 // licenses.
8
9 use std::cell::RefCell;
10 use std::collections::{HashMap, HashSet};
11 use std::fs::File;
12 use std::io::Write;
13 use std::hash;
14
15 use crate::blocks::*;
16
17 use proc_macro2::{TokenTree, Span};
18 use quote::format_ident;
19 use syn::parse_quote;
20
21 // The following utils are used purely to build our known types maps - they break down all the
22 // types we need to resolve to include the given object, and no more.
23
24 pub fn first_seg_self<'a>(t: &'a syn::Type) -> Option<impl Iterator<Item=&syn::PathSegment> + 'a> {
25         match t {
26                 syn::Type::Path(p) => {
27                         if p.qself.is_some() || p.path.leading_colon.is_some() {
28                                 return None;
29                         }
30                         let mut segs = p.path.segments.iter();
31                         let ty = segs.next().unwrap();
32                         if !ty.arguments.is_empty() { return None; }
33                         if format!("{}", ty.ident) == "Self" {
34                                 Some(segs)
35                         } else { None }
36                 },
37                 _ => None,
38         }
39 }
40
41 pub fn get_single_remaining_path_seg<'a, I: Iterator<Item=&'a syn::PathSegment>>(segs: &mut I) -> Option<&'a syn::Ident> {
42         if let Some(ty) = segs.next() {
43                 if !ty.arguments.is_empty() { unimplemented!(); }
44                 if segs.next().is_some() { return None; }
45                 Some(&ty.ident)
46         } else { None }
47 }
48
49 pub fn first_seg_is_stdlib(first_seg_str: &str) -> bool {
50         first_seg_str == "std" || first_seg_str == "core" || first_seg_str == "alloc"
51 }
52
53 pub fn single_ident_generic_path_to_ident(p: &syn::Path) -> Option<&syn::Ident> {
54         if p.segments.len() == 1 {
55                 Some(&p.segments.iter().next().unwrap().ident)
56         } else { None }
57 }
58
59 pub fn path_matches_nongeneric(p: &syn::Path, exp: &[&str]) -> bool {
60         if p.segments.len() != exp.len() { return false; }
61         for (seg, e) in p.segments.iter().zip(exp.iter()) {
62                 if seg.arguments != syn::PathArguments::None { return false; }
63                 if &format!("{}", seg.ident) != *e { return false; }
64         }
65         true
66 }
67
68 #[derive(Debug, PartialEq)]
69 pub enum ExportStatus {
70         Export,
71         NoExport,
72         TestOnly,
73         /// This is used only for traits to indicate that users should not be able to implement their
74         /// own version of a trait, but we should export Rust implementations of the trait (and the
75         /// trait itself).
76         /// Concretly, this means that we do not implement the Rust trait for the C trait struct.
77         NotImplementable,
78 }
79 /// Gets the ExportStatus of an object (struct, fn, etc) given its attributes.
80 pub fn export_status(attrs: &[syn::Attribute]) -> ExportStatus {
81         for attr in attrs.iter() {
82                 let tokens_clone = attr.tokens.clone();
83                 let mut token_iter = tokens_clone.into_iter();
84                 if let Some(token) = token_iter.next() {
85                         match token {
86                                 TokenTree::Punct(c) if c.as_char() == '=' => {
87                                         // Really not sure where syn gets '=' from here -
88                                         // it somehow represents '///' or '//!'
89                                 },
90                                 TokenTree::Group(g) => {
91                                         if format!("{}", single_ident_generic_path_to_ident(&attr.path).unwrap()) == "cfg" {
92                                                 let mut iter = g.stream().into_iter();
93                                                 if let TokenTree::Ident(i) = iter.next().unwrap() {
94                                                         if i == "any" {
95                                                                 // #[cfg(any(test, feature = ""))]
96                                                                 if let TokenTree::Group(g) = iter.next().unwrap() {
97                                                                         let mut all_test = true;
98                                                                         for token in g.stream().into_iter() {
99                                                                                 if let TokenTree::Ident(i) = token {
100                                                                                         match format!("{}", i).as_str() {
101                                                                                                 "test" => {},
102                                                                                                 "feature" => {},
103                                                                                                 _ => all_test = false,
104                                                                                         }
105                                                                                 } else if let TokenTree::Literal(lit) = token {
106                                                                                         if format!("{}", lit) != "fuzztarget" {
107                                                                                                 all_test = false;
108                                                                                         }
109                                                                                 }
110                                                                         }
111                                                                         if all_test { return ExportStatus::TestOnly; }
112                                                                 }
113                                                         } else if i == "test" || i == "feature" {
114                                                                 // If its cfg(feature(...)) we assume its test-only
115                                                                 return ExportStatus::TestOnly;
116                                                         }
117                                                 }
118                                         }
119                                         continue; // eg #[derive()]
120                                 },
121                                 _ => unimplemented!(),
122                         }
123                 } else { continue; }
124                 match token_iter.next().unwrap() {
125                         TokenTree::Literal(lit) => {
126                                 let line = format!("{}", lit);
127                                 if line.contains("(C-not exported)") {
128                                         return ExportStatus::NoExport;
129                                 } else if line.contains("(C-not implementable)") {
130                                         return ExportStatus::NotImplementable;
131                                 }
132                         },
133                         _ => unimplemented!(),
134                 }
135         }
136         ExportStatus::Export
137 }
138
139 pub fn assert_simple_bound(bound: &syn::TraitBound) {
140         if bound.paren_token.is_some() || bound.lifetimes.is_some() { unimplemented!(); }
141         if let syn::TraitBoundModifier::Maybe(_) = bound.modifier { unimplemented!(); }
142 }
143
144 /// Returns true if the enum will be mapped as an opaue (ie struct with a pointer to the underlying
145 /// type), otherwise it is mapped into a transparent, C-compatible version of itself.
146 pub fn is_enum_opaque(e: &syn::ItemEnum) -> bool {
147         for var in e.variants.iter() {
148                 if let syn::Fields::Named(fields) = &var.fields {
149                         for field in fields.named.iter() {
150                                 match export_status(&field.attrs) {
151                                         ExportStatus::Export|ExportStatus::TestOnly => {},
152                                         ExportStatus::NotImplementable => panic!("(C-not implementable) should only appear on traits!"),
153                                         ExportStatus::NoExport => return true,
154                                 }
155                         }
156                 } else if let syn::Fields::Unnamed(fields) = &var.fields {
157                         for field in fields.unnamed.iter() {
158                                 match export_status(&field.attrs) {
159                                         ExportStatus::Export|ExportStatus::TestOnly => {},
160                                         ExportStatus::NotImplementable => panic!("(C-not implementable) should only appear on traits!"),
161                                         ExportStatus::NoExport => return true,
162                                 }
163                         }
164                 }
165         }
166         false
167 }
168
169 /// A stack of sets of generic resolutions.
170 ///
171 /// This tracks the template parameters for a function, struct, or trait, allowing resolution into
172 /// a concrete type. By pushing a new context onto the stack, this can track a function's template
173 /// parameters inside of a generic struct or trait.
174 ///
175 /// It maps both direct types as well as Deref<Target = X>, mapping them via the provided
176 /// TypeResolver's resolve_path function (ie traits map to the concrete jump table, structs to the
177 /// concrete C container struct, etc).
178 #[must_use]
179 pub struct GenericTypes<'a, 'b> {
180         self_ty: Option<String>,
181         parent: Option<&'b GenericTypes<'b, 'b>>,
182         typed_generics: HashMap<&'a syn::Ident, String>,
183         default_generics: HashMap<&'a syn::Ident, (syn::Type, syn::Type)>,
184 }
185 impl<'a, 'p: 'a> GenericTypes<'a, 'p> {
186         pub fn new(self_ty: Option<String>) -> Self {
187                 Self { self_ty, parent: None, typed_generics: HashMap::new(), default_generics: HashMap::new(), }
188         }
189
190         /// push a new context onto the stack, allowing for a new set of generics to be learned which
191         /// will override any lower contexts, but which will still fall back to resoltion via lower
192         /// contexts.
193         pub fn push_ctx<'c>(&'c self) -> GenericTypes<'a, 'c> {
194                 GenericTypes { self_ty: None, parent: Some(self), typed_generics: HashMap::new(), default_generics: HashMap::new(), }
195         }
196
197         /// Learn the generics in generics in the current context, given a TypeResolver.
198         pub fn learn_generics<'b, 'c>(&mut self, generics: &'a syn::Generics, types: &'b TypeResolver<'a, 'c>) -> bool {
199                 let mut new_typed_generics = HashMap::new();
200                 // First learn simple generics...
201                 for generic in generics.params.iter() {
202                         match generic {
203                                 syn::GenericParam::Type(type_param) => {
204                                         let mut non_lifetimes_processed = false;
205                                         'bound_loop: for bound in type_param.bounds.iter() {
206                                                 if let syn::TypeParamBound::Trait(trait_bound) = bound {
207                                                         if let Some(ident) = single_ident_generic_path_to_ident(&trait_bound.path) {
208                                                                 match &format!("{}", ident) as &str { "Send" => continue, "Sync" => continue, _ => {} }
209                                                         }
210                                                         if path_matches_nongeneric(&trait_bound.path, &["core", "clone", "Clone"]) { continue; }
211
212                                                         assert_simple_bound(&trait_bound);
213                                                         if let Some(path) = types.maybe_resolve_path(&trait_bound.path, None) {
214                                                                 if types.skip_path(&path) { continue; }
215                                                                 if path == "Sized" { continue; }
216                                                                 if non_lifetimes_processed { return false; }
217                                                                 non_lifetimes_processed = true;
218                                                                 if path != "std::ops::Deref" && path != "core::ops::Deref" {
219                                                                         new_typed_generics.insert(&type_param.ident, Some(path));
220                                                                 } else if trait_bound.path.segments.len() == 1 {
221                                                                         // If we're templated on Deref<Target = ConcreteThing>, store
222                                                                         // the reference type in `default_generics` which handles full
223                                                                         // types and not just paths.
224                                                                         if let syn::PathArguments::AngleBracketed(ref args) =
225                                                                                         trait_bound.path.segments[0].arguments {
226                                                                                 for subargument in args.args.iter() {
227                                                                                         match subargument {
228                                                                                                 syn::GenericArgument::Lifetime(_) => {},
229                                                                                                 syn::GenericArgument::Binding(ref b) => {
230                                                                                                         if &format!("{}", b.ident) != "Target" { return false; }
231                                                                                                         let default = &b.ty;
232                                                                                                         self.default_generics.insert(&type_param.ident, (parse_quote!(&#default), parse_quote!(&#default)));
233                                                                                                         break 'bound_loop;
234                                                                                                 },
235                                                                                                 _ => unimplemented!(),
236                                                                                         }
237                                                                                 }
238                                                                         } else {
239                                                                                 new_typed_generics.insert(&type_param.ident, None);
240                                                                         }
241                                                                 }
242                                                         }
243                                                 }
244                                         }
245                                         if let Some(default) = type_param.default.as_ref() {
246                                                 assert!(type_param.bounds.is_empty());
247                                                 self.default_generics.insert(&type_param.ident, (default.clone(), parse_quote!(&#default)));
248                                         }
249                                 },
250                                 _ => {},
251                         }
252                 }
253                 // Then find generics where we are required to pass a Deref<Target=X> and pretend its just X.
254                 if let Some(wh) = &generics.where_clause {
255                         for pred in wh.predicates.iter() {
256                                 if let syn::WherePredicate::Type(t) = pred {
257                                         if let syn::Type::Path(p) = &t.bounded_ty {
258                                                 if p.qself.is_some() { return false; }
259                                                 if p.path.leading_colon.is_some() { return false; }
260                                                 let mut p_iter = p.path.segments.iter();
261                                                 if let Some(gen) = new_typed_generics.get_mut(&p_iter.next().unwrap().ident) {
262                                                         if gen.is_some() { return false; }
263                                                         if &format!("{}", p_iter.next().unwrap().ident) != "Target" {return false; }
264
265                                                         let mut non_lifetimes_processed = false;
266                                                         for bound in t.bounds.iter() {
267                                                                 if let syn::TypeParamBound::Trait(trait_bound) = bound {
268                                                                         if let Some(id) = trait_bound.path.get_ident() {
269                                                                                 if format!("{}", id) == "Sized" { continue; }
270                                                                         }
271                                                                         if non_lifetimes_processed { return false; }
272                                                                         non_lifetimes_processed = true;
273                                                                         assert_simple_bound(&trait_bound);
274                                                                         *gen = Some(types.resolve_path(&trait_bound.path, None));
275                                                                 }
276                                                         }
277                                                 } else { return false; }
278                                         } else { return false; }
279                                 }
280                         }
281                 }
282                 for (key, value) in new_typed_generics.drain() {
283                         if let Some(v) = value {
284                                 assert!(self.typed_generics.insert(key, v).is_none());
285                         } else { return false; }
286                 }
287                 true
288         }
289
290         /// Learn the associated types from the trait in the current context.
291         pub fn learn_associated_types<'b, 'c>(&mut self, t: &'a syn::ItemTrait, types: &'b TypeResolver<'a, 'c>) {
292                 for item in t.items.iter() {
293                         match item {
294                                 &syn::TraitItem::Type(ref t) => {
295                                         if t.default.is_some() || t.generics.lt_token.is_some() { unimplemented!(); }
296                                         let mut bounds_iter = t.bounds.iter();
297                                         match bounds_iter.next().unwrap() {
298                                                 syn::TypeParamBound::Trait(tr) => {
299                                                         assert_simple_bound(&tr);
300                                                         if let Some(path) = types.maybe_resolve_path(&tr.path, None) {
301                                                                 if types.skip_path(&path) { continue; }
302                                                                 // In general we handle Deref<Target=X> as if it were just X (and
303                                                                 // implement Deref<Target=Self> for relevant types). We don't
304                                                                 // bother to implement it for associated types, however, so we just
305                                                                 // ignore such bounds.
306                                                                 if path != "std::ops::Deref" && path != "core::ops::Deref" {
307                                                                         self.typed_generics.insert(&t.ident, path);
308                                                                 }
309                                                         } else { unimplemented!(); }
310                                                 },
311                                                 _ => unimplemented!(),
312                                         }
313                                         if bounds_iter.next().is_some() { unimplemented!(); }
314                                 },
315                                 _ => {},
316                         }
317                 }
318         }
319
320         /// Attempt to resolve a Path as a generic parameter and return the full path. as both a string
321         /// and syn::Path.
322         pub fn maybe_resolve_path<'b>(&'b self, path: &syn::Path) -> Option<&'b String> {
323                 if let Some(ident) = path.get_ident() {
324                         if let Some(ty) = &self.self_ty {
325                                 if format!("{}", ident) == "Self" {
326                                         return Some(&ty);
327                                 }
328                         }
329                         if let Some(res) = self.typed_generics.get(ident) {
330                                 return Some(res);
331                         }
332                 } else {
333                         // Associated types are usually specified as "Self::Generic", so we check for that
334                         // explicitly here.
