aebeb487ece66605a3770677b9d386041bc29a13
[ldk-c-bindings] / c-bindings-gen / src / types.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE>
5 // or the MIT license <LICENSE-MIT>, at your option.
6 // You may not use this file except in accordance with one or both of these
7 // licenses.
8
9 use std::cell::RefCell;
10 use std::collections::{HashMap, HashSet};
11 use std::fs::File;
12 use std::io::Write;
13 use std::hash;
14
15 use crate::blocks::*;
16
17 use proc_macro2::{TokenTree, Span};
18 use quote::format_ident;
19 use syn::parse_quote;
20
21 // The following utils are used purely to build our known types maps - they break down all the
22 // types we need to resolve to include the given object, and no more.
23
24 pub fn first_seg_self<'a>(t: &'a syn::Type) -> Option<impl Iterator<Item=&syn::PathSegment> + 'a> {
25         match t {
26                 syn::Type::Path(p) => {
27                         if p.qself.is_some() || p.path.leading_colon.is_some() {
28                                 return None;
29                         }
30                         let mut segs = p.path.segments.iter();
31                         let ty = segs.next().unwrap();
32                         if !ty.arguments.is_empty() { return None; }
33                         if format!("{}", ty.ident) == "Self" {
34                                 Some(segs)
35                         } else { None }
36                 },
37                 _ => None,
38         }
39 }
40
41 pub fn get_single_remaining_path_seg<'a, I: Iterator<Item=&'a syn::PathSegment>>(segs: &mut I) -> Option<&'a syn::Ident> {
42         if let Some(ty) = segs.next() {
43                 if !ty.arguments.is_empty() { unimplemented!(); }
44                 if segs.next().is_some() { return None; }
45                 Some(&ty.ident)
46         } else { None }
47 }
48
49 pub fn first_seg_is_stdlib(first_seg_str: &str) -> bool {
50         first_seg_str == "std" || first_seg_str == "core" || first_seg_str == "alloc"
51 }
52
53 pub fn single_ident_generic_path_to_ident(p: &syn::Path) -> Option<&syn::Ident> {
54         if p.segments.len() == 1 {
55                 Some(&p.segments.iter().next().unwrap().ident)
56         } else { None }
57 }
58
59 pub fn path_matches_nongeneric(p: &syn::Path, exp: &[&str]) -> bool {
60         if p.segments.len() != exp.len() { return false; }
61         for (seg, e) in p.segments.iter().zip(exp.iter()) {
62                 if seg.arguments != syn::PathArguments::None { return false; }
63                 if &format!("{}", seg.ident) != *e { return false; }
64         }
65         true
66 }
67
68 #[derive(Debug, PartialEq)]
69 pub enum ExportStatus {
70         Export,
71         NoExport,
72         TestOnly,
73         /// This is used only for traits to indicate that users should not be able to implement their
74         /// own version of a trait, but we should export Rust implementations of the trait (and the
75         /// trait itself).
76         /// Concretly, this means that we do not implement the Rust trait for the C trait struct.
77         NotImplementable,
78 }
79 /// Gets the ExportStatus of an object (struct, fn, etc) given its attributes.
80 pub fn export_status(attrs: &[syn::Attribute]) -> ExportStatus {
81         for attr in attrs.iter() {
82                 let tokens_clone = attr.tokens.clone();
83                 let mut token_iter = tokens_clone.into_iter();
84                 if let Some(token) = token_iter.next() {
85                         match token {
86                                 TokenTree::Punct(c) if c.as_char() == '=' => {
87                                         // Really not sure where syn gets '=' from here -
88                                         // it somehow represents '///' or '//!'