335                         let mut it = path.segments.iter();
336                         if path.segments.len() == 2 && format!("{}", it.next().unwrap().ident) == "Self" {
337                                 let ident = &it.next().unwrap().ident;
338                                 if let Some(res) = self.typed_generics.get(ident) {
339                                         return Some(res);
340                                 }
341                         }
342                 }
343                 if let Some(parent) = self.parent {
344                         parent.maybe_resolve_path(path)
345                 } else {
346                         None
347                 }
348         }
349 }
350
351 trait ResolveType<'a> { fn resolve_type(&'a self, ty: &'a syn::Type) -> &'a syn::Type; }
352 impl<'a, 'b, 'c: 'a + 'b> ResolveType<'c> for Option<&GenericTypes<'a, 'b>> {
353         fn resolve_type(&'c self, ty: &'c syn::Type) -> &'c syn::Type {
354                 if let Some(us) = self {
355                         match ty {
356                                 syn::Type::Path(p) => {
357                                         if let Some(ident) = p.path.get_ident() {
358                                                 if let Some((ty, _)) = us.default_generics.get(ident) {
359                                                         return ty;
360                                                 }
361                                         }
362                                 },
363                                 syn::Type::Reference(syn::TypeReference { elem, .. }) => {
364                                         if let syn::Type::Path(p) = &**elem {
365                                                 if let Some(ident) = p.path.get_ident() {
366                                                         if let Some((_, refty)) = us.default_generics.get(ident) {
367                                                                 return refty;
368                                                         }
369                                                 }
370                                         }
371                                 }
372                                 _ => {},
373                         }
374                         us.parent.resolve_type(ty)
375                 } else { ty }
376         }
377 }
378
379 #[derive(Clone, PartialEq)]
380 // The type of declaration and the object itself
381 pub enum DeclType<'a> {
382         MirroredEnum,
383         Trait(&'a syn::ItemTrait),
384         StructImported,
385         StructIgnored,
386         EnumIgnored,
387 }
388
389 pub struct ImportResolver<'mod_lifetime, 'crate_lft: 'mod_lifetime> {
390         crate_name: &'mod_lifetime str,
391         dependencies: &'mod_lifetime HashSet<syn::Ident>,
392         module_path: &'mod_lifetime str,
393         imports: HashMap<syn::Ident, (String, syn::Path)>,
394         declared: HashMap<syn::Ident, DeclType<'crate_lft>>,
395         priv_modules: HashSet<syn::Ident>,
396 }
397 impl<'mod_lifetime, 'crate_lft: 'mod_lifetime> ImportResolver<'mod_lifetime, 'crate_lft> {
398         fn process_use_intern(crate_name: &str, module_path: &str, dependencies: &HashSet<syn::Ident>, imports: &mut HashMap<syn::Ident, (String, syn::Path)>,
399                         u: &syn::UseTree, partial_path: &str, mut path: syn::punctuated::Punctuated<syn::PathSegment, syn::token::Colon2>) {
400
401                 let new_path;
402                 macro_rules! push_path {
403                         ($ident: expr, $path_suffix: expr) => {
404                                 if partial_path == "" && format!("{}", $ident) == "super" {
405                                         let mut mod_iter = module_path.rsplitn(2, "::");
406                                         mod_iter.next().unwrap();
407                                         let super_mod = mod_iter.next().unwrap();
408                                         new_path = format!("{}{}", super_mod, $path_suffix);
409                                         assert_eq!(path.len(), 0);
410                                         for module in super_mod.split("::") {
411                                                 path.push(syn::PathSegment { ident: syn::Ident::new(module, Span::call_site()), arguments: syn::PathArguments::None });
412                                         }
413                                 } else if partial_path == "" && !dependencies.contains(&$ident) {
414                                         new_path = format!("{}::{}{}", crate_name, $ident, $path_suffix);
415                                         let crate_name_ident = format_ident!("{}", crate_name);
416                                         path.push(parse_quote!(#crate_name_ident));
417                                 } else {
418                                         new_path = format!("{}{}{}", partial_path, $ident, $path_suffix);
419                                 }
420                                 let ident = &$ident;
421                                 path.push(parse_quote!(#ident));
422                         }
423                 }
424                 match u {
425                         syn::UseTree::Path(p) => {
426                                 push_path!(p.ident, "::");
427                                 Self::process_use_intern(crate_name, module_path, dependencies, imports, &p.tree, &new_path, path);
428                         },
429                         syn::UseTree::Name(n) => {
430                                 push_path!(n.ident, "");
431                                 imports.insert(n.ident.clone(), (new_path, syn::Path { leading_colon: Some(syn::Token![::](Span::call_site())), segments: path }));
432                         },
433                         syn::UseTree::Group(g) => {
434                                 for i in g.items.iter() {
435                                         Self::process_use_intern(crate_name, module_path, dependencies, imports, i, partial_path, path.clone());
436                                 }
437                         },
438                         syn::UseTree::Rename(r) => {
439                                 push_path!(r.ident, "");
440                                 imports.insert(r.rename.clone(), (new_path, syn::Path { leading_colon: Some(syn::Token![::](Span::call_site())), segments: path }));
441                         },
442                         syn::UseTree::Glob(_) => {
443                                 eprintln!("Ignoring * use for {} - this may result in resolution failures", partial_path);
444                         },
445                 }
446         }
447
448         fn process_use(crate_name: &str, module_path: &str, dependencies: &HashSet<syn::Ident>, imports: &mut HashMap<syn::Ident, (String, syn::Path)>, u: &syn::ItemUse) {
449                 if let syn::Visibility::Public(_) = u.vis {
450                         // We actually only use these for #[cfg(fuzztarget)]
451                         eprintln!("Ignoring pub(use) tree!");
452                         return;
453                 }
454                 if u.leading_colon.is_some() { eprintln!("Ignoring leading-colon use!"); return; }
455                 Self::process_use_intern(crate_name, module_path, dependencies, imports, &u.tree, "", syn::punctuated::Punctuated::new());
456         }
457
458         fn insert_primitive(imports: &mut HashMap<syn::Ident, (String, syn::Path)>, id: &str) {
459                 let ident = format_ident!("{}", id);
460                 let path = parse_quote!(#ident);
461                 imports.insert(ident, (id.to_owned(), path));
462         }
463
464         pub fn new(crate_name: &'mod_lifetime str, dependencies: &'mod_lifetime HashSet<syn::Ident>, module_path: &'mod_lifetime str, contents: &'crate_lft [syn::Item]) -> Self {
465                 Self::from_borrowed_items(crate_name, dependencies, module_path, &contents.iter().map(|a| a).collect::<Vec<_>>())
466         }
467         pub fn from_borrowed_items(crate_name: &'mod_lifetime str, dependencies: &'mod_lifetime HashSet<syn::Ident>, module_path: &'mod_lifetime str, contents: &[&'crate_lft syn::Item]) -> Self {
468                 let mut imports = HashMap::new();
469                 // Add primitives to the "imports" list:
470                 Self::insert_primitive(&mut imports, "bool");
471                 Self::insert_primitive(&mut imports, "u64");
472                 Self::insert_primitive(&mut imports, "u32");
473                 Self::insert_primitive(&mut imports, "u16");
474                 Self::insert_primitive(&mut imports, "u8");
475                 Self::insert_primitive(&mut imports, "usize");
476                 Self::insert_primitive(&mut imports, "str");
477                 Self::insert_primitive(&mut imports, "String");
478
479                 // These are here to allow us to print native Rust types in trait fn impls even if we don't
480                 // have C mappings:
481                 Self::insert_primitive(&mut imports, "Result");
482                 Self::insert_primitive(&mut imports, "Vec");
483                 Self::insert_primitive(&mut imports, "Option");
484
485                 let mut declared = HashMap::new();
486                 let mut priv_modules = HashSet::new();
487
488                 for item in contents.iter() {
489                         match item {
490                                 syn::Item::Use(u) => Self::process_use(crate_name, module_path, dependencies, &mut imports, &u),
491                                 syn::Item::Struct(s) => {
492                                         if let syn::Visibility::Public(_) = s.vis {
493                                                 match export_status(&s.attrs) {
494                                                         ExportStatus::Export => { declared.insert(s.ident.clone(), DeclType::StructImported); },
495                                                         ExportStatus::NoExport => { declared.insert(s.ident.clone(), DeclType::StructIgnored); },
496                                                         ExportStatus::TestOnly => continue,
497                                                         ExportStatus::NotImplementable => panic!("(C-not implementable) should only appear on traits!"),
498                                                 }
499                                         }
500                                 },
501                                 syn::Item::Type(t) if export_status(&t.attrs) == ExportStatus::Export => {
502                                         if let syn::Visibility::Public(_) = t.vis {
503                                                 let mut process_alias = true;
504                                                 for tok in t.generics.params.iter() {
505                                                         if let syn::GenericParam::Lifetime(_) = tok {}
506                                                         else { process_alias = false; }
507                                                 }
508                                                 if process_alias {
509                                                         declared.insert(t.ident.clone(), DeclType::StructImported);
510                                                 }
511                                         }
512                                 },
513                                 syn::Item::Enum(e) => {
514                                         if let syn::Visibility::Public(_) = e.vis {
515                                                 match export_status(&e.attrs) {
516                                                         ExportStatus::Export if is_enum_opaque(e) => { declared.insert(e.ident.clone(), DeclType::EnumIgnored); },
517                                                         ExportStatus::Export => { declared.insert(e.ident.clone(), DeclType::MirroredEnum); },
518                                                         ExportStatus::NotImplementable => panic!("(C-not implementable) should only appear on traits!"),
519                                                         _ => continue,
520                                                 }
521                                         }
522                                 },
523                                 syn::Item::Trait(t) => {
524                                         match export_status(&t.attrs) {
525                                                 ExportStatus::Export|ExportStatus::NotImplementable => {
526                                                         if let syn::Visibility::Public(_) = t.vis {
527                                                                 declared.insert(t.ident.clone(), DeclType::Trait(t));
528                                                         }
529                                                 },
530                                                 _ => continue,
531                                         }
532                                 },
533                                 syn::Item::Mod(m) => {
534                                         priv_modules.insert(m.ident.clone());
535                                 },
536                                 _ => {},
537                         }
538                 }
539
540                 Self { crate_name, dependencies, module_path, imports, declared, priv_modules }
541         }
542
543         pub fn get_declared_type(&self, ident: &syn::Ident) -> Option<&DeclType<'crate_lft>> {
544                 self.declared.get(ident)
545         }
546
547         pub fn maybe_resolve_declared(&self, id: &syn::Ident) -> Option<&DeclType<'crate_lft>> {
548                 self.declared.get(id)
549         }
550
551         pub fn maybe_resolve_ident(&self, id: &syn::Ident) -> Option<String> {
552                 if let Some((imp, _)) = self.imports.get(id) {
553                         Some(imp.clone())
554                 } else if self.declared.get(id).is_some() {
555                         Some(self.module_path.to_string() + "::" + &format!("{}", id))
556                 } else { None }
557         }
558
559         pub fn maybe_resolve_non_ignored_ident(&self, id: &syn::Ident) -> Option<String> {
560                 if let Some((imp, _)) = self.imports.get(id) {
561                         Some(imp.clone())
562                 } else if let Some(decl_type) = self.declared.get(id) {
563                         match decl_type {
564                                 DeclType::StructIgnored => None,
565                                 _ => Some(self.module_path.to_string() + "::" + &format!("{}", id)),
566                         }
567                 } else { None }
568         }
569
570         pub fn maybe_resolve_path(&self, p: &syn::Path, generics: Option<&GenericTypes>) -> Option<String> {
571                 if let Some(gen_types) = generics {
572                         if let Some(resp) = gen_types.maybe_resolve_path(p) {
573                                 return Some(resp.clone());
574                         }
575                 }
576
577                 if p.leading_colon.is_some() {
578                         let mut res: String = p.segments.iter().enumerate().map(|(idx, seg)| {
579                                 format!("{}{}", if idx == 0 { "" } else { "::" }, seg.ident)
580                         }).collect();
581                         let firstseg = p.segments.iter().next().unwrap();
582                         if !self.dependencies.contains(&firstseg.ident) {
583                                 res = self.crate_name.to_owned() + "::" + &res;
584                         }
585                         Some(res)
586                 } else if let Some(id) = p.get_ident() {
587                         self.maybe_resolve_ident(id)
588                 } else {
589                         if p.segments.len() == 1 {
590                                 let seg = p.segments.iter().next().unwrap();
591                                 return self.maybe_resolve_ident(&seg.ident);
592                         }
593                         let mut seg_iter = p.segments.iter();
594                         let first_seg = seg_iter.next().unwrap();
595                         let remaining: String = seg_iter.map(|seg| {
596                                 format!("::{}", seg.ident)
597                         }).collect();
598                         let first_seg_str = format!("{}", first_seg.ident);
599                         if let Some((imp, _)) = self.imports.get(&first_seg.ident) {
600                                 if remaining != "" {
601                                         Some(imp.clone() + &remaining)
602                                 } else {
603                                         Some(imp.clone())
604                                 }
605                         } else if let Some(_) = self.priv_modules.get(&first_seg.ident) {
606                                 Some(format!("{}::{}{}", self.module_path, first_seg.ident, remaining))
607                         } else if first_seg_is_stdlib(&first_seg_str) || self.dependencies.contains(&first_seg.ident) {
608                                 Some(first_seg_str + &remaining)
609                         } else { None }
610                 }
611         }
612
613         /// Map all the Paths in a Type into absolute paths given a set of imports (generated via process_use_intern)
614         pub fn resolve_imported_refs(&self, mut ty: syn::Type) -> syn::Type {
615                 match &mut ty {
616                         syn::Type::Path(p) => {
617                                 if p.path.segments.len() != 1 { unimplemented!(); }
618                                 let mut args = p.path.segments[0].arguments.clone();
619                                 if let syn::PathArguments::AngleBracketed(ref mut generics) = &mut args {
620                                         for arg in generics.args.iter_mut() {
621                                                 if let syn::GenericArgument::Type(ref mut t) = arg {
622                                                         *t = self.resolve_imported_refs(t.clone());
623                                                 }
624                                         }
625                                 }
626                                 if let Some((_, newpath)) = self.imports.get(single_ident_generic_path_to_ident(&p.path).unwrap()) {
627                                         p.path = newpath.clone();
628                                 }
629                                 p.path.segments[0].arguments = args;
630                         },
631                         syn::Type::Reference(r) => {
632                                 r.elem = Box::new(self.resolve_imported_refs((*r.elem).clone()));
633                         },
634                         syn::Type::Slice(s) => {
635                                 s.elem = Box::new(self.resolve_imported_refs((*s.elem).clone()));
636                         },
637                         syn::Type::Tuple(t) => {
638                                 for e in t.elems.iter_mut() {
639                                         *e = self.resolve_imported_refs(e.clone());
640                                 }
641                         },
642                         _ => unimplemented!(),
643                 }
644                 ty
645         }
646 }
647
648 // templates_defined is walked to write the C++ header, so if we use the default hashing it get
649 // reordered on each genbindings run. Instead, we use SipHasher (which defaults to 0-keys) so that
650 // the sorting is stable across runs. It is deprecated, but the "replacement" doesn't actually
651 // accomplish the same goals, so we just ignore it.
652 #[allow(deprecated)]
653 pub type NonRandomHash = hash::BuildHasherDefault<hash::SipHasher>;
654
655 /// A public module
656 pub struct ASTModule {
657         pub attrs: Vec<syn::Attribute>,
658         pub items: Vec<syn::Item>,
659         pub submods: Vec<String>,
660 }
661 /// A struct containing the syn::File AST for each file in the crate.
662 pub struct FullLibraryAST {
663         pub modules: HashMap<String, ASTModule, NonRandomHash>,
664         pub dependencies: HashSet<syn::Ident>,
665 }
666 impl FullLibraryAST {
667         fn load_module(&mut self, module: String, attrs: Vec<syn::Attribute>, mut items: Vec<syn::Item>) {
668                 let mut non_mod_items = Vec::with_capacity(items.len());
669                 let mut submods = Vec::with_capacity(items.len());
670                 for item in items.drain(..) {
671                         match item {
672                                 syn::Item::Mod(m) if m.content.is_some() => {
673                                         if export_status(&m.attrs) == ExportStatus::Export {
674                                                 if let syn::Visibility::Public(_) = m.vis {
675                                                         let modident = format!("{}", m.ident);
676                                                         let modname = if module != "" {
677                                                                 module.clone() + "::" + &modident
678                                                         } else {
679                                                                 modident.clone()
680                                                         };
681                                                         self.load_module(modname, m.attrs, m.content.unwrap().1);
682                                                         submods.push(modident);
683                                                 } else {
684                                                         non_mod_items.push(syn::Item::Mod(m));
685                                                 }
686                                         }
687                                 },
688                                 syn::Item::Mod(_) => panic!("--pretty=expanded output should never have non-body modules"),
689                                 syn::Item::ExternCrate(c) => {
690                                         if export_status(&c.attrs) == ExportStatus::Export {
691                                                 self.dependencies.insert(c.ident);
692                                         }
693                                 },
694                                 _ => { non_mod_items.push(item); }
695                         }
696                 }
697                 self.modules.insert(module, ASTModule { attrs, items: non_mod_items, submods });
698         }
699
700         pub fn load_lib(lib: syn::File) -> Self {
701                 assert_eq!(export_status(&lib.attrs), ExportStatus::Export);
702                 let mut res = Self { modules: HashMap::default(), dependencies: HashSet::new() };
703                 res.load_module("".to_owned(), lib.attrs, lib.items);
704                 res
705         }
706 }
707
708 /// List of manually-generated types which are clonable
709 fn initial_clonable_types() -> HashSet<String> {
710         let mut res = HashSet::new();
711         res.insert("crate::c_types::u5".to_owned());
712         res.insert("crate::c_types::ThirtyTwoBytes".to_owned());
713         res.insert("crate::c_types::PublicKey".to_owned());
714         res.insert("crate::c_types::Transaction".to_owned());
715         res.insert("crate::c_types::TxOut".to_owned());
716         res.insert("crate::c_types::Signature".to_owned());
717         res.insert("crate::c_types::RecoverableSignature".to_owned());
718         res.insert("crate::c_types::Secp256k1Error".to_owned());
719         res.insert("crate::c_types::IOError".to_owned());
720         res
721 }
722
723 /// Top-level struct tracking everything which has been defined while walking the crate.
724 pub struct CrateTypes<'a> {
725         /// This may contain structs or enums, but only when either is mapped as
726         /// struct X { inner: *mut originalX, .. }
727         pub opaques: HashMap<String, &'a syn::Ident>,
728         /// Enums which are mapped as C enums with conversion functions
729         pub mirrored_enums: HashMap<String, &'a syn::ItemEnum>,
730         /// Traits which are mapped as a pointer + jump table
731         pub traits: HashMap<String, &'a syn::ItemTrait>,
732         /// Aliases from paths to some other Type
733         pub type_aliases: HashMap<String, syn::Type>,
734         /// Value is an alias to Key (maybe with some generics)
735         pub reverse_alias_map: HashMap<String, Vec<(syn::Path, syn::PathArguments)>>,
736         /// Template continer types defined, map from mangled type name -> whether a destructor fn
737         /// exists.
738         ///
739         /// This is used at the end of processing to make C++ wrapper classes
740         pub templates_defined: RefCell<HashMap<String, bool, NonRandomHash>>,
741         /// The output file for any created template container types, written to as we find new
742         /// template containers which need to be defined.
743         template_file: RefCell<&'a mut File>,
744         /// Set of containers which are clonable
745         clonable_types: RefCell<HashSet<String>>,
746         /// Key impls Value
747         pub trait_impls: HashMap<String, Vec<String>>,
748         /// The full set of modules in the crate(s)
749         pub lib_ast: &'a FullLibraryAST,
750 }
751
752 impl<'a> CrateTypes<'a> {
753         pub fn new(template_file: &'a mut File, libast: &'a FullLibraryAST) -> Self {
754                 CrateTypes {
755                         opaques: HashMap::new(), mirrored_enums: HashMap::new(), traits: HashMap::new(),
756                         type_aliases: HashMap::new(), reverse_alias_map: HashMap::new(),
757                         templates_defined: RefCell::new(HashMap::default()),
758                         clonable_types: RefCell::new(initial_clonable_types()), trait_impls: HashMap::new(),
759                         template_file: RefCell::new(template_file), lib_ast: &libast,
760                 }
761         }
762         pub fn set_clonable(&self, object: String) {
763                 self.clonable_types.borrow_mut().insert(object);
764         }
765         pub fn is_clonable(&self, object: &str) -> bool {
766                 self.clonable_types.borrow().contains(object)
767         }
768         pub fn write_new_template(&self, mangled_container: String, has_destructor: bool, created_container: &[u8]) {
769                 self.template_file.borrow_mut().write(created_container).unwrap();
770                 self.templates_defined.borrow_mut().insert(mangled_container, has_destructor);
771         }
772 }
773
774 /// A struct which tracks resolving rust types into C-mapped equivalents, exists for one specific
775 /// module but contains a reference to the overall CrateTypes tracking.
776 pub struct TypeResolver<'mod_lifetime, 'crate_lft: 'mod_lifetime> {
777         pub module_path: &'mod_lifetime str,
778         pub crate_types: &'mod_lifetime CrateTypes<'crate_lft>,
779         types: ImportResolver<'mod_lifetime, 'crate_lft>,
780 }
781
782 /// Returned by write_empty_rust_val_check_suffix to indicate what type of dereferencing needs to
783 /// happen to get the inner value of a generic.
784 enum EmptyValExpectedTy {
785         /// A type which has a flag for being empty (eg an array where we treat all-0s as empty).
786         NonPointer,
787         /// A Option mapped as a COption_*Z
788         OptionType,
789         /// A pointer which we want to convert to a reference.
790         ReferenceAsPointer,
791 }
792
793 #[derive(PartialEq)]
794 /// Describes the appropriate place to print a general type-conversion string when converting a
795 /// container.
796 enum ContainerPrefixLocation {
797         /// Prints a general type-conversion string prefix and suffix outside of the
798         /// container-conversion strings.
799         OutsideConv,
800         /// Prints a general type-conversion string prefix and suffix inside of the
801         /// container-conversion strings.
802         PerConv,
803         /// Does not print the usual type-conversion string prefix and suffix.
804         NoPrefix,
805 }
806
807 impl<'a, 'c: 'a> TypeResolver<'a, 'c> {
808         pub fn new(module_path: &'a str, types: ImportResolver<'a, 'c>, crate_types: &'a CrateTypes<'c>) -> Self {
809                 Self { module_path, types, crate_types }
810         }
811
812         // *************************************************
813         // *** Well know type and conversion definitions ***
814         // *************************************************
815
816         /// Returns true we if can just skip passing this to C entirely
817         fn skip_path(&self, full_path: &str) -> bool {
818                 full_path == "bitcoin::secp256k1::Secp256k1" ||
819                 full_path == "bitcoin::secp256k1::Signing" ||
820                 full_path == "bitcoin::secp256k1::Verification"
821         }
822         /// Returns true we if can just skip passing this to C entirely
823         fn no_arg_path_to_rust(&self, full_path: &str) -> &str {
824                 if full_path == "bitcoin::secp256k1::Secp256k1" {
825                         "secp256k1::SECP256K1"
826                 } else { unimplemented!(); }
827         }
828
829         /// Returns true if the object is a primitive and is mapped as-is with no conversion
830         /// whatsoever.