89                                 },
90                                 TokenTree::Group(g) => {
91                                         if format!("{}", single_ident_generic_path_to_ident(&attr.path).unwrap()) == "cfg" {
92                                                 let mut iter = g.stream().into_iter();
93                                                 if let TokenTree::Ident(i) = iter.next().unwrap() {
94                                                         if i == "any" {
95                                                                 // #[cfg(any(test, feature = ""))]
96                                                                 if let TokenTree::Group(g) = iter.next().unwrap() {
97                                                                         let mut all_test = true;
98                                                                         for token in g.stream().into_iter() {
99                                                                                 if let TokenTree::Ident(i) = token {
100                                                                                         match format!("{}", i).as_str() {
101                                                                                                 "test" => {},
102                                                                                                 "feature" => {},
103                                                                                                 _ => all_test = false,
104                                                                                         }
105                                                                                 } else if let TokenTree::Literal(lit) = token {
106                                                                                         if format!("{}", lit) != "fuzztarget" {
107                                                                                                 all_test = false;
108                                                                                         }
109                                                                                 }
110                                                                         }
111                                                                         if all_test { return ExportStatus::TestOnly; }
112                                                                 }
113                                                         } else if i == "test" {
114                                                                 return ExportStatus::TestOnly;
115                                                         }
116                                                 }
117                                         }
118                                         continue; // eg #[derive()]
119                                 },
120                                 _ => unimplemented!(),
121                         }
122                 } else { continue; }
123                 match token_iter.next().unwrap() {
124                         TokenTree::Literal(lit) => {
125                                 let line = format!("{}", lit);
126                                 if line.contains("(C-not exported)") {
127                                         return ExportStatus::NoExport;
128                                 } else if line.contains("(C-not implementable)") {
129                                         return ExportStatus::NotImplementable;
130                                 }
131                         },
132                         _ => unimplemented!(),
133                 }
134         }
135         ExportStatus::Export
136 }
137
138 pub fn assert_simple_bound(bound: &syn::TraitBound) {
139         if bound.paren_token.is_some() || bound.lifetimes.is_some() { unimplemented!(); }
140         if let syn::TraitBoundModifier::Maybe(_) = bound.modifier { unimplemented!(); }
141 }
142
143 /// Returns true if the enum will be mapped as an opaue (ie struct with a pointer to the underlying
144 /// type), otherwise it is mapped into a transparent, C-compatible version of itself.
145 pub fn is_enum_opaque(e: &syn::ItemEnum) -> bool {
146         for var in e.variants.iter() {
147                 if let syn::Fields::Named(fields) = &var.fields {
148                         for field in fields.named.iter() {
149                                 match export_status(&field.attrs) {
150                                         ExportStatus::Export|ExportStatus::TestOnly => {},
151                                         ExportStatus::NotImplementable => panic!("(C-not implementable) should only appear on traits!"),
152                                         ExportStatus::NoExport => return true,
153                                 }
154                         }
155                 } else if let syn::Fields::Unnamed(fields) = &var.fields {
156                         for field in fields.unnamed.iter() {
157                                 match export_status(&field.attrs) {
158                                         ExportStatus::Export|ExportStatus::TestOnly => {},
159                                         ExportStatus::NotImplementable => panic!("(C-not implementable) should only appear on traits!"),
160                                         ExportStatus::NoExport => return true,
161                                 }
162                         }
163                 }
164         }
165         false
166 }
167
168 /// A stack of sets of generic resolutions.
169 ///
170 /// This tracks the template parameters for a function, struct, or trait, allowing resolution into
171 /// a concrete type. By pushing a new context onto the stack, this can track a function's template
172 /// parameters inside of a generic struct or trait.
173 ///
174 /// It maps both direct types as well as Deref<Target = X>, mapping them via the provided
175 /// TypeResolver's resolve_path function (ie traits map to the concrete jump table, structs to the
176 /// concrete C container struct, etc).
177 #[must_use]
178 pub struct GenericTypes<'a, 'b> {
179         self_ty: Option<String>,
180         parent: Option<&'b GenericTypes<'b, 'b>>,
181         typed_generics: HashMap<&'a syn::Ident, String>,
182         default_generics: HashMap<&'a syn::Ident, (syn::Type, syn::Type)>,
183 }
184 impl<'a, 'p: 'a> GenericTypes<'a, 'p> {
185         pub fn new(self_ty: Option<String>) -> Self {
186                 Self { self_ty, parent: None, typed_generics: HashMap::new(), default_generics: HashMap::new(), }
187         }
188
189         /// push a new context onto the stack, allowing for a new set of generics to be learned which
190         /// will override any lower contexts, but which will still fall back to resoltion via lower
191         /// contexts.
192         pub fn push_ctx<'c>(&'c self) -> GenericTypes<'a, 'c> {
193                 GenericTypes { self_ty: None, parent: Some(self), typed_generics: HashMap::new(), default_generics: HashMap::new(), }
194         }
195
196         /// Learn the generics in generics in the current context, given a TypeResolver.
197         pub fn learn_generics<'b, 'c>(&mut self, generics: &'a syn::Generics, types: &'b TypeResolver<'a, 'c>) -> bool {
198                 let mut new_typed_generics = HashMap::new();
199                 // First learn simple generics...
200                 for generic in generics.params.iter() {
201                         match generic {
202                                 syn::GenericParam::Type(type_param) => {
203                                         let mut non_lifetimes_processed = false;
204                                         'bound_loop: for bound in type_param.bounds.iter() {
205                                                 if let syn::TypeParamBound::Trait(trait_bound) = bound {
206                                                         if let Some(ident) = single_ident_generic_path_to_ident(&trait_bound.path) {
207                                                                 match &format!("{}", ident) as &str { "Send" => continue, "Sync" => continue, _ => {} }
208                                                         }
209                                                         if path_matches_nongeneric(&trait_bound.path, &["core", "clone", "Clone"]) { continue; }
210
211                                                         assert_simple_bound(&trait_bound);
212                                                         if let Some(path) = types.maybe_resolve_path(&trait_bound.path, None) {
213                                                                 if types.skip_path(&path) { continue; }
214                                                                 if path == "Sized" { continue; }
215                                                                 if non_lifetimes_processed { return false; }
216                                                                 non_lifetimes_processed = true;
217                                                                 if path != "std::ops::Deref" && path != "core::ops::Deref" {
218                                                                         new_typed_generics.insert(&type_param.ident, Some(path));
219                                                                 } else if trait_bound.path.segments.len() == 1 {
220                                                                         // If we're templated on Deref<Target = ConcreteThing>, store
221                                                                         // the reference type in `default_generics` which handles full
222                                                                         // types and not just paths.
223                                                                         if let syn::PathArguments::AngleBracketed(ref args) =
224                                                                                         trait_bound.path.segments[0].arguments {
225                                                                                 for subargument in args.args.iter() {
226                                                                                         match subargument {
227                                                                                                 syn::GenericArgument::Lifetime(_) => {},
228                                                                                                 syn::GenericArgument::Binding(ref b) => {
229                                                                                                         if &format!("{}", b.ident) != "Target" { return false; }
230                                                                                                         let default = &b.ty;
231                                                                                                         self.default_generics.insert(&type_param.ident, (parse_quote!(&#default), parse_quote!(&#default)));
232                                                                                                         break 'bound_loop;
233                                                                                                 },
234                                                                                                 _ => unimplemented!(),
235                                                                                         }
236                                                                                 }
237                                                                         } else {
238                                                                                 new_typed_generics.insert(&type_param.ident, None);
239                                                                         }
240                                                                 }
241                                                         }
242                                                 }
243                                         }
244                                         if let Some(default) = type_param.default.as_ref() {
245                                                 assert!(type_param.bounds.is_empty());
246                                                 self.default_generics.insert(&type_param.ident, (default.clone(), parse_quote!(&#default)));
247                                         }
248                                 },
249                                 _ => {},
250                         }
251                 }
252                 // Then find generics where we are required to pass a Deref<Target=X> and pretend its just X.