831         pub fn is_primitive(&self, full_path: &str) -> bool {
832                 match full_path {
833                         "bool" => true,
834                         "u64" => true,
835                         "u32" => true,
836                         "u16" => true,
837                         "u8" => true,
838                         "usize" => true,
839                         _ => false,
840                 }
841         }
842         pub fn is_clonable(&self, ty: &str) -> bool {
843                 if self.crate_types.is_clonable(ty) { return true; }
844                 if self.is_primitive(ty) { return true; }
845                 match ty {
846                         "()" => true,
847                         _ => false,
848                 }
849         }
850         /// Gets the C-mapped type for types which are outside of the crate, or which are manually
851         /// ignored by for some reason need mapping anyway.
852         fn c_type_from_path<'b>(&self, full_path: &'b str, is_ref: bool, _ptr_for_ref: bool) -> Option<&'b str> {
853                 if self.is_primitive(full_path) {
854                         return Some(full_path);
855                 }
856                 match full_path {
857                         // Note that no !is_ref types can map to an array because Rust and C's call semantics
858                         // for arrays are different (https://github.com/eqrion/cbindgen/issues/528)
859
860                         "[u8; 32]" if !is_ref => Some("crate::c_types::ThirtyTwoBytes"),
861                         "[u8; 20]" if !is_ref => Some("crate::c_types::TwentyBytes"),
862                         "[u8; 16]" if !is_ref => Some("crate::c_types::SixteenBytes"),
863                         "[u8; 10]" if !is_ref => Some("crate::c_types::TenBytes"),
864                         "[u8; 4]" if !is_ref => Some("crate::c_types::FourBytes"),
865                         "[u8; 3]" if !is_ref => Some("crate::c_types::ThreeBytes"), // Used for RGB values
866
867                         "str" if is_ref => Some("crate::c_types::Str"),
868                         "alloc::string::String"|"String" => Some("crate::c_types::Str"),
869
870                         "std::time::Duration"|"core::time::Duration" => Some("u64"),
871                         "std::time::SystemTime" => Some("u64"),
872                         "std::io::Error" => Some("crate::c_types::IOError"),
873
874                         "core::convert::Infallible" => Some("crate::c_types::NotConstructable"),
875
876                         "bech32::u5" => Some("crate::c_types::u5"),
877                         "core::num::NonZeroU8" => Some("u8"),
878
879                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
880                                 => Some("crate::c_types::PublicKey"),
881                         "bitcoin::secp256k1::Signature" => Some("crate::c_types::Signature"),
882                         "bitcoin::secp256k1::recovery::RecoverableSignature" => Some("crate::c_types::RecoverableSignature"),
883                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
884                                 if is_ref  => Some("*const [u8; 32]"),
885                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
886                                 if !is_ref => Some("crate::c_types::SecretKey"),
887                         "bitcoin::secp256k1::Error"|"secp256k1::Error"
888                                 if !is_ref => Some("crate::c_types::Secp256k1Error"),
889                         "bitcoin::blockdata::script::Script" if is_ref => Some("crate::c_types::u8slice"),
890                         "bitcoin::blockdata::script::Script" if !is_ref => Some("crate::c_types::derived::CVec_u8Z"),
891                         "bitcoin::blockdata::transaction::OutPoint" => Some("crate::lightning::chain::transaction::OutPoint"),
892                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" => Some("crate::c_types::Transaction"),
893                         "bitcoin::blockdata::transaction::TxOut" if !is_ref => Some("crate::c_types::TxOut"),
894                         "bitcoin::network::constants::Network" => Some("crate::bitcoin::network::Network"),
895                         "bitcoin::blockdata::block::BlockHeader" if is_ref  => Some("*const [u8; 80]"),
896                         "bitcoin::blockdata::block::Block" if is_ref  => Some("crate::c_types::u8slice"),
897
898                         "bitcoin::hash_types::PubkeyHash"|"bitcoin::hash_types::WPubkeyHash"|"bitcoin::hash_types::ScriptHash"
899                                 if is_ref => Some("*const [u8; 20]"),
900                         "bitcoin::hash_types::WScriptHash"
901                                 if is_ref => Some("*const [u8; 32]"),
902
903                         // Newtypes that we just expose in their original form.
904                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
905                                 if is_ref  => Some("*const [u8; 32]"),
906                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
907                                 if !is_ref => Some("crate::c_types::ThirtyTwoBytes"),
908                         "bitcoin::secp256k1::Message" if !is_ref => Some("crate::c_types::ThirtyTwoBytes"),
909                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"|"lightning::ln::channelmanager::PaymentId"
910                                 if is_ref => Some("*const [u8; 32]"),
911                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"|"lightning::ln::channelmanager::PaymentId"
912                                 if !is_ref => Some("crate::c_types::ThirtyTwoBytes"),
913
914                         // Override the default since Records contain an fmt with a lifetime:
915                         "lightning::util::logger::Record" => Some("*const std::os::raw::c_char"),
916
917                         "lightning::io::Read" => Some("crate::c_types::u8slice"),
918
919                         _ => None,
920                 }
921         }
922
923         fn from_c_conversion_new_var_from_path<'b>(&self, _full_path: &str, _is_ref: bool) -> Option<(&'b str, &'b str)> {
924                 None
925         }
926         fn from_c_conversion_prefix_from_path<'b>(&self, full_path: &str, is_ref: bool) -> Option<String> {
927                 if self.is_primitive(full_path) {
928                         return Some("".to_owned());
929                 }
930                 match full_path {
931                         "Vec" if !is_ref => Some("local_"),
932                         "Result" if !is_ref => Some("local_"),
933                         "Option" if is_ref => Some("&local_"),
934                         "Option" => Some("local_"),
935
936                         "[u8; 32]" if is_ref => Some("unsafe { &*"),
937                         "[u8; 32]" if !is_ref => Some(""),
938                         "[u8; 20]" if !is_ref => Some(""),
939                         "[u8; 16]" if !is_ref => Some(""),
940                         "[u8; 10]" if !is_ref => Some(""),
941                         "[u8; 4]" if !is_ref => Some(""),
942                         "[u8; 3]" if !is_ref => Some(""),
943
944                         "[u8]" if is_ref => Some(""),
945                         "[usize]" if is_ref => Some(""),
946
947                         "str" if is_ref => Some(""),
948                         "alloc::string::String"|"String" => Some(""),
949                         "std::io::Error" if !is_ref => Some(""),
950                         // Note that we'll panic for String if is_ref, as we only have non-owned memory, we
951                         // cannot create a &String.
952
953                         "core::convert::Infallible" => Some("panic!(\"You must never construct a NotConstructable! : "),
954
955                         "std::time::Duration"|"core::time::Duration" => Some("std::time::Duration::from_secs("),
956                         "std::time::SystemTime" => Some("(::std::time::SystemTime::UNIX_EPOCH + std::time::Duration::from_secs("),
957
958                         "bech32::u5" => Some(""),
959                         "core::num::NonZeroU8" => Some("core::num::NonZeroU8::new("),
960
961                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
962                                 if is_ref => Some("&"),
963                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
964                                 => Some(""),
965                         "bitcoin::secp256k1::Signature" if is_ref => Some("&"),
966                         "bitcoin::secp256k1::Signature" => Some(""),
967                         "bitcoin::secp256k1::recovery::RecoverableSignature" => Some(""),
968                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
969                                 if is_ref => Some("&::bitcoin::secp256k1::key::SecretKey::from_slice(&unsafe { *"),
970                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
971                                 if !is_ref => Some(""),
972                         "bitcoin::blockdata::script::Script" if is_ref => Some("&::bitcoin::blockdata::script::Script::from(Vec::from("),
973                         "bitcoin::blockdata::script::Script" if !is_ref => Some("::bitcoin::blockdata::script::Script::from("),
974                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" if is_ref => Some("&"),
975                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" => Some(""),
976                         "bitcoin::blockdata::transaction::OutPoint" => Some("crate::c_types::C_to_bitcoin_outpoint("),
977                         "bitcoin::blockdata::transaction::TxOut" if !is_ref => Some(""),
978                         "bitcoin::network::constants::Network" => Some(""),
979                         "bitcoin::blockdata::block::BlockHeader" => Some("&::bitcoin::consensus::encode::deserialize(unsafe { &*"),
980                         "bitcoin::blockdata::block::Block" if is_ref => Some("&::bitcoin::consensus::encode::deserialize("),
981
982                         "bitcoin::hash_types::PubkeyHash" if is_ref =>
983                                 Some("&bitcoin::hash_types::PubkeyHash::from_hash(bitcoin::hashes::Hash::from_inner(unsafe { *"),
984                         "bitcoin::hash_types::WPubkeyHash" if is_ref =>
985                                 Some("&bitcoin::hash_types::WPubkeyHash::from_hash(bitcoin::hashes::Hash::from_inner(unsafe { *"),
986                         "bitcoin::hash_types::ScriptHash" if is_ref =>
987                                 Some("&bitcoin::hash_types::ScriptHash::from_hash(bitcoin::hashes::Hash::from_inner(unsafe { *"),
988                         "bitcoin::hash_types::WScriptHash" if is_ref =>
989                                 Some("&bitcoin::hash_types::WScriptHash::from_hash(bitcoin::hashes::Hash::from_inner(unsafe { *"),
990
991                         // Newtypes that we just expose in their original form.
992                         "bitcoin::hash_types::Txid" if is_ref => Some("&::bitcoin::hash_types::Txid::from_slice(&unsafe { &*"),
993                         "bitcoin::hash_types::Txid" if !is_ref => Some("::bitcoin::hash_types::Txid::from_slice(&"),
994                         "bitcoin::hash_types::BlockHash" => Some("::bitcoin::hash_types::BlockHash::from_slice(&"),
995                         "lightning::ln::PaymentHash" if !is_ref => Some("::lightning::ln::PaymentHash("),
996                         "lightning::ln::PaymentHash" if is_ref => Some("&::lightning::ln::PaymentHash(unsafe { *"),
997                         "lightning::ln::PaymentPreimage" if !is_ref => Some("::lightning::ln::PaymentPreimage("),
998                         "lightning::ln::PaymentPreimage" if is_ref => Some("&::lightning::ln::PaymentPreimage(unsafe { *"),
999                         "lightning::ln::PaymentSecret" if !is_ref => Some("::lightning::ln::PaymentSecret("),
1000                         "lightning::ln::channelmanager::PaymentId" if !is_ref => Some("::lightning::ln::channelmanager::PaymentId("),
1001                         "lightning::ln::channelmanager::PaymentId" if is_ref=> Some("&::lightning::ln::channelmanager::PaymentId( unsafe { *"),
1002
1003                         // List of traits we map (possibly during processing of other files):
1004                         "crate::util::logger::Logger" => Some(""),
1005
1006                         "lightning::io::Read" => Some("&mut "),
1007
1008                         _ => None,
1009                 }.map(|s| s.to_owned())
1010         }
1011         fn from_c_conversion_suffix_from_path<'b>(&self, full_path: &str, is_ref: bool) -> Option<String> {
1012                 if self.is_primitive(full_path) {
1013                         return Some("".to_owned());
1014                 }
1015                 match full_path {
1016                         "Vec" if !is_ref => Some(""),
1017                         "Option" => Some(""),
1018                         "Result" if !is_ref => Some(""),
1019
1020                         "[u8; 32]" if is_ref => Some("}"),
1021                         "[u8; 32]" if !is_ref => Some(".data"),
1022                         "[u8; 20]" if !is_ref => Some(".data"),
1023                         "[u8; 16]" if !is_ref => Some(".data"),
1024                         "[u8; 10]" if !is_ref => Some(".data"),
1025                         "[u8; 4]" if !is_ref => Some(".data"),
1026                         "[u8; 3]" if !is_ref => Some(".data"),
1027
1028                         "[u8]" if is_ref => Some(".to_slice()"),
1029                         "[usize]" if is_ref => Some(".to_slice()"),
1030
1031                         "str" if is_ref => Some(".into_str()"),
1032                         "alloc::string::String"|"String" => Some(".into_string()"),
1033                         "std::io::Error" if !is_ref => Some(".to_rust()"),
1034
1035                         "core::convert::Infallible" => Some("\")"),
1036
1037                         "std::time::Duration"|"core::time::Duration" => Some(")"),
1038                         "std::time::SystemTime" => Some("))"),
1039
1040                         "bech32::u5" => Some(".into()"),
1041                         "core::num::NonZeroU8" => Some(").expect(\"Value must be non-zero\")"),
1042
1043                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
1044                                 => Some(".into_rust()"),
1045                         "bitcoin::secp256k1::Signature" => Some(".into_rust()"),
1046                         "bitcoin::secp256k1::recovery::RecoverableSignature" => Some(".into_rust()"),
1047                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1048                                 if !is_ref => Some(".into_rust()"),
1049                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1050                                 if is_ref => Some("}[..]).unwrap()"),
1051                         "bitcoin::blockdata::script::Script" if is_ref => Some(".to_slice()))"),
1052                         "bitcoin::blockdata::script::Script" if !is_ref => Some(".into_rust())"),
1053                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" => Some(".into_bitcoin()"),
1054                         "bitcoin::blockdata::transaction::OutPoint" => Some(")"),
1055                         "bitcoin::blockdata::transaction::TxOut" if !is_ref => Some(".into_rust()"),
1056                         "bitcoin::network::constants::Network" => Some(".into_bitcoin()"),
1057                         "bitcoin::blockdata::block::BlockHeader" => Some(" }).unwrap()"),
1058                         "bitcoin::blockdata::block::Block" => Some(".to_slice()).unwrap()"),
1059
1060                         "bitcoin::hash_types::PubkeyHash"|"bitcoin::hash_types::WPubkeyHash"|
1061                         "bitcoin::hash_types::ScriptHash"|"bitcoin::hash_types::WScriptHash"
1062                                 if is_ref => Some(" }.clone()))"),
1063
1064                         // Newtypes that we just expose in their original form.
1065                         "bitcoin::hash_types::Txid" if is_ref => Some(" }[..]).unwrap()"),
1066                         "bitcoin::hash_types::Txid" => Some(".data[..]).unwrap()"),
1067                         "bitcoin::hash_types::BlockHash" if !is_ref => Some(".data[..]).unwrap()"),
1068                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"|"lightning::ln::channelmanager::PaymentId"
1069                                 if !is_ref => Some(".data)"),
1070                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"|"lightning::ln::channelmanager::PaymentId"
1071                                 if is_ref => Some(" })"),
1072
1073                         // List of traits we map (possibly during processing of other files):
1074                         "crate::util::logger::Logger" => Some(""),
1075
1076                         "lightning::io::Read" => Some(".to_reader()"),
1077
1078                         _ => None,
1079                 }.map(|s| s.to_owned())
1080         }
1081
1082         fn to_c_conversion_new_var_from_path<'b>(&self, full_path: &str, is_ref: bool) -> Option<(&'b str, &'b str)> {
1083                 if self.is_primitive(full_path) {
1084                         return None;
1085                 }
1086                 match full_path {
1087                         "[u8]" if is_ref => Some(("crate::c_types::u8slice::from_slice(", ")")),
1088                         "[usize]" if is_ref => Some(("crate::c_types::usizeslice::from_slice(", ")")),
1089
1090                         "bitcoin::blockdata::block::BlockHeader" if is_ref => Some(("{ let mut s = [0u8; 80]; s[..].copy_from_slice(&::bitcoin::consensus::encode::serialize(", ")); s }")),
1091                         "bitcoin::blockdata::block::Block" if is_ref => Some(("::bitcoin::consensus::encode::serialize(", ")")),
1092                         "bitcoin::hash_types::Txid" => None,
1093
1094                         // Override the default since Records contain an fmt with a lifetime:
1095                         // TODO: We should include the other record fields
1096                         "lightning::util::logger::Record" => Some(("std::ffi::CString::new(format!(\"{}\", ", ".args)).unwrap()")),
1097                         _ => None,
1098                 }.map(|s| s.to_owned())
1099         }
1100         fn to_c_conversion_inline_prefix_from_path(&self, full_path: &str, is_ref: bool, _ptr_for_ref: bool) -> Option<String> {
1101                 if self.is_primitive(full_path) {
1102                         return Some("".to_owned());
1103                 }
1104                 match full_path {
1105                         "Result" if !is_ref => Some("local_"),
1106                         "Vec" if !is_ref => Some("local_"),
1107                         "Option" => Some("local_"),
1108
1109                         "[u8; 32]" if !is_ref => Some("crate::c_types::ThirtyTwoBytes { data: "),
1110                         "[u8; 32]" if is_ref => Some(""),
1111                         "[u8; 20]" if !is_ref => Some("crate::c_types::TwentyBytes { data: "),
1112                         "[u8; 16]" if !is_ref => Some("crate::c_types::SixteenBytes { data: "),
1113                         "[u8; 10]" if !is_ref => Some("crate::c_types::TenBytes { data: "),
1114                         "[u8; 4]" if !is_ref => Some("crate::c_types::FourBytes { data: "),
1115                         "[u8; 3]" if is_ref => Some(""),
1116
1117                         "[u8]" if is_ref => Some("local_"),
1118                         "[usize]" if is_ref => Some("local_"),
1119
1120                         "str" if is_ref => Some(""),
1121                         "alloc::string::String"|"String" => Some(""),
1122
1123                         "std::time::Duration"|"core::time::Duration" => Some(""),
1124                         "std::time::SystemTime" => Some(""),
1125                         "std::io::Error" if !is_ref => Some("crate::c_types::IOError::from_rust("),
1126
1127                         "core::convert::Infallible" => Some("panic!(\"Cannot construct an Infallible: "),
1128
1129                         "bech32::u5" => Some(""),
1130
1131                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
1132                                 => Some("crate::c_types::PublicKey::from_rust(&"),
1133                         "bitcoin::secp256k1::Signature" => Some("crate::c_types::Signature::from_rust(&"),
1134                         "bitcoin::secp256k1::recovery::RecoverableSignature" => Some("crate::c_types::RecoverableSignature::from_rust(&"),
1135                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1136                                 if is_ref => Some(""),
1137                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1138                                 if !is_ref => Some("crate::c_types::SecretKey::from_rust("),
1139                         "bitcoin::secp256k1::Error"|"secp256k1::Error"
1140                                 if !is_ref => Some("crate::c_types::Secp256k1Error::from_rust("),
1141                         "bitcoin::blockdata::script::Script" if is_ref => Some("crate::c_types::u8slice::from_slice(&"),
1142                         "bitcoin::blockdata::script::Script" if !is_ref => Some(""),
1143                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" if is_ref => Some("crate::c_types::Transaction::from_bitcoin("),
1144                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" => Some("crate::c_types::Transaction::from_bitcoin(&"),
1145                         "bitcoin::blockdata::transaction::OutPoint" => Some("crate::c_types::bitcoin_to_C_outpoint("),
1146                         "bitcoin::blockdata::transaction::TxOut" if !is_ref => Some("crate::c_types::TxOut::from_rust("),
1147                         "bitcoin::network::constants::Network" => Some("crate::bitcoin::network::Network::from_bitcoin("),
1148                         "bitcoin::blockdata::block::BlockHeader" if is_ref => Some("&local_"),
1149                         "bitcoin::blockdata::block::Block" if is_ref => Some("crate::c_types::u8slice::from_slice(&local_"),
1150
1151                         "bitcoin::hash_types::Txid" if !is_ref => Some("crate::c_types::ThirtyTwoBytes { data: "),
1152
1153                         // Newtypes that we just expose in their original form.