253                 if let Some(wh) = &generics.where_clause {
254                         for pred in wh.predicates.iter() {
255                                 if let syn::WherePredicate::Type(t) = pred {
256                                         if let syn::Type::Path(p) = &t.bounded_ty {
257                                                 if p.qself.is_some() { return false; }
258                                                 if p.path.leading_colon.is_some() { return false; }
259                                                 let mut p_iter = p.path.segments.iter();
260                                                 if let Some(gen) = new_typed_generics.get_mut(&p_iter.next().unwrap().ident) {
261                                                         if gen.is_some() { return false; }
262                                                         if &format!("{}", p_iter.next().unwrap().ident) != "Target" {return false; }
263
264                                                         let mut non_lifetimes_processed = false;
265                                                         for bound in t.bounds.iter() {
266                                                                 if let syn::TypeParamBound::Trait(trait_bound) = bound {
267                                                                         if let Some(id) = trait_bound.path.get_ident() {
268                                                                                 if format!("{}", id) == "Sized" { continue; }
269                                                                         }
270                                                                         if non_lifetimes_processed { return false; }
271                                                                         non_lifetimes_processed = true;
272                                                                         assert_simple_bound(&trait_bound);
273                                                                         *gen = Some(types.resolve_path(&trait_bound.path, None));
274                                                                 }
275                                                         }
276                                                 } else { return false; }
277                                         } else { return false; }
278                                 }
279                         }
280                 }
281                 for (key, value) in new_typed_generics.drain() {
282                         if let Some(v) = value {
283                                 assert!(self.typed_generics.insert(key, v).is_none());
284                         } else { return false; }
285                 }
286                 true
287         }
288
289         /// Learn the associated types from the trait in the current context.
290         pub fn learn_associated_types<'b, 'c>(&mut self, t: &'a syn::ItemTrait, types: &'b TypeResolver<'a, 'c>) {
291                 for item in t.items.iter() {
292                         match item {
293                                 &syn::TraitItem::Type(ref t) => {
294                                         if t.default.is_some() || t.generics.lt_token.is_some() { unimplemented!(); }
295                                         let mut bounds_iter = t.bounds.iter();
296                                         loop {
297                                                 match bounds_iter.next().unwrap() {
298                                                         syn::TypeParamBound::Trait(tr) => {
299                                                                 assert_simple_bound(&tr);
300                                                                 if let Some(path) = types.maybe_resolve_path(&tr.path, None) {
301                                                                         if types.skip_path(&path) { continue; }
302                                                                         // In general we handle Deref<Target=X> as if it were just X (and
303                                                                         // implement Deref<Target=Self> for relevant types). We don't
304                                                                         // bother to implement it for associated types, however, so we just
305                                                                         // ignore such bounds.
306                                                                         if path != "std::ops::Deref" && path != "core::ops::Deref" {
307                                                                                 self.typed_generics.insert(&t.ident, path);
308                                                                         }
309                                                                 } else { unimplemented!(); }
310                                                                 for bound in bounds_iter {
311                                                                         if let syn::TypeParamBound::Trait(_) = bound { unimplemented!(); }
312                                                                 }
313                                                                 break;
314                                                         },
315                                                         syn::TypeParamBound::Lifetime(_) => {},
316                                                 }
317                                         }
318                                 },
319                                 _ => {},
320                         }
321                 }
322         }
323
324         /// Attempt to resolve a Path as a generic parameter and return the full path. as both a string
325         /// and syn::Path.
326         pub fn maybe_resolve_path<'b>(&'b self, path: &syn::Path) -> Option<&'b String> {
327                 if let Some(ident) = path.get_ident() {
328                         if let Some(ty) = &self.self_ty {
329                                 if format!("{}", ident) == "Self" {
330                                         return Some(&ty);
331                                 }
332                         }
333                         if let Some(res) = self.typed_generics.get(ident) {
334                                 return Some(res);
335                         }
336                 } else {
337                         // Associated types are usually specified as "Self::Generic", so we check for that
338                         // explicitly here.
339                         let mut it = path.segments.iter();
340                         if path.segments.len() == 2 && format!("{}", it.next().unwrap().ident) == "Self" {
341                                 let ident = &it.next().unwrap().ident;
342                                 if let Some(res) = self.typed_generics.get(ident) {
343                                         return Some(res);
344                                 }
345                         }
346                 }
347                 if let Some(parent) = self.parent {
348                         parent.maybe_resolve_path(path)
349                 } else {
350                         None
351                 }
352         }
353 }
354
355 trait ResolveType<'a> { fn resolve_type(&'a self, ty: &'a syn::Type) -> &'a syn::Type; }
356 impl<'a, 'b, 'c: 'a + 'b> ResolveType<'c> for Option<&GenericTypes<'a, 'b>> {
357         fn resolve_type(&'c self, ty: &'c syn::Type) -> &'c syn::Type {
358                 if let Some(us) = self {
359                         match ty {
360                                 syn::Type::Path(p) => {
361                                         if let Some(ident) = p.path.get_ident() {
362                                                 if let Some((ty, _)) = us.default_generics.get(ident) {
363                                                         return ty;
364                                                 }
365                                         }
366                                 },
367                                 syn::Type::Reference(syn::TypeReference { elem, .. }) => {
368                                         if let syn::Type::Path(p) = &**elem {
369                                                 if let Some(ident) = p.path.get_ident() {
370                                                         if let Some((_, refty)) = us.default_generics.get(ident) {
371                                                                 return refty;
372                                                         }
373                                                 }
374                                         }
375                                 }
376                                 _ => {},
377                         }
378                         us.parent.resolve_type(ty)
379                 } else { ty }
380         }
381 }
382
383 #[derive(Clone, PartialEq)]
384 // The type of declaration and the object itself
385 pub enum DeclType<'a> {
386         MirroredEnum,
387         Trait(&'a syn::ItemTrait),
388         StructImported { generics: &'a syn::Generics  },
389         StructIgnored,
390         EnumIgnored { generics: &'a syn::Generics },
391 }
392
393 pub struct ImportResolver<'mod_lifetime, 'crate_lft: 'mod_lifetime> {
394         crate_name: &'mod_lifetime str,
395         dependencies: &'mod_lifetime HashSet<syn::Ident>,
396         module_path: &'mod_lifetime str,
397         imports: HashMap<syn::Ident, (String, syn::Path)>,
398         declared: HashMap<syn::Ident, DeclType<'crate_lft>>,
399         priv_modules: HashSet<syn::Ident>,
400 }
401 impl<'mod_lifetime, 'crate_lft: 'mod_lifetime> ImportResolver<'mod_lifetime, 'crate_lft> {
402         fn process_use_intern(crate_name: &str, module_path: &str, dependencies: &HashSet<syn::Ident>, imports: &mut HashMap<syn::Ident, (String, syn::Path)>,
403                         u: &syn::UseTree, partial_path: &str, mut path: syn::punctuated::Punctuated<syn::PathSegment, syn::token::Colon2>) {
404
405                 let new_path;
406                 macro_rules! push_path {
407                         ($ident: expr, $path_suffix: expr) => {
408                                 if partial_path == "" && format!("{}", $ident) == "super" {
409                                         let mut mod_iter = module_path.rsplitn(2, "::");
410                                         mod_iter.next().unwrap();
411                                         let super_mod = mod_iter.next().unwrap();
412                                         new_path = format!("{}{}", super_mod, $path_suffix);
413                                         assert_eq!(path.len(), 0);
414                                         for module in super_mod.split("::") {
415                                                 path.push(syn::PathSegment { ident: syn::Ident::new(module, Span::call_site()), arguments: syn::PathArguments::None });
416                                         }
417                                 } else if partial_path == "" && format!("{}", $ident) == "self" {
418                                         new_path = format!("{}{}", module_path, $path_suffix);
419                                         for module in module_path.split("::") {
420                                                 path.push(syn::PathSegment { ident: syn::Ident::new(module, Span::call_site()), arguments: syn::PathArguments::None });
421                                         }
422                                 } else if partial_path == "" && format!("{}", $ident) == "crate" {
423                                         new_path = format!("{}{}", crate_name, $path_suffix);
424                                         let crate_name_ident = format_ident!("{}", crate_name);