1154                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
1155                                 if is_ref => Some(""),
1156                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
1157                                 if !is_ref => Some("crate::c_types::ThirtyTwoBytes { data: "),
1158                         "bitcoin::secp256k1::Message" if !is_ref => Some("crate::c_types::ThirtyTwoBytes { data: "),
1159                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"|"lightning::ln::channelmanager::PaymentId"
1160                                 if is_ref => Some("&"),
1161                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"|"lightning::ln::channelmanager::PaymentId"
1162                                 if !is_ref => Some("crate::c_types::ThirtyTwoBytes { data: "),
1163
1164                         // Override the default since Records contain an fmt with a lifetime:
1165                         "lightning::util::logger::Record" => Some("local_"),
1166
1167                         "lightning::io::Read" => Some("crate::c_types::u8slice::from_vec(&crate::c_types::reader_to_vec("),
1168
1169                         _ => None,
1170                 }.map(|s| s.to_owned())
1171         }
1172         fn to_c_conversion_inline_suffix_from_path(&self, full_path: &str, is_ref: bool, _ptr_for_ref: bool) -> Option<String> {
1173                 if self.is_primitive(full_path) {
1174                         return Some("".to_owned());
1175                 }
1176                 match full_path {
1177                         "Result" if !is_ref => Some(""),
1178                         "Vec" if !is_ref => Some(".into()"),
1179                         "Option" => Some(""),
1180
1181                         "[u8; 32]" if !is_ref => Some(" }"),
1182                         "[u8; 32]" if is_ref => Some(""),
1183                         "[u8; 20]" if !is_ref => Some(" }"),
1184                         "[u8; 16]" if !is_ref => Some(" }"),
1185                         "[u8; 10]" if !is_ref => Some(" }"),
1186                         "[u8; 4]" if !is_ref => Some(" }"),
1187                         "[u8; 3]" if is_ref => Some(""),
1188
1189                         "[u8]" if is_ref => Some(""),
1190                         "[usize]" if is_ref => Some(""),
1191
1192                         "str" if is_ref => Some(".into()"),
1193                         "alloc::string::String"|"String" if is_ref => Some(".as_str().into()"),
1194                         "alloc::string::String"|"String" => Some(".into()"),
1195
1196                         "std::time::Duration"|"core::time::Duration" => Some(".as_secs()"),
1197                         "std::time::SystemTime" => Some(".duration_since(::std::time::SystemTime::UNIX_EPOCH).expect(\"Times must be post-1970\").as_secs()"),
1198                         "std::io::Error" if !is_ref => Some(")"),
1199
1200                         "core::convert::Infallible" => Some("\")"),
1201
1202                         "bech32::u5" => Some(".into()"),
1203
1204                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
1205                                 => Some(")"),
1206                         "bitcoin::secp256k1::Signature" => Some(")"),
1207                         "bitcoin::secp256k1::recovery::RecoverableSignature" => Some(")"),
1208                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1209                                 if !is_ref => Some(")"),
1210                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1211                                 if is_ref => Some(".as_ref()"),
1212                         "bitcoin::secp256k1::Error"|"secp256k1::Error"
1213                                 if !is_ref => Some(")"),
1214                         "bitcoin::blockdata::script::Script" if is_ref => Some("[..])"),
1215                         "bitcoin::blockdata::script::Script" if !is_ref => Some(".into_bytes().into()"),
1216                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" => Some(")"),
1217                         "bitcoin::blockdata::transaction::OutPoint" => Some(")"),
1218                         "bitcoin::blockdata::transaction::TxOut" if !is_ref => Some(")"),
1219                         "bitcoin::network::constants::Network" => Some(")"),
1220                         "bitcoin::blockdata::block::BlockHeader" if is_ref => Some(""),
1221                         "bitcoin::blockdata::block::Block" if is_ref => Some(")"),
1222
1223                         "bitcoin::hash_types::Txid" if !is_ref => Some(".into_inner() }"),
1224
1225                         // Newtypes that we just expose in their original form.
1226                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
1227                                 if is_ref => Some(".as_inner()"),
1228                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
1229                                 if !is_ref => Some(".into_inner() }"),
1230                         "bitcoin::secp256k1::Message" if !is_ref => Some(".as_ref().clone() }"),
1231                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"|"lightning::ln::channelmanager::PaymentId"
1232                                 if is_ref => Some(".0"),
1233                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"|"lightning::ln::channelmanager::PaymentId"
1234                                 if !is_ref => Some(".0 }"),
1235
1236                         // Override the default since Records contain an fmt with a lifetime:
1237                         "lightning::util::logger::Record" => Some(".as_ptr()"),
1238
1239                         "lightning::io::Read" => Some("))"),
1240
1241                         _ => None,
1242                 }.map(|s| s.to_owned())
1243         }
1244
1245         fn empty_val_check_suffix_from_path(&self, full_path: &str) -> Option<&str> {
1246                 match full_path {
1247                         "lightning::ln::PaymentSecret" => Some(".data == [0; 32]"),
1248                         "secp256k1::key::PublicKey"|"bitcoin::secp256k1::key::PublicKey" => Some(".is_null()"),
1249                         "bitcoin::secp256k1::Signature" => Some(".is_null()"),
1250                         _ => None
1251                 }
1252         }
1253
1254         /// When printing a reference to the source crate's rust type, if we need to map it to a
1255         /// different "real" type, it can be done so here.
1256         /// This is useful to work around limitations in the binding type resolver, where we reference
1257         /// a non-public `use` alias.
1258         /// TODO: We should never need to use this!
1259         fn real_rust_type_mapping<'equiv>(&self, thing: &'equiv str) -> &'equiv str {
1260                 match thing {
1261                         "lightning::io::Read" => "std::io::Read",
1262                         _ => thing,
1263                 }
1264         }
1265
1266         // ****************************
1267         // *** Container Processing ***
1268         // ****************************
1269
1270         /// Returns the module path in the generated mapping crate to the containers which we generate
1271         /// when writing to CrateTypes::template_file.
1272         pub fn generated_container_path() -> &'static str {
1273                 "crate::c_types::derived"
1274         }
1275         /// Returns the module path in the generated mapping crate to the container templates, which
1276         /// are then concretized and put in the generated container path/template_file.
1277         fn container_templ_path() -> &'static str {
1278                 "crate::c_types"
1279         }
1280
1281         /// Returns true if the path containing the given args is a "transparent" container, ie an
1282         /// Option or a container which does not require a generated continer class.
1283         fn is_transparent_container<'i, I: Iterator<Item=&'i syn::Type>>(&self, full_path: &str, _is_ref: bool, mut args: I, generics: Option<&GenericTypes>) -> bool {
1284                 if full_path == "Option" {
1285                         let inner = args.next().unwrap();
1286                         assert!(args.next().is_none());
1287                         match inner {
1288                                 syn::Type::Reference(_) => true,
1289                                 syn::Type::Path(p) => {
1290                                         if let Some(resolved) = self.maybe_resolve_path(&p.path, generics) {
1291                                                 if self.c_type_has_inner_from_path(&resolved) { return true; }
1292                                                 if self.is_primitive(&resolved) { return false; }
1293                                                 if self.c_type_from_path(&resolved, false, false).is_some() { true } else { false }
1294                                         } else { true }
1295                                 },
1296                                 syn::Type::Tuple(_) => false,
1297                                 _ => unimplemented!(),
1298                         }
1299                 } else { false }
1300         }
1301         /// Returns true if the path is a "transparent" container, ie an Option or a container which does
1302         /// not require a generated continer class.
1303         pub fn is_path_transparent_container(&self, full_path: &syn::Path, generics: Option<&GenericTypes>, is_ref: bool) -> bool {
1304                 let inner_iter = match &full_path.segments.last().unwrap().arguments {
1305                         syn::PathArguments::None => return false,
1306                         syn::PathArguments::AngleBracketed(args) => args.args.iter().map(|arg| {
1307                                 if let syn::GenericArgument::Type(ref ty) = arg {
1308                                         ty
1309                                 } else { unimplemented!() }
1310                         }),
1311                         syn::PathArguments::Parenthesized(_) => unimplemented!(),
1312                 };
1313                 self.is_transparent_container(&self.resolve_path(full_path, generics), is_ref, inner_iter, generics)
1314         }
1315         /// Returns true if this is a known, supported, non-transparent container.
1316         fn is_known_container(&self, full_path: &str, is_ref: bool) -> bool {
1317                 (full_path == "Result" && !is_ref) || (full_path == "Vec" && !is_ref) || full_path.ends_with("Tuple") || full_path == "Option"
1318         }
1319         fn to_c_conversion_container_new_var<'b>(&self, generics: Option<&GenericTypes>, full_path: &str, is_ref: bool, single_contained: Option<&syn::Type>, var_name: &syn::Ident, var_access: &str)
1320                         // Returns prefix + Vec<(prefix, var-name-to-inline-convert)> + suffix
1321                         // expecting one element in the vec per generic type, each of which is inline-converted
1322                         -> Option<(&'b str, Vec<(String, String)>, &'b str, ContainerPrefixLocation)> {
1323                 match full_path {
1324                         "Result" if !is_ref => {
1325                                 Some(("match ",
1326                                                 vec![(" { Ok(mut o) => crate::c_types::CResultTempl::ok(".to_string(), "o".to_string()),
1327                                                         (").into(), Err(mut e) => crate::c_types::CResultTempl::err(".to_string(), "e".to_string())],
1328                                                 ").into() }", ContainerPrefixLocation::PerConv))
1329                         },
1330                         "Vec" => {
1331                                 if is_ref {
1332                                         // We should only get here if the single contained has an inner
1333                                         assert!(self.c_type_has_inner(single_contained.unwrap()));
1334                                 }
1335                                 Some(("Vec::new(); for mut item in ", vec![(format!(".drain(..) {{ local_{}.push(", var_name), "item".to_string())], "); }", ContainerPrefixLocation::PerConv))
1336                         },
1337                         "Slice" => {
1338                                 Some(("Vec::new(); for item in ", vec![(format!(".iter() {{ local_{}.push(", var_name), "item".to_string())], "); }", ContainerPrefixLocation::PerConv))
1339                         },
1340                         "Option" => {
1341                                 let contained_struct = if let Some(syn::Type::Path(p)) = single_contained {
1342                                         Some(self.resolve_path(&p.path, generics))
1343                                 } else if let Some(syn::Type::Reference(r)) = single_contained {
1344                                         if let syn::Type::Path(p) = &*r.elem {
1345                                                 Some(self.resolve_path(&p.path, generics))
1346                                         } else { None }
1347                                 } else { None };
1348                                 if let Some(inner_path) = contained_struct {
1349                                         if self.c_type_has_inner_from_path(&inner_path) {
1350                                                 let is_inner_ref = if let Some(syn::Type::Reference(_)) = single_contained { true } else { false };
1351                                                 if is_ref {
1352                                                         return Some(("if ", vec![
1353                                                                 (".is_none() { std::ptr::null() } else { ObjOps::nonnull_ptr_to_inner(".to_owned(),
1354                                                                         format!("({}{}.unwrap())", var_access, if is_inner_ref { "" } else { ".as_ref()" }))
1355                                                                 ], ") }", ContainerPrefixLocation::OutsideConv));
1356                                                 } else {
1357                                                         return Some(("if ", vec![
1358                                                                 (".is_none() { std::ptr::null_mut() } else { ".to_owned(), format!("({}.unwrap())", var_access))
1359                                                                 ], " }", ContainerPrefixLocation::OutsideConv));
1360                                                 }
1361                                         } else if self.is_primitive(&inner_path) || self.c_type_from_path(&inner_path, false, false).is_none() {
1362                                                 let inner_name = self.get_c_mangled_container_type(vec![single_contained.unwrap()], generics, "Option").unwrap();
1363                                                 return Some(("if ", vec![
1364                                                         (format!(".is_none() {{ {}::None }} else {{ {}::Some(",
1365                                                                 inner_name, inner_name),
1366                                                          format!("{}.unwrap()", var_access))
1367                                                         ], ") }", ContainerPrefixLocation::PerConv));
1368                                         } else {
1369                                                 // If c_type_from_path is some (ie there's a manual mapping for the inner
1370                                                 // type), lean on write_empty_rust_val, below.
1371                                         }
1372                                 }
1373                                 if let Some(t) = single_contained {
1374                                         if let syn::Type::Reference(syn::TypeReference { elem, .. }) = t {
1375                                                 if let syn::Type::Slice(_) = &**elem {
1376                                                         return Some(("if ", vec![
1377                                                                         (".is_none() { SmartPtr::null() } else { SmartPtr::from_obj(".to_string(),
1378                                                                          format!("({}.unwrap())", var_access))
1379                                                                 ], ") }", ContainerPrefixLocation::PerConv));
1380                                                 }
1381                                         }
1382                                         let mut v = Vec::new();
1383                                         self.write_empty_rust_val(generics, &mut v, t);
1384                                         let s = String::from_utf8(v).unwrap();
1385                                         return Some(("if ", vec![
1386                                                 (format!(".is_none() {{ {} }} else {{ ", s), format!("({}.unwrap())", var_access))
1387                                                 ], " }", ContainerPrefixLocation::PerConv));
1388                                 } else { unreachable!(); }
1389                         },
1390                         _ => None,
1391                 }
1392         }
1393
1394         /// only_contained_has_inner implies that there is only one contained element in the container
1395         /// and it has an inner field (ie is an "opaque" type we've defined).
1396         fn from_c_conversion_container_new_var<'b>(&self, generics: Option<&GenericTypes>, full_path: &str, is_ref: bool, single_contained: Option<&syn::Type>, var_name: &syn::Ident, var_access: &str)
1397                         // Returns prefix + Vec<(prefix, var-name-to-inline-convert)> + suffix
1398                         // expecting one element in the vec per generic type, each of which is inline-converted
1399                         -> Option<(&'b str, Vec<(String, String)>, &'b str, ContainerPrefixLocation)> {
1400                 match full_path {
1401                         "Result" if !is_ref => {
1402                                 Some(("match ",
1403                                                 vec![(".result_ok { true => Ok(".to_string(), format!("(*unsafe {{ Box::from_raw(<*mut _>::take_ptr(&mut {}.contents.result)) }})", var_access)),
1404                                                      ("), false => Err(".to_string(), format!("(*unsafe {{ Box::from_raw(<*mut _>::take_ptr(&mut {}.contents.err)) }})", var_access))],
1405                                                 ")}", ContainerPrefixLocation::PerConv))
1406                         },
1407                         "Slice" if is_ref => {
1408                                 Some(("Vec::new(); for mut item in ", vec![(format!(".as_slice().iter() {{ local_{}.push(", var_name), "item".to_string())], "); }", ContainerPrefixLocation::PerConv))
1409                         },
1410                         "Vec"|"Slice" => {
1411                                 Some(("Vec::new(); for mut item in ", vec![(format!(".into_rust().drain(..) {{ local_{}.push(", var_name), "item".to_string())], "); }", ContainerPrefixLocation::PerConv))
1412                         },
1413                         "Option" => {
1414                                 if let Some(syn::Type::Path(p)) = single_contained {
1415                                         let inner_path = self.resolve_path(&p.path, generics);
1416                                         if self.is_primitive(&inner_path) {
1417                                                 return Some(("if ", vec![(".is_some() { Some(".to_string(), format!("{}.take()", var_access))], ") } else { None }", ContainerPrefixLocation::NoPrefix))
1418                                         } else if self.c_type_has_inner_from_path(&inner_path) {
1419                                                 if is_ref {
1420                                                         return Some(("if ", vec![(".inner.is_null() { None } else { Some((*".to_string(), format!("{}", var_access))], ").clone()) }", ContainerPrefixLocation::PerConv))
1421                                                 } else {
1422                                                         return Some(("if ", vec![(".inner.is_null() { None } else { Some(".to_string(), format!("{}", var_access))], ") }", ContainerPrefixLocation::PerConv));
1423                                                 }
1424                                         }
1425                                 }
1426
1427                                 if let Some(t) = single_contained {
1428                                         match t {
1429                                                 syn::Type::Reference(_)|syn::Type::Path(_)|syn::Type::Slice(_) => {
1430                                                         let mut v = Vec::new();
1431                                                         let ret_ref = self.write_empty_rust_val_check_suffix(generics, &mut v, t);
1432                                                         let s = String::from_utf8(v).unwrap();
1433                                                         match ret_ref {
1434                                                                 EmptyValExpectedTy::ReferenceAsPointer =>
1435                                                                         return Some(("if ", vec![
1436                                                                                 (format!("{} {{ None }} else {{ Some(", s), format!("unsafe {{ &mut *{} }}", var_access))
1437                                                                         ], ") }", ContainerPrefixLocation::NoPrefix)),
1438                                                                 EmptyValExpectedTy::OptionType =>
1439                                                                         return Some(("{ /* ", vec![
1440                                                                                 (format!("*/ let {}_opt = {};", var_name, var_access),
1441                                                                                 format!("}} if {}_opt{} {{ None }} else {{ Some({{ {}_opt.take()", var_name, s, var_name))
1442                                                                         ], ") } }", ContainerPrefixLocation::PerConv)),
1443                                                                 EmptyValExpectedTy::NonPointer =>
1444                                                                         return Some(("if ", vec![
1445                                                                                 (format!("{} {{ None }} else {{ Some(", s), format!("{}", var_access))
1446                                                                         ], ") }", ContainerPrefixLocation::PerConv)),
1447                                                         }
1448                                                 },
1449                                                 syn::Type::Tuple(_) => {
1450                                                         return Some(("if ", vec![(".is_some() { Some(".to_string(), format!("{}.take()", var_access))], ") } else { None }", ContainerPrefixLocation::PerConv))
1451                                                 },
1452                                                 _ => unimplemented!(),
1453                                         }
1454                                 } else { unreachable!(); }
1455                         },
1456                         _ => None,
1457                 }
1458         }
1459
1460         /// Constructs a reference to the given type, possibly tweaking the type if relevant to make it
1461         /// convertable to C.
1462         pub fn create_ownable_reference(&self, t: &syn::Type, generics: Option<&GenericTypes>) -> Option<syn::Type> {
1463                 let default_value = Some(syn::Type::Reference(syn::TypeReference {
1464                         and_token: syn::Token!(&)(Span::call_site()), lifetime: None, mutability: None,
1465                         elem: Box::new(t.clone()) }));
1466                 match generics.resolve_type(t) {
1467                         syn::Type::Path(p) => {
1468                                 if let Some(resolved_path) = self.maybe_resolve_path(&p.path, generics) {
1469                                         if resolved_path != "Vec" { return default_value; }
1470                                         if p.path.segments.len() != 1 { unimplemented!(); }
1471                                         let only_seg = p.path.segments.iter().next().unwrap();
1472                                         if let syn::PathArguments::AngleBracketed(args) = &only_seg.arguments {
1473                                                 if args.args.len() != 1 { unimplemented!(); }
1474                                                 let inner_arg = args.args.iter().next().unwrap();
1475                                                 if let syn::GenericArgument::Type(ty) = &inner_arg {
1476                                                         let mut can_create = self.c_type_has_inner(&ty);
1477                                                         if let syn::Type::Path(inner) = ty {
1478                                                                 if inner.path.segments.len() == 1 &&
1479                                                                                 format!("{}", inner.path.segments[0].ident) == "Vec" {
1480                                                                         can_create = true;
1481                                                                 }
1482                                                         }
1483                                                         if !can_create { return default_value; }
1484                                                         if let Some(inner_ty) = self.create_ownable_reference(&ty, generics) {
1485                                                                 return Some(syn::Type::Reference(syn::TypeReference {
1486                                                                         and_token: syn::Token![&](Span::call_site()),
1487                                                                         lifetime: None,
1488                                                                         mutability: None,
1489                                                                         elem: Box::new(syn::Type::Slice(syn::TypeSlice {
1490                                                                                 bracket_token: syn::token::Bracket { span: Span::call_site() },
1491                                                                                 elem: Box::new(inner_ty)
1492                                                                         }))
1493                                                                 }));
1494                                                         } else { return default_value; }
1495                                                 } else { unimplemented!(); }
1496                                         } else { unimplemented!(); }
1497                                 } else { return None; }
1498                         },
1499                         _ => default_value,
1500                 }
1501         }
1502
1503         // *************************************************
1504         // *** Type definition during main.rs processing ***
1505         // *************************************************
1506
1507         pub fn get_declared_type(&'a self, ident: &syn::Ident) -> Option<&'a DeclType<'c>> {
1508                 self.types.get_declared_type(ident)
1509         }
1510         /// Returns true if the object at the given path is mapped as X { inner: *mut origX, .. }.
1511         pub fn c_type_has_inner_from_path(&self, full_path: &str) -> bool {
1512                 self.crate_types.opaques.get(full_path).is_some()
1513         }
1514
1515         /// Returns true if the object at the given path is mapped as X { inner: *mut origX, .. }.
1516         pub fn c_type_has_inner(&self, ty: &syn::Type) -> bool {
1517                 match ty {
1518                         syn::Type::Path(p) => {
1519                                 if let Some(full_path) = self.maybe_resolve_path(&p.path, None) {
1520                                         self.c_type_has_inner_from_path(&full_path)
1521                                 } else { false }
1522                         },
1523                         syn::Type::Reference(r) => {
1524                                 self.c_type_has_inner(&*r.elem)
1525                         },
1526                         _ => false,
1527                 }
1528         }
1529
1530         pub fn maybe_resolve_ident(&self, id: &syn::Ident) -> Option<String> {
1531                 self.types.maybe_resolve_ident(id)
1532         }
1533
1534         pub fn maybe_resolve_non_ignored_ident(&self, id: &syn::Ident) -> Option<String> {
1535                 self.types.maybe_resolve_non_ignored_ident(id)
1536         }
1537
1538         pub fn maybe_resolve_path(&self, p_arg: &syn::Path, generics: Option<&GenericTypes>) -> Option<String> {
1539                 self.types.maybe_resolve_path(p_arg, generics)
1540         }
1541         pub fn resolve_path(&self, p: &syn::Path, generics: Option<&GenericTypes>) -> String {
1542                 self.maybe_resolve_path(p, generics).unwrap()
1543         }
1544
1545         // ***********************************
1546         // *** Original Rust Type Printing ***
1547         // ***********************************
1548
1549         fn in_rust_prelude(resolved_path: &str) -> bool {
1550                 match resolved_path {
1551                         "Vec" => true,
1552                         "Result" => true,
1553                         "Option" => true,
1554                         _ => false,
1555                 }
1556         }
1557
1558         fn write_rust_path<W: std::io::Write>(&self, w: &mut W, generics_resolver: Option<&GenericTypes>, path: &syn::Path) {
1559                 if let Some(resolved) = self.maybe_resolve_path(&path, generics_resolver) {
1560                         if self.is_primitive(&resolved) {
1561                                 write!(w, "{}", path.get_ident().unwrap()).unwrap();
1562                         } else {
1563                                 // TODO: We should have a generic "is from a dependency" check here instead of
1564                                 // checking for "bitcoin" explicitly.
1565                                 if resolved.starts_with("bitcoin::") || Self::in_rust_prelude(&resolved) {
1566                                         write!(w, "{}", resolved).unwrap();
1567                                 // If we're printing a generic argument, it needs to reference the crate, otherwise
1568                                 // the original crate:
1569                                 } else if self.maybe_resolve_path(&path, None).as_ref() == Some(&resolved) {
1570                                         write!(w, "{}", self.real_rust_type_mapping(&resolved)).unwrap();
1571                                 } else {
1572                                         write!(w, "crate::{}", resolved).unwrap();
1573                                 }
1574                         }
1575                         if let syn::PathArguments::AngleBracketed(args) = &path.segments.iter().last().unwrap().arguments {
1576                                 self.write_rust_generic_arg(w, generics_resolver, args.args.iter());
1577                         }
1578                 } else {
1579                         if path.leading_colon.is_some() {
1580                                 write!(w, "::").unwrap();
1581                         }
1582                         for (idx, seg) in path.segments.iter().enumerate() {
1583                                 if idx != 0 { write!(w, "::").unwrap(); }
1584                                 write!(w, "{}", seg.ident).unwrap();
1585                                 if let syn::PathArguments::AngleBracketed(args) = &seg.arguments {
1586                                         self.write_rust_generic_arg(w, generics_resolver, args.args.iter());
1587                                 }
1588                         }
1589                 }
1590         }
1591         pub fn write_rust_generic_param<'b, W: std::io::Write>(&self, w: &mut W, generics_resolver: Option<&GenericTypes>, generics: impl Iterator<Item=&'b syn::GenericParam>) {
1592                 let mut had_params = false;
1593                 for (idx, arg) in generics.enumerate() {
1594                         if idx != 0 { write!(w, ", ").unwrap(); } else { write!(w, "<").unwrap(); }
1595                         had_params = true;
1596                         match arg {
1597                                 syn::GenericParam::Lifetime(lt) => write!(w, "'{}", lt.lifetime.ident).unwrap(),
1598                                 syn::GenericParam::Type(t) => {
1599                                         write!(w, "{}", t.ident).unwrap();
1600                                         if t.colon_token.is_some() { write!(w, ":").unwrap(); }
1601                                         for (idx, bound) in t.bounds.iter().enumerate() {
1602                                                 if idx != 0 { write!(w, " + ").unwrap(); }
1603                                                 match bound {
1604                                                         syn::TypeParamBound::Trait(tb) => {
1605                                                                 if tb.paren_token.is_some() || tb.lifetimes.is_some() { unimplemented!(); }
1606                                                                 self.write_rust_path(w, generics_resolver, &tb.path);
1607                                                         },
1608                                                         _ => unimplemented!(),
1609                                                 }
1610                                         }
1611                                         if t.eq_token.is_some() || t.default.is_some() { unimplemented!(); }
1612                                 },
1613                                 _ => unimplemented!(),
1614                         }
1615                 }
1616                 if had_params { write!(w, ">").unwrap(); }
1617         }
1618
1619         pub fn write_rust_generic_arg<'b, W: std::io::Write>(&self, w: &mut W, generics_resolver: Option<&GenericTypes>, generics: impl Iterator<Item=&'b syn::GenericArgument>) {
1620                 write!(w, "<").unwrap();
1621                 for (idx, arg) in generics.enumerate() {
1622                         if idx != 0 { write!(w, ", ").unwrap(); }
1623                         match arg {
1624                                 syn::GenericArgument::Type(t) => self.write_rust_type(w, generics_resolver, t),
1625                                 _ => unimplemented!(),
1626                         }
1627                 }
1628                 write!(w, ">").unwrap();
1629         }
1630         pub fn write_rust_type<W: std::io::Write>(&self, w: &mut W, generics: Option<&GenericTypes>, t: &syn::Type) {
1631                 match t {
1632                         syn::Type::Path(p) => {
1633                                 if p.qself.is_some() {
1634                                         unimplemented!();
1635                                 }
1636                                 self.write_rust_path(w, generics, &p.path);
1637                         },
1638                         syn::Type::Reference(r) => {
1639                                 write!(w, "&").unwrap();
1640                                 if let Some(lft) = &r.lifetime {
1641                                         write!(w, "'{} ", lft.ident).unwrap();
1642                                 }
1643                                 if r.mutability.is_some() {
1644                                         write!(w, "mut ").unwrap();
1645                                 }
1646                                 self.write_rust_type(w, generics, &*r.elem);
1647                         },
1648                         syn::Type::Array(a) => {
1649                                 write!(w, "[").unwrap();
1650                                 self.write_rust_type(w, generics, &a.elem);
1651                                 if let syn::Expr::Lit(l) = &a.len {
1652                                         if let syn::Lit::Int(i) = &l.lit {
1653                                                 write!(w, "; {}]", i).unwrap();
1654                                         } else { unimplemented!(); }
1655                                 } else { unimplemented!(); }
1656                         }
1657                         syn::Type::Slice(s) => {
1658                                 write!(w, "[").unwrap();
1659                                 self.write_rust_type(w, generics, &s.elem);
1660                                 write!(w, "]").unwrap();
1661                         },
1662                         syn::Type::Tuple(s) => {
1663                                 write!(w, "(").unwrap();
1664                                 for (idx, t) in s.elems.iter().enumerate() {
1665                                         if idx != 0 { write!(w, ", ").unwrap(); }
1666                                         self.write_rust_type(w, generics, &t);
1667                                 }
1668                                 write!(w, ")").unwrap();
1669                         },
1670                         _ => unimplemented!(),
1671                 }
1672         }
1673
1674         /// Prints a constructor for something which is "uninitialized" (but obviously not actually
1675         /// unint'd memory).
1676         pub fn write_empty_rust_val<W: std::io::Write>(&self, generics: Option<&GenericTypes>, w: &mut W, t: &syn::Type) {
1677                 match t {
1678                         syn::Type::Reference(r) => {
1679                                 self.write_empty_rust_val(generics, w, &*r.elem)
1680                         },
1681                         syn::Type::Path(p) => {
1682                                 let resolved = self.resolve_path(&p.path, generics);
1683                                 if self.crate_types.opaques.get(&resolved).is_some() {
1684                                         write!(w, "crate::{} {{ inner: std::ptr::null_mut(), is_owned: true }}", resolved).unwrap();
1685                                 } else {
1686                                         // Assume its a manually-mapped C type, where we can just define an null() fn
1687                                         write!(w, "{}::null()", self.c_type_from_path(&resolved, false, false).unwrap()).unwrap();
1688                                 }
1689                         },
1690                         syn::Type::Array(a) => {
1691                                 if let syn::Expr::Lit(l) = &a.len {
1692                                         if let syn::Lit::Int(i) = &l.lit {
1693                                                 if i.base10_digits().parse::<usize>().unwrap() < 32 {
1694                                                         // Blindly assume that if we're trying to create an empty value for an
1695                                                         // array < 32 entries that all-0s may be a valid state.
1696                                                         unimplemented!();
1697                                                 }
1698                                                 let arrty = format!("[u8; {}]", i.base10_digits());
1699                                                 write!(w, "{}", self.to_c_conversion_inline_prefix_from_path(&arrty, false, false).unwrap()).unwrap();
1700                                                 write!(w, "[0; {}]", i.base10_digits()).unwrap();
1701                                                 write!(w, "{}", self.to_c_conversion_inline_suffix_from_path(&arrty, false, false).unwrap()).unwrap();
1702                                         } else { unimplemented!(); }
1703                                 } else { unimplemented!(); }
1704                         }
1705                         _ => unimplemented!(),
1706                 }
1707         }
1708
1709         fn is_real_type_array(&self, resolved_type: &str) -> Option<syn::Type> {
1710                 if let Some(real_ty) = self.c_type_from_path(&resolved_type, true, false) {
1711                         if real_ty.ends_with("]") && real_ty.starts_with("*const [u8; ") {
1712                                 let mut split = real_ty.split("; ");
1713                                 split.next().unwrap();
1714                                 let tail_str = split.next().unwrap();
1715                                 assert!(split.next().is_none());
1716                                 let len = usize::from_str_radix(&tail_str[..tail_str.len() - 1], 10).unwrap();
1717                                 Some(parse_quote!([u8; #len]))
1718                         } else { None }
1719                 } else { None }
1720         }
1721
1722         /// Prints a suffix to determine if a variable is empty (ie was set by write_empty_rust_val).
1723         /// See EmptyValExpectedTy for information on return types.
1724         fn write_empty_rust_val_check_suffix<W: std::io::Write>(&self, generics: Option<&GenericTypes>, w: &mut W, t: &syn::Type) -> EmptyValExpectedTy {
1725                 match t {
1726                         syn::Type::Reference(r) => {
1727                                 return self.write_empty_rust_val_check_suffix(generics, w, &*r.elem);
1728                         },
1729                         syn::Type::Path(p) => {
1730                                 let resolved = self.resolve_path(&p.path, generics);
1731                                 if let Some(arr_ty) = self.is_real_type_array(&resolved) {
1732                                         write!(w, ".data").unwrap();
1733                                         return self.write_empty_rust_val_check_suffix(generics, w, &arr_ty);
1734                                 }
1735                                 if self.crate_types.opaques.get(&resolved).is_some() {
1736                                         write!(w, ".inner.is_null()").unwrap();
1737                                         EmptyValExpectedTy::NonPointer
1738                                 } else {
1739                                         if let Some(suffix) = self.empty_val_check_suffix_from_path(&resolved) {
1740                                                 write!(w, "{}", suffix).unwrap();
1741                                                 // We may eventually need to allow empty_val_check_suffix_from_path to specify if we need a deref or not
1742                                                 EmptyValExpectedTy::NonPointer
1743                                         } else {
1744                                                 write!(w, ".is_none()").unwrap();
1745                                                 EmptyValExpectedTy::OptionType
1746                                         }
1747                                 }
1748                         },
1749                         syn::Type::Array(a) => {
1750                                 if let syn::Expr::Lit(l) = &a.len {
1751                                         if let syn::Lit::Int(i) = &l.lit {
1752                                                 write!(w, " == [0; {}]", i.base10_digits()).unwrap();
1753                                                 EmptyValExpectedTy::NonPointer
1754                                         } else { unimplemented!(); }
1755                                 } else { unimplemented!(); }
1756                         },
1757                         syn::Type::Slice(_) => {
1758                                 // Option<[]> always implies that we want to treat len() == 0 differently from
1759                                 // None, so we always map an Option<[]> into a pointer.
1760                                 write!(w, " == std::ptr::null_mut()").unwrap();
1761                                 EmptyValExpectedTy::ReferenceAsPointer
1762                         },
1763                         _ => unimplemented!(),
1764                 }
1765         }
1766
1767         /// Prints a suffix to determine if a variable is empty (ie was set by write_empty_rust_val).
1768         pub fn write_empty_rust_val_check<W: std::io::Write>(&self, generics: Option<&GenericTypes>, w: &mut W, t: &syn::Type, var_access: &str) {
1769                 match t {
1770                         syn::Type::Reference(r) => {
1771                                 self.write_empty_rust_val_check(generics, w, &*r.elem, var_access);
1772                         },
1773                         syn::Type::Path(_) => {
1774                                 write!(w, "{}", var_access).unwrap();
1775                                 self.write_empty_rust_val_check_suffix(generics, w, t);
1776                         },
1777                         syn::Type::Array(a) => {
1778                                 if let syn::Expr::Lit(l) = &a.len {
1779                                         if let syn::Lit::Int(i) = &l.lit {
1780                                                 let arrty = format!("[u8; {}]", i.base10_digits());
1781                                                 // We don't (yet) support a new-var conversion here.
1782                                                 assert!(self.from_c_conversion_new_var_from_path(&arrty, false).is_none());
1783                                                 write!(w, "{}{}{}",
1784                                                         self.from_c_conversion_prefix_from_path(&arrty, false).unwrap(),
1785                                                         var_access,
1786                                                         self.from_c_conversion_suffix_from_path(&arrty, false).unwrap()).unwrap();
1787                                                 self.write_empty_rust_val_check_suffix(generics, w, t);
1788                                         } else { unimplemented!(); }
1789                                 } else { unimplemented!(); }
1790                         }
1791                         _ => unimplemented!(),
1792                 }
1793         }
1794
1795         // ********************************
1796         // *** Type conversion printing ***
1797         // ********************************
1798
1799         /// Returns true we if can just skip passing this to C entirely
1800         pub fn skip_arg(&self, t: &syn::Type, generics: Option<&GenericTypes>) -> bool {
1801                 match t {
1802                         syn::Type::Path(p) => {
1803                                 if p.qself.is_some() { unimplemented!(); }
1804                                 if let Some(full_path) = self.maybe_resolve_path(&p.path, generics) {
1805                                         self.skip_path(&full_path)
1806                                 } else { false }
1807                         },
1808                         syn::Type::Reference(r) => {
1809                                 self.skip_arg(&*r.elem, generics)
1810                         },
1811                         _ => false,
1812                 }
1813         }
1814         pub fn no_arg_to_rust<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>) {
1815                 match t {
1816                         syn::Type::Path(p) => {
1817                                 if p.qself.is_some() { unimplemented!(); }
1818                                 if let Some(full_path) = self.maybe_resolve_path(&p.path, generics) {
1819                                         write!(w, "{}", self.no_arg_path_to_rust(&full_path)).unwrap();
1820                                 }
1821                         },
1822                         syn::Type::Reference(r) => {
1823                                 self.no_arg_to_rust(w, &*r.elem, generics);
1824                         },
1825                         _ => {},
1826                 }
1827         }
1828
1829         fn write_conversion_inline_intern<W: std::io::Write,
1830                         LP: Fn(&str, bool, bool) -> Option<String>, DL: Fn(&mut W, &DeclType, &str, bool, bool), SC: Fn(bool, Option<&str>) -> String>
1831                         (&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, is_mut: bool, ptr_for_ref: bool,
1832                          tupleconv: &str, prefix: bool, sliceconv: SC, path_lookup: LP, decl_lookup: DL) {
1833                 match generics.resolve_type(t) {
1834                         syn::Type::Reference(r) => {
1835                                 self.write_conversion_inline_intern(w, &*r.elem, generics, true, r.mutability.is_some(),
1836                                         ptr_for_ref, tupleconv, prefix, sliceconv, path_lookup, decl_lookup);
1837                         },
1838                         syn::Type::Path(p) => {
1839                                 if p.qself.is_some() {
1840                                         unimplemented!();
1841                                 }
1842
1843                                 let resolved_path = self.resolve_path(&p.path, generics);
1844                                 if let Some(aliased_type) = self.crate_types.type_aliases.get(&resolved_path) {
1845                                         return self.write_conversion_inline_intern(w, aliased_type, None, is_ref, is_mut, ptr_for_ref, tupleconv, prefix, sliceconv, path_lookup, decl_lookup);
1846                                 } else if self.is_primitive(&resolved_path) {
1847                                         if is_ref && prefix {
1848                                                 write!(w, "*").unwrap();
1849                                         }
1850                                 } else if let Some(c_type) = path_lookup(&resolved_path, is_ref, ptr_for_ref) {
1851                                         write!(w, "{}", c_type).unwrap();
1852                                 } else if self.crate_types.opaques.get(&resolved_path).is_some() {
1853                                         decl_lookup(w, &DeclType::StructImported, &resolved_path, is_ref, is_mut);
1854                                 } else if self.crate_types.mirrored_enums.get(&resolved_path).is_some() {
1855                                         decl_lookup(w, &DeclType::MirroredEnum, &resolved_path, is_ref, is_mut);
1856                                 } else if let Some(t) = self.crate_types.traits.get(&resolved_path) {
1857                                         decl_lookup(w, &DeclType::Trait(t), &resolved_path, is_ref, is_mut);
1858                                 } else if let Some(ident) = single_ident_generic_path_to_ident(&p.path) {
1859                                         if let Some(decl_type) = self.types.maybe_resolve_declared(ident) {
1860                                                 decl_lookup(w, decl_type, &self.maybe_resolve_ident(ident).unwrap(), is_ref, is_mut);
1861                                         } else { unimplemented!(); }
1862                                 } else { unimplemented!(); }
1863                         },
1864                         syn::Type::Array(a) => {
1865                                 // We assume all arrays contain only [int_literal; X]s.