425                                         path.push(parse_quote!(#crate_name_ident));
426                                 } else if partial_path == "" && !dependencies.contains(&$ident) {
427                                         new_path = format!("{}::{}{}", crate_name, $ident, $path_suffix);
428                                         let crate_name_ident = format_ident!("{}", crate_name);
429                                         path.push(parse_quote!(#crate_name_ident));
430                                 } else {
431                                         new_path = format!("{}{}{}", partial_path, $ident, $path_suffix);
432                                 }
433                                 let ident = &$ident;
434                                 path.push(parse_quote!(#ident));
435                         }
436                 }
437                 match u {
438                         syn::UseTree::Path(p) => {
439                                 push_path!(p.ident, "::");
440                                 Self::process_use_intern(crate_name, module_path, dependencies, imports, &p.tree, &new_path, path);
441                         },
442                         syn::UseTree::Name(n) => {
443                                 push_path!(n.ident, "");
444                                 imports.insert(n.ident.clone(), (new_path, syn::Path { leading_colon: Some(syn::Token![::](Span::call_site())), segments: path }));
445                         },
446                         syn::UseTree::Group(g) => {
447                                 for i in g.items.iter() {
448                                         Self::process_use_intern(crate_name, module_path, dependencies, imports, i, partial_path, path.clone());
449                                 }
450                         },
451                         syn::UseTree::Rename(r) => {
452                                 push_path!(r.ident, "");
453                                 imports.insert(r.rename.clone(), (new_path, syn::Path { leading_colon: Some(syn::Token![::](Span::call_site())), segments: path }));
454                         },
455                         syn::UseTree::Glob(_) => {
456                                 eprintln!("Ignoring * use for {} - this may result in resolution failures", partial_path);
457                         },
458                 }
459         }
460
461         fn process_use(crate_name: &str, module_path: &str, dependencies: &HashSet<syn::Ident>, imports: &mut HashMap<syn::Ident, (String, syn::Path)>, u: &syn::ItemUse) {
462                 if let syn::Visibility::Public(_) = u.vis {
463                         // We actually only use these for #[cfg(fuzztarget)]
464                         eprintln!("Ignoring pub(use) tree!");
465                         return;
466                 }
467                 if u.leading_colon.is_some() { eprintln!("Ignoring leading-colon use!"); return; }
468                 Self::process_use_intern(crate_name, module_path, dependencies, imports, &u.tree, "", syn::punctuated::Punctuated::new());
469         }
470
471         fn insert_primitive(imports: &mut HashMap<syn::Ident, (String, syn::Path)>, id: &str) {
472                 let ident = format_ident!("{}", id);
473                 let path = parse_quote!(#ident);
474                 imports.insert(ident, (id.to_owned(), path));
475         }
476
477         pub fn new(crate_name: &'mod_lifetime str, dependencies: &'mod_lifetime HashSet<syn::Ident>, module_path: &'mod_lifetime str, contents: &'crate_lft [syn::Item]) -> Self {
478                 Self::from_borrowed_items(crate_name, dependencies, module_path, &contents.iter().map(|a| a).collect::<Vec<_>>())
479         }
480         pub fn from_borrowed_items(crate_name: &'mod_lifetime str, dependencies: &'mod_lifetime HashSet<syn::Ident>, module_path: &'mod_lifetime str, contents: &[&'crate_lft syn::Item]) -> Self {
481                 let mut imports = HashMap::new();
482                 // Add primitives to the "imports" list:
483                 Self::insert_primitive(&mut imports, "bool");
484                 Self::insert_primitive(&mut imports, "u64");
485                 Self::insert_primitive(&mut imports, "u32");
486                 Self::insert_primitive(&mut imports, "u16");
487                 Self::insert_primitive(&mut imports, "u8");
488                 Self::insert_primitive(&mut imports, "usize");
489                 Self::insert_primitive(&mut imports, "str");
490                 Self::insert_primitive(&mut imports, "String");
491
492                 // These are here to allow us to print native Rust types in trait fn impls even if we don't
493                 // have C mappings:
494                 Self::insert_primitive(&mut imports, "Result");
495                 Self::insert_primitive(&mut imports, "Vec");
496                 Self::insert_primitive(&mut imports, "Option");
497
498                 let mut declared = HashMap::new();
499                 let mut priv_modules = HashSet::new();
500
501                 for item in contents.iter() {
502                         match item {
503                                 syn::Item::Use(u) => Self::process_use(crate_name, module_path, dependencies, &mut imports, &u),
504                                 syn::Item::Struct(s) => {
505                                         if let syn::Visibility::Public(_) = s.vis {
506                                                 match export_status(&s.attrs) {
507                                                         ExportStatus::Export => { declared.insert(s.ident.clone(), DeclType::StructImported { generics: &s.generics }); },
508                                                         ExportStatus::NoExport => { declared.insert(s.ident.clone(), DeclType::StructIgnored); },
509                                                         ExportStatus::TestOnly => continue,
510                                                         ExportStatus::NotImplementable => panic!("(C-not implementable) should only appear on traits!"),
511                                                 }
512                                         }
513                                 },
514                                 syn::Item::Type(t) if export_status(&t.attrs) == ExportStatus::Export => {
515                                         if let syn::Visibility::Public(_) = t.vis {
516                                                 let mut process_alias = true;
517                                                 for tok in t.generics.params.iter() {
518                                                         if let syn::GenericParam::Lifetime(_) = tok {}
519                                                         else { process_alias = false; }
520                                                 }
521                                                 if process_alias {
522                                                         declared.insert(t.ident.clone(), DeclType::StructImported { generics: &t.generics });
523                                                 }
524                                         }
525                                 },
526                                 syn::Item::Enum(e) => {
527                                         if let syn::Visibility::Public(_) = e.vis {
528                                                 match export_status(&e.attrs) {
529                                                         ExportStatus::Export if is_enum_opaque(e) => { declared.insert(e.ident.clone(), DeclType::EnumIgnored { generics: &e.generics }); },
530                                                         ExportStatus::Export => { declared.insert(e.ident.clone(), DeclType::MirroredEnum); },
531                                                         ExportStatus::NotImplementable => panic!("(C-not implementable) should only appear on traits!"),
532                                                         _ => continue,
533                                                 }
534                                         }
535                                 },
536                                 syn::Item::Trait(t) => {
537                                         match export_status(&t.attrs) {
538                                                 ExportStatus::Export|ExportStatus::NotImplementable => {
539                                                         if let syn::Visibility::Public(_) = t.vis {
540                                                                 declared.insert(t.ident.clone(), DeclType::Trait(t));
541                                                         }
542                                                 },
543                                                 _ => continue,
544                                         }
545                                 },
546                                 syn::Item::Mod(m) => {
547                                         priv_modules.insert(m.ident.clone());
548                                 },
549                                 _ => {},
550                         }
551                 }
552
553                 Self { crate_name, dependencies, module_path, imports, declared, priv_modules }
554         }
555
556         pub fn get_declared_type(&self, ident: &syn::Ident) -> Option<&DeclType<'crate_lft>> {
557                 self.declared.get(ident)
558         }
559
560         pub fn maybe_resolve_declared(&self, id: &syn::Ident) -> Option<&DeclType<'crate_lft>> {
561                 self.declared.get(id)
562         }
563
564         pub fn maybe_resolve_ident(&self, id: &syn::Ident) -> Option<String> {
565                 if let Some((imp, _)) = self.imports.get(id) {
566                         Some(imp.clone())
567                 } else if self.declared.get(id).is_some() {
568                         Some(self.module_path.to_string() + "::" + &format!("{}", id))
569                 } else { None }
570         }
571
572         pub fn maybe_resolve_non_ignored_ident(&self, id: &syn::Ident) -> Option<String> {
573                 if let Some((imp, _)) = self.imports.get(id) {
574                         Some(imp.clone())
575                 } else if let Some(decl_type) = self.declared.get(id) {
576                         match decl_type {
577                                 DeclType::StructIgnored => None,
578                                 _ => Some(self.module_path.to_string() + "::" + &format!("{}", id)),
579                         }
580                 } else { None }