1866                                 // This may result in some outputs not compiling.
1867                                 if let syn::Expr::Lit(l) = &a.len {
1868                                         if let syn::Lit::Int(i) = &l.lit {
1869                                                 write!(w, "{}", path_lookup(&format!("[u8; {}]", i.base10_digits()), is_ref, ptr_for_ref).unwrap()).unwrap();
1870                                         } else { unimplemented!(); }
1871                                 } else { unimplemented!(); }
1872                         },
1873                         syn::Type::Slice(s) => {
1874                                 // We assume all slices contain only literals or references.
1875                                 // This may result in some outputs not compiling.
1876                                 if let syn::Type::Path(p) = &*s.elem {
1877                                         let resolved = self.resolve_path(&p.path, generics);
1878                                         assert!(self.is_primitive(&resolved));
1879                                         write!(w, "{}", path_lookup("[u8]", is_ref, ptr_for_ref).unwrap()).unwrap();
1880                                 } else if let syn::Type::Reference(r) = &*s.elem {
1881                                         if let syn::Type::Path(p) = &*r.elem {
1882                                                 write!(w, "{}", sliceconv(self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics)), None)).unwrap();
1883                                         } else if let syn::Type::Slice(_) = &*r.elem {
1884                                                 write!(w, "{}", sliceconv(false, None)).unwrap();
1885                                         } else { unimplemented!(); }
1886                                 } else if let syn::Type::Tuple(t) = &*s.elem {
1887                                         assert!(!t.elems.is_empty());
1888                                         if prefix {
1889                                                 write!(w, "{}", sliceconv(false, None)).unwrap();
1890                                         } else {
1891                                                 let mut needs_map = false;
1892                                                 for e in t.elems.iter() {
1893                                                         if let syn::Type::Reference(_) = e {
1894                                                                 needs_map = true;
1895                                                         }
1896                                                 }
1897                                                 if needs_map {
1898                                                         let mut map_str = Vec::new();
1899                                                         write!(&mut map_str, ".map(|(").unwrap();
1900                                                         for i in 0..t.elems.len() {
1901                                                                 write!(&mut map_str, "{}{}", if i != 0 { ", " } else { "" }, ('a' as u8 + i as u8) as char).unwrap();
1902                                                         }
1903                                                         write!(&mut map_str, ")| (").unwrap();
1904                                                         for (idx, e) in t.elems.iter().enumerate() {
1905                                                                 if let syn::Type::Reference(_) = e {
1906                                                                         write!(&mut map_str, "{}{}", if idx != 0 { ", " } else { "" }, (idx as u8 + 'a' as u8) as char).unwrap();
1907                                                                 } else if let syn::Type::Path(_) = e {
1908                                                                         write!(&mut map_str, "{}*{}", if idx != 0 { ", " } else { "" }, (idx as u8 + 'a' as u8) as char).unwrap();
1909                                                                 } else { unimplemented!(); }
1910                                                         }
1911                                                         write!(&mut map_str, "))").unwrap();
1912                                                         write!(w, "{}", sliceconv(false, Some(&String::from_utf8(map_str).unwrap()))).unwrap();
1913                                                 } else {
1914                                                         write!(w, "{}", sliceconv(false, None)).unwrap();
1915                                                 }
1916                                         }
1917                                 } else { unimplemented!(); }
1918                         },
1919                         syn::Type::Tuple(t) => {
1920                                 if t.elems.is_empty() {
1921                                         // cbindgen has poor support for (), see, eg https://github.com/eqrion/cbindgen/issues/527
1922                                         // so work around it by just pretending its a 0u8
1923                                         write!(w, "{}", tupleconv).unwrap();
1924                                 } else {
1925                                         if prefix { write!(w, "local_").unwrap(); }
1926                                 }
1927                         },
1928                         _ => unimplemented!(),
1929                 }
1930         }
1931
1932         fn write_to_c_conversion_inline_prefix_inner<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, ptr_for_ref: bool, from_ptr: bool) {
1933                 self.write_conversion_inline_intern(w, t, generics, is_ref, false, ptr_for_ref, "() /*", true, |_, _| "local_".to_owned(),
1934                                 |a, b, c| self.to_c_conversion_inline_prefix_from_path(a, b, c),
1935                                 |w, decl_type, decl_path, is_ref, _is_mut| {
1936                                         match decl_type {
1937                                                 DeclType::MirroredEnum if is_ref && ptr_for_ref => write!(w, "crate::{}::from_native(", decl_path).unwrap(),
1938                                                 DeclType::MirroredEnum if is_ref => write!(w, "&crate::{}::from_native(", decl_path).unwrap(),
1939                                                 DeclType::MirroredEnum => write!(w, "crate::{}::native_into(", decl_path).unwrap(),
1940                                                 DeclType::EnumIgnored|DeclType::StructImported if is_ref && ptr_for_ref && from_ptr =>
1941                                                         write!(w, "crate::{} {{ inner: unsafe {{ (", decl_path).unwrap(),
1942                                                 DeclType::EnumIgnored|DeclType::StructImported if is_ref => {
1943                                                         if !ptr_for_ref { write!(w, "&").unwrap(); }
1944                                                         write!(w, "crate::{} {{ inner: unsafe {{ ObjOps::nonnull_ptr_to_inner((", decl_path).unwrap()
1945                                                 },
1946                                                 DeclType::EnumIgnored|DeclType::StructImported if !is_ref && from_ptr =>
1947                                                         write!(w, "crate::{} {{ inner: ", decl_path).unwrap(),
1948                                                 DeclType::EnumIgnored|DeclType::StructImported if !is_ref =>
1949                                                         write!(w, "crate::{} {{ inner: ObjOps::heap_alloc(", decl_path).unwrap(),
1950                                                 DeclType::Trait(_) if is_ref => write!(w, "").unwrap(),
1951                                                 DeclType::Trait(_) if !is_ref => write!(w, "Into::into(").unwrap(),
1952                                                 _ => panic!("{:?}", decl_path),
1953                                         }
1954                                 });
1955         }
1956         pub fn write_to_c_conversion_inline_prefix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) {
1957                 self.write_to_c_conversion_inline_prefix_inner(w, t, generics, false, ptr_for_ref, false);
1958         }
1959         fn write_to_c_conversion_inline_suffix_inner<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, ptr_for_ref: bool, from_ptr: bool) {
1960                 self.write_conversion_inline_intern(w, t, generics, is_ref, false, ptr_for_ref, "*/", false, |_, _| ".into()".to_owned(),
1961                                 |a, b, c| self.to_c_conversion_inline_suffix_from_path(a, b, c),
1962                                 |w, decl_type, _full_path, is_ref, _is_mut| match decl_type {
1963                                         DeclType::MirroredEnum => write!(w, ")").unwrap(),
1964                                         DeclType::EnumIgnored|DeclType::StructImported if is_ref && ptr_for_ref && from_ptr =>
1965                                                 write!(w, " as *const _) as *mut _ }}, is_owned: false }}").unwrap(),
1966                                         DeclType::EnumIgnored|DeclType::StructImported if is_ref =>
1967                                                 write!(w, " as *const _) as *mut _) }}, is_owned: false }}").unwrap(),
1968                                         DeclType::EnumIgnored|DeclType::StructImported if !is_ref && from_ptr =>
1969                                                 write!(w, ", is_owned: true }}").unwrap(),
1970                                         DeclType::EnumIgnored|DeclType::StructImported if !is_ref => write!(w, "), is_owned: true }}").unwrap(),
1971                                         DeclType::Trait(_) if is_ref => {},
1972                                         DeclType::Trait(_) => {
1973                                                 // This is used when we're converting a concrete Rust type into a C trait
1974                                                 // for use when a Rust trait method returns an associated type.
1975                                                 // Because all of our C traits implement From<RustTypesImplementingTraits>
1976                                                 // we can just call .into() here and be done.
1977                                                 write!(w, ")").unwrap()
1978                                         },
1979                                         _ => unimplemented!(),
1980                                 });
1981         }
1982         pub fn write_to_c_conversion_inline_suffix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) {
1983                 self.write_to_c_conversion_inline_suffix_inner(w, t, generics, false, ptr_for_ref, false);
1984         }
1985
1986         fn write_from_c_conversion_prefix_inner<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, _ptr_for_ref: bool) {
1987                 self.write_conversion_inline_intern(w, t, generics, is_ref, false, false, "() /*", true, |_, _| "&local_".to_owned(),
1988                                 |a, b, _c| self.from_c_conversion_prefix_from_path(a, b),
1989                                 |w, decl_type, _full_path, is_ref, _is_mut| match decl_type {
1990                                         DeclType::StructImported if is_ref => write!(w, "").unwrap(),
1991                                         DeclType::StructImported if !is_ref => write!(w, "*unsafe {{ Box::from_raw(").unwrap(),
1992                                         DeclType::MirroredEnum if is_ref => write!(w, "&").unwrap(),
1993                                         DeclType::MirroredEnum => {},
1994                                         DeclType::Trait(_) => {},
1995                                         _ => unimplemented!(),
1996                                 });
1997         }
1998         pub fn write_from_c_conversion_prefix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>) {
1999                 self.write_from_c_conversion_prefix_inner(w, t, generics, false, false);
2000         }
2001         fn write_from_c_conversion_suffix_inner<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, ptr_for_ref: bool) {
2002                 self.write_conversion_inline_intern(w, t, generics, is_ref, false, false, "*/", false,
2003                                 |has_inner, map_str_opt| match (has_inner, map_str_opt) {
2004                                         (false, Some(map_str)) => format!(".iter(){}.collect::<Vec<_>>()[..]", map_str),
2005                                         (false, None) => ".iter().collect::<Vec<_>>()[..]".to_owned(),
2006                                         (true, None) => "[..]".to_owned(),
2007                                         (true, Some(_)) => unreachable!(),
2008                                 },
2009                                 |a, b, _c| self.from_c_conversion_suffix_from_path(a, b),
2010                                 |w, decl_type, _full_path, is_ref, is_mut| match decl_type {
2011                                         DeclType::StructImported if is_ref && ptr_for_ref => write!(w, "XXX unimplemented").unwrap(),
2012                                         DeclType::StructImported if is_mut && is_ref => write!(w, ".get_native_mut_ref()").unwrap(),
2013                                         DeclType::StructImported if is_ref => write!(w, ".get_native_ref()").unwrap(),
2014                                         DeclType::StructImported if !is_ref => write!(w, ".take_inner()) }}").unwrap(),
2015                                         DeclType::MirroredEnum if is_ref => write!(w, ".to_native()").unwrap(),
2016                                         DeclType::MirroredEnum => write!(w, ".into_native()").unwrap(),
2017                                         DeclType::Trait(_) => {},
2018                                         _ => unimplemented!(),
2019                                 });
2020         }
2021         pub fn write_from_c_conversion_suffix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>) {
2022                 self.write_from_c_conversion_suffix_inner(w, t, generics, false, false);
2023         }
2024         // Note that compared to the above conversion functions, the following two are generally
2025         // significantly undertested:
2026         pub fn write_from_c_conversion_to_ref_prefix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>) {
2027                 self.write_conversion_inline_intern(w, t, generics, false, false, false, "() /*", true, |_, _| "&local_".to_owned(),
2028                                 |a, b, _c| {
2029                                         if let Some(conv) = self.from_c_conversion_prefix_from_path(a, b) {
2030                                                 Some(format!("&{}", conv))
2031                                         } else { None }
2032                                 },
2033                                 |w, decl_type, _full_path, is_ref, _is_mut| match decl_type {
2034                                         DeclType::StructImported if !is_ref => write!(w, "").unwrap(),
2035                                         _ => unimplemented!(),
2036                                 });
2037         }
2038         pub fn write_from_c_conversion_to_ref_suffix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>) {
2039                 self.write_conversion_inline_intern(w, t, generics, false, false, false, "*/", false,
2040                                 |has_inner, map_str_opt| match (has_inner, map_str_opt) {
2041                                         (false, Some(map_str)) => format!(".iter(){}.collect::<Vec<_>>()[..]", map_str),
2042                                         (false, None) => ".iter().collect::<Vec<_>>()[..]".to_owned(),
2043                                         (true, None) => "[..]".to_owned(),
2044                                         (true, Some(_)) => unreachable!(),
2045                                 },
2046                                 |a, b, _c| self.from_c_conversion_suffix_from_path(a, b),
2047                                 |w, decl_type, _full_path, is_ref, _is_mut| match decl_type {
2048                                         DeclType::StructImported if !is_ref => write!(w, ".get_native_ref()").unwrap(),
2049                                         _ => unimplemented!(),
2050                                 });
2051         }
2052
2053         fn write_conversion_new_var_intern<'b, W: std::io::Write,
2054                 LP: Fn(&str, bool) -> Option<(&str, &str)>,
2055                 LC: Fn(&str, bool, Option<&syn::Type>, &syn::Ident, &str) ->  Option<(&'b str, Vec<(String, String)>, &'b str, ContainerPrefixLocation)>,
2056                 VP: Fn(&mut W, &syn::Type, Option<&GenericTypes>, bool, bool, bool),
2057                 VS: Fn(&mut W, &syn::Type, Option<&GenericTypes>, bool, bool, bool)>
2058                         (&self, w: &mut W, ident: &syn::Ident, var: &str, t: &syn::Type, generics: Option<&GenericTypes>,
2059                          mut is_ref: bool, mut ptr_for_ref: bool, to_c: bool,
2060                          path_lookup: &LP, container_lookup: &LC, var_prefix: &VP, var_suffix: &VS) -> bool {
2061
2062                 macro_rules! convert_container {
2063                         ($container_type: expr, $args_len: expr, $args_iter: expr) => { {
2064                                 // For slices (and Options), we refuse to directly map them as is_ref when they
2065                                 // aren't opaque types containing an inner pointer. This is due to the fact that,
2066                                 // in both cases, the actual higher-level type is non-is_ref.
2067                                 let ty_has_inner = if $args_len == 1 {
2068                                         let ty = $args_iter().next().unwrap();
2069                                         if $container_type == "Slice" && to_c {
2070                                                 // "To C ptr_for_ref" means "return the regular object with is_owned
2071                                                 // set to false", which is totally what we want in a slice if we're about to
2072                                                 // set ty_has_inner.
2073                                                 ptr_for_ref = true;
2074                                         }
2075                                         if let syn::Type::Reference(t) = ty {
2076                                                 if let syn::Type::Path(p) = &*t.elem {
2077                                                         self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics))
2078                                                 } else { false }
2079                                         } else if let syn::Type::Path(p) = ty {
2080                                                 self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics))
2081                                         } else { false }
2082                                 } else { true };
2083
2084                                 // Options get a bunch of special handling, since in general we map Option<>al
2085                                 // types into the same C type as non-Option-wrapped types. This ends up being
2086                                 // pretty manual here and most of the below special-cases are for Options.
2087                                 let mut needs_ref_map = false;
2088                                 let mut only_contained_type = None;
2089                                 let mut only_contained_type_nonref = None;
2090                                 let mut only_contained_has_inner = false;
2091                                 let mut contains_slice = false;
2092                                 if $args_len == 1 {
2093                                         only_contained_has_inner = ty_has_inner;
2094                                         let arg = $args_iter().next().unwrap();
2095                                         if let syn::Type::Reference(t) = arg {
2096                                                 only_contained_type = Some(arg);
2097                                                 only_contained_type_nonref = Some(&*t.elem);
2098                                                 if let syn::Type::Path(_) = &*t.elem {
2099                                                         is_ref = true;
2100                                                 } else if let syn::Type::Slice(_) = &*t.elem {
2101                                                         contains_slice = true;
2102                                                 } else { return false; }
2103                                                 // If the inner element contains an inner pointer, we will just use that,
2104                                                 // avoiding the need to map elements to references. Otherwise we'll need to
2105                                                 // do an extra mapping step.
2106                                                 needs_ref_map = !only_contained_has_inner;
2107                                         } else {
2108                                                 only_contained_type = Some(arg);
2109                                                 only_contained_type_nonref = Some(arg);
2110                                         }
2111                                 }
2112
2113                                 if let Some((prefix, conversions, suffix, prefix_location)) = container_lookup(&$container_type, is_ref && ty_has_inner, only_contained_type, ident, var) {
2114                                         assert_eq!(conversions.len(), $args_len);
2115                                         write!(w, "let mut local_{}{} = ", ident,
2116                                                 if (!to_c && needs_ref_map) || (to_c && $container_type == "Option" && contains_slice) {"_base"} else { "" }).unwrap();
2117                                         if prefix_location == ContainerPrefixLocation::OutsideConv {
2118                                                 var_prefix(w, $args_iter().next().unwrap(), generics, is_ref, ptr_for_ref, true);
2119                                         }
2120                                         write!(w, "{}{}", prefix, var).unwrap();
2121
2122                                         for ((pfx, var_name), (idx, ty)) in conversions.iter().zip($args_iter().enumerate()) {
2123                                                 let mut var = std::io::Cursor::new(Vec::new());
2124                                                 write!(&mut var, "{}", var_name).unwrap();
2125                                                 let var_access = String::from_utf8(var.into_inner()).unwrap();
2126
2127                                                 let conv_ty = if needs_ref_map { only_contained_type_nonref.as_ref().unwrap() } else { ty };
2128
2129                                                 write!(w, "{} {{ ", pfx).unwrap();
2130                                                 let new_var_name = format!("{}_{}", ident, idx);
2131                                                 let new_var = self.write_conversion_new_var_intern(w, &format_ident!("{}", new_var_name),
2132                                                                 &var_access, conv_ty, generics, contains_slice || (is_ref && ty_has_inner), ptr_for_ref, to_c, path_lookup, container_lookup, var_prefix, var_suffix);
2133                                                 if new_var { write!(w, " ").unwrap(); }
2134
2135                                                 if prefix_location == ContainerPrefixLocation::PerConv {
2136                                                         var_prefix(w, conv_ty, generics, is_ref && ty_has_inner, ptr_for_ref, false);
2137                                                 } else if !is_ref && !needs_ref_map && to_c && only_contained_has_inner {
2138                                                         write!(w, "ObjOps::heap_alloc(").unwrap();
2139                                                 }
2140
2141                                                 write!(w, "{}{}", if contains_slice && !to_c { "local_" } else { "" }, if new_var { new_var_name } else { var_access }).unwrap();
2142                                                 if prefix_location == ContainerPrefixLocation::PerConv {
2143                                                         var_suffix(w, conv_ty, generics, is_ref && ty_has_inner, ptr_for_ref, false);
2144                                                 } else if !is_ref && !needs_ref_map && to_c && only_contained_has_inner {
2145                                                         write!(w, ")").unwrap();
2146                                                 }
2147                                                 write!(w, " }}").unwrap();
2148                                         }
2149                                         write!(w, "{}", suffix).unwrap();
2150                                         if prefix_location == ContainerPrefixLocation::OutsideConv {
2151                                                 var_suffix(w, $args_iter().next().unwrap(), generics, is_ref, ptr_for_ref, true);
2152                                         }
2153                                         write!(w, ";").unwrap();
2154                                         if !to_c && needs_ref_map {
2155                                                 write!(w, " let mut local_{} = local_{}_base.as_ref()", ident, ident).unwrap();
2156                                                 if contains_slice {
2157                                                         write!(w, ".map(|a| &a[..])").unwrap();
2158                                                 }
2159                                                 write!(w, ";").unwrap();
2160                                         } else if to_c && $container_type == "Option" && contains_slice {
2161                                                 write!(w, " let mut local_{} = *local_{}_base;", ident, ident).unwrap();
2162                                         }
2163                                         return true;
2164                                 }
2165                         } }
2166                 }
2167
2168                 match generics.resolve_type(t) {
2169                         syn::Type::Reference(r) => {
2170                                 if let syn::Type::Slice(_) = &*r.elem {
2171                                         self.write_conversion_new_var_intern(w, ident, var, &*r.elem, generics, is_ref, ptr_for_ref, to_c, path_lookup, container_lookup, var_prefix, var_suffix)
2172                                 } else {
2173                                         self.write_conversion_new_var_intern(w, ident, var, &*r.elem, generics, true, ptr_for_ref, to_c, path_lookup, container_lookup, var_prefix, var_suffix)
2174                                 }
2175                         },
2176                         syn::Type::Path(p) => {
2177                                 if p.qself.is_some() {
2178                                         unimplemented!();
2179                                 }
2180                                 let resolved_path = self.resolve_path(&p.path, generics);
2181                                 if let Some(aliased_type) = self.crate_types.type_aliases.get(&resolved_path) {
2182                                         return self.write_conversion_new_var_intern(w, ident, var, aliased_type, None, is_ref, ptr_for_ref, to_c, path_lookup, container_lookup, var_prefix, var_suffix);
2183                                 }
2184                                 if self.is_known_container(&resolved_path, is_ref) || self.is_path_transparent_container(&p.path, generics, is_ref) {
2185                                         if let syn::PathArguments::AngleBracketed(args) = &p.path.segments.iter().next().unwrap().arguments {
2186                                                 convert_container!(resolved_path, args.args.len(), || args.args.iter().map(|arg| {
2187                                                         if let syn::GenericArgument::Type(ty) = arg {
2188                                                                 generics.resolve_type(ty)
2189                                                         } else { unimplemented!(); }
2190                                                 }));
2191                                         } else { unimplemented!(); }
2192                                 }
2193                                 if self.is_primitive(&resolved_path) {
2194                                         false
2195                                 } else if let Some(ty_ident) = single_ident_generic_path_to_ident(&p.path) {
2196                                         if let Some((prefix, suffix)) = path_lookup(&resolved_path, is_ref) {
2197                                                 write!(w, "let mut local_{} = {}{}{};", ident, prefix, var, suffix).unwrap();
2198                                                 true
2199                                         } else if self.types.maybe_resolve_declared(ty_ident).is_some() {
2200                                                 false
2201                                         } else { false }
2202                                 } else { false }
2203                         },
2204                         syn::Type::Array(_) => {
2205                                 // We assume all arrays contain only primitive types.
2206                                 // This may result in some outputs not compiling.
2207                                 false
2208                         },
2209                         syn::Type::Slice(s) => {
2210                                 if let syn::Type::Path(p) = &*s.elem {
2211                                         let resolved = self.resolve_path(&p.path, generics);
2212                                         assert!(self.is_primitive(&resolved));
2213                                         let slice_path = format!("[{}]", resolved);
2214                                         if let Some((prefix, suffix)) = path_lookup(&slice_path, true) {
2215                                                 write!(w, "let mut local_{} = {}{}{};", ident, prefix, var, suffix).unwrap();
2216                                                 true
2217                                         } else { false }
2218                                 } else if let syn::Type::Reference(ty) = &*s.elem {
2219                                         let tyref = [&*ty.elem];
2220                                         is_ref = true;
2221                                         convert_container!("Slice", 1, || tyref.iter().map(|t| generics.resolve_type(*t)));
2222                                         unimplemented!("convert_container should return true as container_lookup should succeed for slices");
2223                                 } else if let syn::Type::Tuple(t) = &*s.elem {
2224                                         // When mapping into a temporary new var, we need to own all the underlying objects.
2225                                         // Thus, we drop any references inside the tuple and convert with non-reference types.
2226                                         let mut elems = syn::punctuated::Punctuated::new();
2227                                         for elem in t.elems.iter() {
2228                                                 if let syn::Type::Reference(r) = elem {
2229                                                         elems.push((*r.elem).clone());
2230                                                 } else {
2231                                                         elems.push(elem.clone());
2232                                                 }
2233                                         }
2234                                         let ty = [syn::Type::Tuple(syn::TypeTuple {
2235                                                 paren_token: t.paren_token, elems
2236                                         })];
2237                                         is_ref = false;
2238                                         ptr_for_ref = true;
2239                                         convert_container!("Slice", 1, || ty.iter());
2240                                         unimplemented!("convert_container should return true as container_lookup should succeed for slices");
2241                                 } else { unimplemented!() }
2242                         },
2243                         syn::Type::Tuple(t) => {
2244                                 if !t.elems.is_empty() {
2245                                         // We don't (yet) support tuple elements which cannot be converted inline
2246                                         write!(w, "let (").unwrap();
2247                                         for idx in 0..t.elems.len() {
2248                                                 if idx != 0 { write!(w, ", ").unwrap(); }
2249                                                 write!(w, "{} orig_{}_{}", if is_ref { "ref" } else { "mut" }, ident, idx).unwrap();
2250                                         }
2251                                         write!(w, ") = {}{}; ", var, if !to_c { ".to_rust()" } else { "" }).unwrap();
2252                                         // Like other template types, tuples are always mapped as their non-ref
2253                                         // versions for types which have different ref mappings. Thus, we convert to
2254                                         // non-ref versions and handle opaque types with inner pointers manually.
2255                                         for (idx, elem) in t.elems.iter().enumerate() {
2256                                                 if let syn::Type::Path(p) = elem {
2257                                                         let v_name = format!("orig_{}_{}", ident, idx);
2258                                                         let tuple_elem_ident = format_ident!("{}", &v_name);
2259                                                         if self.write_conversion_new_var_intern(w, &tuple_elem_ident, &v_name, elem, generics,
2260                                                                         false, ptr_for_ref, to_c,
2261                                                                         path_lookup, container_lookup, var_prefix, var_suffix) {
2262                                                                 write!(w, " ").unwrap();
2263                                                                 // Opaque types with inner pointers shouldn't ever create new stack
2264                                                                 // variables, so we don't handle it and just assert that it doesn't
2265                                                                 // here.
2266                                                                 assert!(!self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics)));
2267                                                         }
2268                                                 }
2269                                         }
2270                                         write!(w, "let mut local_{} = (", ident).unwrap();
2271                                         for (idx, elem) in t.elems.iter().enumerate() {
2272                                                 let ty_has_inner = {
2273                                                                 if to_c {
2274                                                                         // "To C ptr_for_ref" means "return the regular object with
2275                                                                         // is_owned set to false", which is totally what we want
2276                                                                         // if we're about to set ty_has_inner.
2277                                                                         ptr_for_ref = true;
2278                                                                 }
2279                                                                 if let syn::Type::Reference(t) = elem {
2280                                                                         if let syn::Type::Path(p) = &*t.elem {
2281                                                                                 self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics))
2282                                                                         } else { false }
2283                                                                 } else if let syn::Type::Path(p) = elem {
2284                                                                         self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics))
2285                                                                 } else { false }
2286                                                         };
2287                                                 if idx != 0 { write!(w, ", ").unwrap(); }
2288                                                 var_prefix(w, elem, generics, is_ref && ty_has_inner, ptr_for_ref, false);
2289                                                 if is_ref && ty_has_inner {
2290                                                         // For ty_has_inner, the regular var_prefix mapping will take a
2291                                                         // reference, so deref once here to make sure we keep the original ref.
2292                                                         write!(w, "*").unwrap();
2293                                                 }
2294                                                 write!(w, "orig_{}_{}", ident, idx).unwrap();
2295                                                 if is_ref && !ty_has_inner {
2296                                                         // If we don't have an inner variable's reference to maintain, just
2297                                                         // hope the type is Clonable and use that.
2298                                                         write!(w, ".clone()").unwrap();
2299                                                 }
2300                                                 var_suffix(w, elem, generics, is_ref && ty_has_inner, ptr_for_ref, false);
2301                                         }
2302                                         write!(w, "){};", if to_c { ".into()" } else { "" }).unwrap();
2303                                         true
2304                                 } else { false }
2305                         },
2306                         _ => unimplemented!(),
2307                 }
2308         }
2309
2310         pub fn write_to_c_conversion_new_var_inner<W: std::io::Write>(&self, w: &mut W, ident: &syn::Ident, var_access: &str, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) -> bool {
2311                 self.write_conversion_new_var_intern(w, ident, var_access, t, generics, false, ptr_for_ref, true,
2312                         &|a, b| self.to_c_conversion_new_var_from_path(a, b),
2313                         &|a, b, c, d, e| self.to_c_conversion_container_new_var(generics, a, b, c, d, e),
2314                         // We force ptr_for_ref here since we can't generate a ref on one line and use it later
2315                         &|a, b, c, d, e, f| self.write_to_c_conversion_inline_prefix_inner(a, b, c, d, e, f),
2316                         &|a, b, c, d, e, f| self.write_to_c_conversion_inline_suffix_inner(a, b, c, d, e, f))
2317         }
2318         pub fn write_to_c_conversion_new_var<W: std::io::Write>(&self, w: &mut W, ident: &syn::Ident, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) -> bool {
2319                 self.write_to_c_conversion_new_var_inner(w, ident, &format!("{}", ident), t, generics, ptr_for_ref)
2320         }
2321         pub fn write_from_c_conversion_new_var<W: std::io::Write>(&self, w: &mut W, ident: &syn::Ident, t: &syn::Type, generics: Option<&GenericTypes>) -> bool {
2322                 self.write_conversion_new_var_intern(w, ident, &format!("{}", ident), t, generics, false, false, false,
2323                         &|a, b| self.from_c_conversion_new_var_from_path(a, b),
2324                         &|a, b, c, d, e| self.from_c_conversion_container_new_var(generics, a, b, c, d, e),
2325                         // We force ptr_for_ref here since we can't generate a ref on one line and use it later
2326                         &|a, b, c, d, e, _f| self.write_from_c_conversion_prefix_inner(a, b, c, d, e),
2327                         &|a, b, c, d, e, _f| self.write_from_c_conversion_suffix_inner(a, b, c, d, e))
2328         }
2329
2330         // ******************************************************
2331         // *** C Container Type Equivalent and alias Printing ***
2332         // ******************************************************
2333
2334         fn write_template_generics<'b, W: std::io::Write>(&self, w: &mut W, args: &mut dyn Iterator<Item=&'b syn::Type>, generics: Option<&GenericTypes>, is_ref: bool) -> bool {
2335                 for (idx, t) in args.enumerate() {
2336                         if idx != 0 {
2337                                 write!(w, ", ").unwrap();
2338                         }
2339                         if let syn::Type::Reference(r_arg) = t {
2340                                 assert!(!is_ref); // We don't currently support outer reference types for non-primitive inners
2341
2342                                 if !self.write_c_type_intern(w, &*r_arg.elem, generics, false, false, false, false) { return false; }
2343
2344                                 // While write_c_type_intern, above is correct, we don't want to blindly convert a
2345                                 // reference to something stupid, so check that the container is either opaque or a
2346                                 // predefined type (currently only Transaction).
2347                                 if let syn::Type::Path(p_arg) = &*r_arg.elem {
2348                                         let resolved = self.resolve_path(&p_arg.path, generics);
2349                                         assert!(self.crate_types.opaques.get(&resolved).is_some() ||
2350                                                         self.c_type_from_path(&resolved, true, true).is_some(), "Template generics should be opaque or have a predefined mapping");
2351                                 } else { unimplemented!(); }
2352                         } else if let syn::Type::Path(p_arg) = t {
2353                                 if let Some(resolved) = self.maybe_resolve_path(&p_arg.path, generics) {
2354                                         if !self.is_primitive(&resolved) {
2355                                                 assert!(!is_ref); // We don't currently support outer reference types for non-primitive inners
2356                                         }
2357                                 } else {
2358                                         assert!(!is_ref); // We don't currently support outer reference types for non-primitive inners
2359                                 }
2360                                 if !self.write_c_type_intern(w, t, generics, false, false, false, false) { return false; }
2361                         } else {
2362                                 assert!(!is_ref); // We don't currently support outer reference types for non-primitive inners
2363                                 if !self.write_c_type_intern(w, t, generics, false, false, false, false) { return false; }
2364                         }
2365                 }
2366                 true
2367         }
2368         fn check_create_container(&self, mangled_container: String, container_type: &str, args: Vec<&syn::Type>, generics: Option<&GenericTypes>, is_ref: bool) -> bool {
2369                 if !self.crate_types.templates_defined.borrow().get(&mangled_container).is_some() {
2370                         let mut created_container: Vec<u8> = Vec::new();
2371
2372                         if container_type == "Result" {
2373                                 let mut a_ty: Vec<u8> = Vec::new();
2374                                 if let syn::Type::Tuple(tup) = args.iter().next().unwrap() {
2375                                         if tup.elems.is_empty() {
2376                                                 write!(&mut a_ty, "()").unwrap();
2377                                         } else {
2378                                                 if !self.write_template_generics(&mut a_ty, &mut args.iter().map(|t| *t).take(1), generics, is_ref) { return false; }
2379                                         }
2380                                 } else {
2381                                         if !self.write_template_generics(&mut a_ty, &mut args.iter().map(|t| *t).take(1), generics, is_ref) { return false; }
2382                                 }
2383
2384                                 let mut b_ty: Vec<u8> = Vec::new();
2385                                 if let syn::Type::Tuple(tup) = args.iter().skip(1).next().unwrap() {
2386                                         if tup.elems.is_empty() {
2387                                                 write!(&mut b_ty, "()").unwrap();
2388                                         } else {
2389                                                 if !self.write_template_generics(&mut b_ty, &mut args.iter().map(|t| *t).skip(1), generics, is_ref) { return false; }
2390                                         }
2391                                 } else {
2392                                         if !self.write_template_generics(&mut b_ty, &mut args.iter().map(|t| *t).skip(1), generics, is_ref) { return false; }
2393                                 }
2394
2395                                 let ok_str = String::from_utf8(a_ty).unwrap();
2396                                 let err_str = String::from_utf8(b_ty).unwrap();
2397                                 let is_clonable = self.is_clonable(&ok_str) && self.is_clonable(&err_str);
2398                                 write_result_block(&mut created_container, &mangled_container, &ok_str, &err_str, is_clonable);
2399                                 if is_clonable {
2400                                         self.crate_types.set_clonable(Self::generated_container_path().to_owned() + "::" + &mangled_container);
2401                                 }
2402                         } else if container_type == "Vec" {
2403                                 let mut a_ty: Vec<u8> = Vec::new();
2404                                 if !self.write_template_generics(&mut a_ty, &mut args.iter().map(|t| *t), generics, is_ref) { return false; }
2405                                 let ty = String::from_utf8(a_ty).unwrap();
2406                                 let is_clonable = self.is_clonable(&ty);
2407                                 write_vec_block(&mut created_container, &mangled_container, &ty, is_clonable);
2408                                 if is_clonable {
2409                                         self.crate_types.set_clonable(Self::generated_container_path().to_owned() + "::" + &mangled_container);
2410                                 }
2411                         } else if container_type.ends_with("Tuple") {
2412                                 let mut tuple_args = Vec::new();
2413                                 let mut is_clonable = true;
2414                                 for arg in args.iter() {
2415                                         let mut ty: Vec<u8> = Vec::new();
2416                                         if !self.write_template_generics(&mut ty, &mut [arg].iter().map(|t| **t), generics, is_ref) { return false; }
2417                                         let ty_str = String::from_utf8(ty).unwrap();
2418                                         if !self.is_clonable(&ty_str) {
2419                                                 is_clonable = false;
2420                                         }
2421                                         tuple_args.push(ty_str);
2422                                 }
2423                                 write_tuple_block(&mut created_container, &mangled_container, &tuple_args, is_clonable);
2424                                 if is_clonable {
2425                                         self.crate_types.set_clonable(Self::generated_container_path().to_owned() + "::" + &mangled_container);
2426                                 }
2427                         } else if container_type == "Option" {
2428                                 let mut a_ty: Vec<u8> = Vec::new();
2429                                 if !self.write_template_generics(&mut a_ty, &mut args.iter().map(|t| *t), generics, is_ref) { return false; }
2430                                 let ty = String::from_utf8(a_ty).unwrap();
2431                                 let is_clonable = self.is_clonable(&ty);
2432                                 write_option_block(&mut created_container, &mangled_container, &ty, is_clonable);
2433                                 if is_clonable {
2434                                         self.crate_types.set_clonable(Self::generated_container_path().to_owned() + "::" + &mangled_container);
2435                                 }
2436                         } else {
2437                                 unreachable!();
2438                         }
2439                         self.crate_types.write_new_template(mangled_container.clone(), true, &created_container);
2440                 }
2441                 true
2442         }
2443         fn path_to_generic_args(path: &syn::Path) -> Vec<&syn::Type> {
2444                 if let syn::PathArguments::AngleBracketed(args) = &path.segments.iter().next().unwrap().arguments {
2445                         args.args.iter().map(|gen| if let syn::GenericArgument::Type(t) = gen { t } else { unimplemented!() }).collect()
2446                 } else { unimplemented!(); }
2447         }
2448         fn write_c_mangled_container_path_intern<W: std::io::Write>
2449                         (&self, w: &mut W, args: Vec<&syn::Type>, generics: Option<&GenericTypes>, ident: &str, is_ref: bool, is_mut: bool, ptr_for_ref: bool, in_type: bool) -> bool {
2450                 let mut mangled_type: Vec<u8> = Vec::new();
2451                 if !self.is_transparent_container(ident, is_ref, args.iter().map(|a| *a), generics) {
2452                         write!(w, "C{}_", ident).unwrap();
2453                         write!(mangled_type, "C{}_", ident).unwrap();
2454                 } else { assert_eq!(args.len(), 1); }
2455                 for arg in args.iter() {
2456                         macro_rules! write_path {
2457                                 ($p_arg: expr, $extra_write: expr) => {
2458                                         if let Some(subtype) = self.maybe_resolve_path(&$p_arg.path, generics) {
2459                                                 if self.is_transparent_container(ident, is_ref, args.iter().map(|a| *a), generics) {
2460                                                         if !in_type {
2461                                                                 if self.c_type_has_inner_from_path(&subtype) {
2462                                                                         if !self.write_c_path_intern(w, &$p_arg.path, generics, is_ref, is_mut, ptr_for_ref, false) { return false; }
2463                                                                 } else {
2464                                                                         if let Some(arr_ty) = self.is_real_type_array(&subtype) {
2465                                                                                 if !self.write_c_type_intern(w, &arr_ty, generics, false, true, false, false) { return false; }
2466                                                                         } else {
2467                                                                                 // Option<T> needs to be converted to a *mut T, ie mut ptr-for-ref
2468                                                                                 if !self.write_c_path_intern(w, &$p_arg.path, generics, true, true, true, false) { return false; }
2469                                                                         }
2470                                                                 }
2471                                                         } else {
2472                                                                 write!(w, "{}", $p_arg.path.segments.last().unwrap().ident).unwrap();
2473                                                         }
2474                                                 } else if self.is_known_container(&subtype, is_ref) || self.is_path_transparent_container(&$p_arg.path, generics, is_ref) {
2475                                                         if !self.write_c_mangled_container_path_intern(w, Self::path_to_generic_args(&$p_arg.path), generics,
2476                                                                         &subtype, is_ref, is_mut, ptr_for_ref, true) {
2477                                                                 return false;
2478                                                         }
2479                                                         self.write_c_mangled_container_path_intern(&mut mangled_type, Self::path_to_generic_args(&$p_arg.path),
2480                                                                 generics, &subtype, is_ref, is_mut, ptr_for_ref, true);
2481                                                         if let Some(w2) = $extra_write as Option<&mut Vec<u8>> {
2482                                                                 self.write_c_mangled_container_path_intern(w2, Self::path_to_generic_args(&$p_arg.path),
2483                                                                         generics, &subtype, is_ref, is_mut, ptr_for_ref, true);
2484                                                         }
2485                                                 } else {
2486                                                         let id = subtype.rsplitn(2, ':').next().unwrap(); // Get the "Base" name of the resolved type
2487                                                         write!(w, "{}", id).unwrap();
2488                                                         write!(mangled_type, "{}", id).unwrap();
2489                                                         if let Some(w2) = $extra_write as Option<&mut Vec<u8>> {
2490                                                                 write!(w2, "{}", id).unwrap();
2491                                                         }
2492                                                 }
2493                                         } else { return false; }
2494                                 }
2495                         }
2496                         match generics.resolve_type(arg) {
2497                                 syn::Type::Tuple(tuple) => {
2498                                         if tuple.elems.len() == 0 {
2499                                                 write!(w, "None").unwrap();
2500                                                 write!(mangled_type, "None").unwrap();
2501                                         } else {
2502                                                 let mut mangled_tuple_type: Vec<u8> = Vec::new();
2503
2504                                                 // Figure out what the mangled type should look like. To disambiguate
2505                                                 // ((A, B), C) and (A, B, C) we prefix the generic args with a _ and suffix
2506                                                 // them with a Z. Ideally we wouldn't use Z, but not many special chars are
2507                                                 // available for use in type names.
2508                                                 write!(w, "C{}Tuple_", tuple.elems.len()).unwrap();
2509                                                 write!(mangled_type, "C{}Tuple_", tuple.elems.len()).unwrap();
2510                                                 write!(mangled_tuple_type, "C{}Tuple_", tuple.elems.len()).unwrap();
2511                                                 for elem in tuple.elems.iter() {
2512                                                         if let syn::Type::Path(p) = elem {
2513                                                                 write_path!(p, Some(&mut mangled_tuple_type));
2514                                                         } else if let syn::Type::Reference(refelem) = elem {
2515                                                                 if let syn::Type::Path(p) = &*refelem.elem {
2516                                                                         write_path!(p, Some(&mut mangled_tuple_type));
2517                                                                 } else { return false; }
2518                                                         } else { return false; }
2519                                                 }
2520                                                 write!(w, "Z").unwrap();
2521                                                 write!(mangled_type, "Z").unwrap();
2522                                                 write!(mangled_tuple_type, "Z").unwrap();
2523                                                 if !self.check_create_container(String::from_utf8(mangled_tuple_type).unwrap(),
2524                                                                 &format!("{}Tuple", tuple.elems.len()), tuple.elems.iter().collect(), generics, is_ref) {
2525                                                         return false;
2526                                                 }
2527                                         }
2528                                 },
2529                                 syn::Type::Path(p_arg) => {
2530                                         write_path!(p_arg, None);
2531                                 },
2532                                 syn::Type::Reference(refty) => {
2533                                         if let syn::Type::Path(p_arg) = &*refty.elem {
2534                                                 write_path!(p_arg, None);
2535                                         } else if let syn::Type::Slice(_) = &*refty.elem {
2536                                                 // write_c_type will actually do exactly what we want here, we just need to
2537                                                 // make it a pointer so that its an option. Note that we cannot always convert
2538                                                 // the Vec-as-slice (ie non-ref types) containers, so sometimes need to be able
2539                                                 // to edit it, hence we use *mut here instead of *const.
2540                                                 if args.len() != 1 { return false; }
2541                                                 write!(w, "*mut ").unwrap();
2542                                                 self.write_c_type(w, arg, None, true);
2543                                         } else { return false; }
2544                                 },
2545                                 syn::Type::Array(a) => {
2546                                         if let syn::Type::Path(p_arg) = &*a.elem {
2547                                                 let resolved = self.resolve_path(&p_arg.path, generics);
2548                                                 if !self.is_primitive(&resolved) { return false; }
2549                                                 if let syn::Expr::Lit(syn::ExprLit { lit: syn::Lit::Int(len), .. }) = &a.len {
2550                                                         if self.c_type_from_path(&format!("[{}; {}]", resolved, len.base10_digits()), is_ref, ptr_for_ref).is_none() { return false; }
2551                                                         write!(w, "_{}{}", resolved, len.base10_digits()).unwrap();
2552                                                         write!(mangled_type, "_{}{}", resolved, len.base10_digits()).unwrap();
2553                                                 } else { return false; }
2554                                         } else { return false; }
2555                                 },
2556                                 _ => { return false; },
2557                         }
2558                 }
2559                 if self.is_transparent_container(ident, is_ref, args.iter().map(|a| *a), generics) { return true; }
2560                 // Push the "end of type" Z
2561                 write!(w, "Z").unwrap();
2562                 write!(mangled_type, "Z").unwrap();
2563
2564                 // Make sure the type is actually defined:
2565                 self.check_create_container(String::from_utf8(mangled_type).unwrap(), ident, args, generics, is_ref)
2566         }
2567         fn write_c_mangled_container_path<W: std::io::Write>(&self, w: &mut W, args: Vec<&syn::Type>, generics: Option<&GenericTypes>, ident: &str, is_ref: bool, is_mut: bool, ptr_for_ref: bool) -> bool {
2568                 if !self.is_transparent_container(ident, is_ref, args.iter().map(|a| *a), generics) {
2569                         write!(w, "{}::", Self::generated_container_path()).unwrap();
2570                 }
2571                 self.write_c_mangled_container_path_intern(w, args, generics, ident, is_ref, is_mut, ptr_for_ref, false)
2572         }
2573         pub fn get_c_mangled_container_type(&self, args: Vec<&syn::Type>, generics: Option<&GenericTypes>, template_name: &str) -> Option<String> {
2574                 let mut out = Vec::new();
2575                 if !self.write_c_mangled_container_path(&mut out, args, generics, template_name, false, false, false) {
2576                         return None;
2577                 }
2578                 Some(String::from_utf8(out).unwrap())
2579         }
2580
2581         // **********************************
2582         // *** C Type Equivalent Printing ***
2583         // **********************************
2584
2585         fn write_c_path_intern<W: std::io::Write>(&self, w: &mut W, path: &syn::Path, generics: Option<&GenericTypes>, is_ref: bool, is_mut: bool, ptr_for_ref: bool, with_ref_lifetime: bool) -> bool {
2586                 let full_path = match self.maybe_resolve_path(&path, generics) {
2587                         Some(path) => path, None => return false };
2588                 if let Some(c_type) = self.c_type_from_path(&full_path, is_ref, ptr_for_ref) {
2589                         write!(w, "{}", c_type).unwrap();
2590                         true
2591                 } else if self.crate_types.traits.get(&full_path).is_some() {
2592                         if is_ref && ptr_for_ref {
2593                                 write!(w, "*{} crate::{}", if is_mut { "mut" } else { "const" }, full_path).unwrap();
2594                         } else if is_ref {
2595                                 if with_ref_lifetime { unimplemented!(); }
2596                                 write!(w, "&{}crate::{}", if is_mut { "mut " } else { "" }, full_path).unwrap();
2597                         } else {
2598                                 write!(w, "crate::{}", full_path).unwrap();
2599                         }
2600                         true
2601                 } else if self.crate_types.opaques.get(&full_path).is_some() || self.crate_types.mirrored_enums.get(&full_path).is_some() {
2602                         if is_ref && ptr_for_ref {
2603                                 // ptr_for_ref implies we're returning the object, which we can't really do for
2604                                 // opaque or mirrored types without box'ing them, which is quite a waste, so return
2605                                 // the actual object itself (for opaque types we'll set the pointer to the actual
2606                                 // type and note that its a reference).
2607                                 write!(w, "crate::{}", full_path).unwrap();
2608                         } else if is_ref && with_ref_lifetime {
2609                                 assert!(!is_mut);
2610                                 // If we're concretizing something with a lifetime parameter, we have to pick a
2611                                 // lifetime, of which the only real available choice is `static`, obviously.
2612                                 write!(w, "&'static ").unwrap();
2613                                 self.write_rust_path(w, generics, path);
2614                         } else if is_ref {
2615                                 write!(w, "&{}crate::{}", if is_mut { "mut " } else { "" }, full_path).unwrap();
2616                         } else {
2617                                 write!(w, "crate::{}", full_path).unwrap();
2618                         }
2619                         true
2620                 } else {
2621                         false
2622                 }
2623         }
2624         fn write_c_type_intern<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, is_mut: bool, ptr_for_ref: bool, with_ref_lifetime: bool) -> bool {
2625                 match generics.resolve_type(t) {
2626                         syn::Type::Path(p) => {
2627                                 if p.qself.is_some() {
2628                                         return false;
2629                                 }
2630                                 if let Some(full_path) = self.maybe_resolve_path(&p.path, generics) {
2631                                         if self.is_known_container(&full_path, is_ref) || self.is_path_transparent_container(&p.path, generics, is_ref) {
2632                                                 return self.write_c_mangled_container_path(w, Self::path_to_generic_args(&p.path), generics, &full_path, is_ref, is_mut, ptr_for_ref);
2633                                         }
2634                                         if let Some(aliased_type) = self.crate_types.type_aliases.get(&full_path).cloned() {
2635                                                 return self.write_c_type_intern(w, &aliased_type, None, is_ref, is_mut, ptr_for_ref, with_ref_lifetime);
2636                                         }
2637                                 }
2638                                 self.write_c_path_intern(w, &p.path, generics, is_ref, is_mut, ptr_for_ref, with_ref_lifetime)
2639                         },
2640                         syn::Type::Reference(r) => {
2641                                 self.write_c_type_intern(w, &*r.elem, generics, true, r.mutability.is_some(), ptr_for_ref, with_ref_lifetime)
2642                         },
2643                         syn::Type::Array(a) => {
2644                                 if is_ref && is_mut {
2645                                         write!(w, "*mut [").unwrap();
2646                                         if !self.write_c_type_intern(w, &a.elem, generics, false, false, ptr_for_ref, with_ref_lifetime) { return false; }
2647                                 } else if is_ref {
2648                                         write!(w, "*const [").unwrap();
2649                                         if !self.write_c_type_intern(w, &a.elem, generics, false, false, ptr_for_ref, with_ref_lifetime) { return false; }
2650                                 } else {
2651                                         let mut typecheck = Vec::new();
2652                                         if !self.write_c_type_intern(&mut typecheck, &a.elem, generics, false, false, ptr_for_ref, with_ref_lifetime) { return false; }
2653                                         if typecheck[..] != ['u' as u8, '8' as u8] { return false; }
2654                                 }
2655                                 if let syn::Expr::Lit(l) = &a.len {
2656                                         if let syn::Lit::Int(i) = &l.lit {
2657                                                 if !is_ref {
2658                                                         if let Some(ty) = self.c_type_from_path(&format!("[u8; {}]", i.base10_digits()), false, ptr_for_ref) {
2659                                                                 write!(w, "{}", ty).unwrap();
2660                                                                 true
2661                                                         } else { false }
2662                                                 } else {
2663                                                         write!(w, "; {}]", i).unwrap();
2664                                                         true
2665                                                 }
2666                                         } else { false }
2667                                 } else { false }
2668                         }
2669                         syn::Type::Slice(s) => {
2670                                 if !is_ref || is_mut { return false; }
2671                                 if let syn::Type::Path(p) = &*s.elem {
2672                                         let resolved = self.resolve_path(&p.path, generics);
2673                                         if self.is_primitive(&resolved) {
2674                                                 write!(w, "{}::{}slice", Self::container_templ_path(), resolved).unwrap();
2675                                                 true
2676                                         } else { false }
2677                                 } else if let syn::Type::Reference(r) = &*s.elem {
2678                                         if let syn::Type::Path(p) = &*r.elem {
2679                                                 // Slices with "real types" inside are mapped as the equivalent non-ref Vec
2680                                                 let resolved = self.resolve_path(&p.path, generics);
2681                                                 let mangled_container = if let Some(ident) = self.crate_types.opaques.get(&resolved) {
2682                                                         format!("CVec_{}Z", ident)
2683                                                 } else if let Some(en) = self.crate_types.mirrored_enums.get(&resolved) {
2684                                                         format!("CVec_{}Z", en.ident)
2685                                                 } else if let Some(id) = p.path.get_ident() {
2686                                                         format!("CVec_{}Z", id)
2687                                                 } else { return false; };
2688                                                 write!(w, "{}::{}", Self::generated_container_path(), mangled_container).unwrap();
2689                                                 self.check_create_container(mangled_container, "Vec", vec![&*r.elem], generics, false)
2690                                         } else if let syn::Type::Slice(sl2) = &*r.elem {
2691                                                 if let syn::Type::Reference(r2) = &*sl2.elem {
2692                                                         if let syn::Type::Path(p) = &*r2.elem {
2693                                                                 // Slices with slices with opaque types (with is_owned flags) are mapped as non-ref Vecs
2694                                                                 let resolved = self.resolve_path(&p.path, generics);
2695                                                                 let mangled_container = if let Some(ident) = self.crate_types.opaques.get(&resolved) {
2696                                                                         format!("CVec_CVec_{}ZZ", ident)
2697                                                                 } else { return false; };
2698                                                                 write!(w, "{}::{}", Self::generated_container_path(), mangled_container).unwrap();
2699                                                                 let inner = &r2.elem;
2700                                                                 let vec_ty: syn::Type = syn::parse_quote!(Vec<#inner>);
2701                                                                 self.check_create_container(mangled_container, "Vec", vec![&vec_ty], generics, false)
2702                                                         } else { false }
2703                                                 } else { false }
2704                                         } else { false }
2705                                 } else if let syn::Type::Tuple(_) = &*s.elem {
2706                                         let mut args = syn::punctuated::Punctuated::<_, syn::token::Comma>::new();
2707                                         args.push(syn::GenericArgument::Type((*s.elem).clone()));
2708                                         let mut segments = syn::punctuated::Punctuated::new();
2709                                         segments.push(parse_quote!(Vec<#args>));
2710                                         self.write_c_type_intern(w, &syn::Type::Path(syn::TypePath { qself: None, path: syn::Path { leading_colon: None, segments } }), generics, false, is_mut, ptr_for_ref, with_ref_lifetime)
2711                                 } else { false }
2712                         },
2713                         syn::Type::Tuple(t) => {
2714                                 if t.elems.len() == 0 {
2715                                         true
2716                                 } else {
2717                                         self.write_c_mangled_container_path(w, t.elems.iter().collect(), generics,
2718                                                 &format!("{}Tuple", t.elems.len()), is_ref, is_mut, ptr_for_ref)
2719                                 }
2720                         },
2721                         _ => false,
2722                 }
2723         }
2724         pub fn write_c_type<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) {
2725                 assert!(self.write_c_type_intern(w, t, generics, false, false, ptr_for_ref, false));
2726         }
2727         pub fn write_c_type_in_generic_param<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) {
2728                 assert!(self.write_c_type_intern(w, t, generics, false, false, ptr_for_ref, true));
2729         }
2730         pub fn understood_c_path(&self, p: &syn::Path) -> bool {
2731                 if p.leading_colon.is_some() { return false; }
2732                 self.write_c_path_intern(&mut std::io::sink(), p, None, false, false, false, false)
2733         }
2734         pub fn understood_c_type(&self, t: &syn::Type, generics: Option<&GenericTypes>) -> bool {
2735                 self.write_c_type_intern(&mut std::io::sink(), t, generics, false, false, false, false)
2736         }
2737 }