581         }
582
583         pub fn maybe_resolve_path(&self, p: &syn::Path, generics: Option<&GenericTypes>) -> Option<String> {
584                 if let Some(gen_types) = generics {
585                         if let Some(resp) = gen_types.maybe_resolve_path(p) {
586                                 return Some(resp.clone());
587                         }
588                 }
589
590                 if p.leading_colon.is_some() {
591                         let mut res: String = p.segments.iter().enumerate().map(|(idx, seg)| {
592                                 format!("{}{}", if idx == 0 { "" } else { "::" }, seg.ident)
593                         }).collect();
594                         let firstseg = p.segments.iter().next().unwrap();
595                         if !self.dependencies.contains(&firstseg.ident) {
596                                 res = self.crate_name.to_owned() + "::" + &res;
597                         }
598                         Some(res)
599                 } else if let Some(id) = p.get_ident() {
600                         self.maybe_resolve_ident(id)
601                 } else {
602                         if p.segments.len() == 1 {
603                                 let seg = p.segments.iter().next().unwrap();
604                                 return self.maybe_resolve_ident(&seg.ident);
605                         }
606                         let mut seg_iter = p.segments.iter();
607                         let first_seg = seg_iter.next().unwrap();
608                         let remaining: String = seg_iter.map(|seg| {
609                                 format!("::{}", seg.ident)
610                         }).collect();
611                         let first_seg_str = format!("{}", first_seg.ident);
612                         if let Some((imp, _)) = self.imports.get(&first_seg.ident) {
613                                 if remaining != "" {
614                                         Some(imp.clone() + &remaining)
615                                 } else {
616                                         Some(imp.clone())
617                                 }
618                         } else if let Some(_) = self.priv_modules.get(&first_seg.ident) {
619                                 Some(format!("{}::{}{}", self.module_path, first_seg.ident, remaining))
620                         } else if first_seg_is_stdlib(&first_seg_str) || self.dependencies.contains(&first_seg.ident) {
621                                 Some(first_seg_str + &remaining)
622                         } else { None }
623                 }
624         }
625
626         /// Map all the Paths in a Type into absolute paths given a set of imports (generated via process_use_intern)
627         pub fn resolve_imported_refs(&self, mut ty: syn::Type) -> syn::Type {
628                 match &mut ty {
629                         syn::Type::Path(p) => {
630                                 if p.path.segments.len() != 1 { unimplemented!(); }
631                                 let mut args = p.path.segments[0].arguments.clone();
632                                 if let syn::PathArguments::AngleBracketed(ref mut generics) = &mut args {
633                                         for arg in generics.args.iter_mut() {
634                                                 if let syn::GenericArgument::Type(ref mut t) = arg {
635                                                         *t = self.resolve_imported_refs(t.clone());
636                                                 }
637                                         }
638                                 }
639                                 if let Some((_, newpath)) = self.imports.get(single_ident_generic_path_to_ident(&p.path).unwrap()) {
640                                         p.path = newpath.clone();
641                                 }
642                                 p.path.segments[0].arguments = args;
643                         },
644                         syn::Type::Reference(r) => {
645                                 r.elem = Box::new(self.resolve_imported_refs((*r.elem).clone()));
646                         },
647                         syn::Type::Slice(s) => {
648                                 s.elem = Box::new(self.resolve_imported_refs((*s.elem).clone()));
649                         },
650                         syn::Type::Tuple(t) => {
651                                 for e in t.elems.iter_mut() {
652                                         *e = self.resolve_imported_refs(e.clone());
653                                 }
654                         },
655                         _ => unimplemented!(),
656                 }
657                 ty
658         }
659 }
660
661 // templates_defined is walked to write the C++ header, so if we use the default hashing it get
662 // reordered on each genbindings run. Instead, we use SipHasher (which defaults to 0-keys) so that
663 // the sorting is stable across runs. It is deprecated, but the "replacement" doesn't actually
664 // accomplish the same goals, so we just ignore it.
665 #[allow(deprecated)]
666 pub type NonRandomHash = hash::BuildHasherDefault<hash::SipHasher>;
667
668 /// A public module
669 pub struct ASTModule {
670         pub attrs: Vec<syn::Attribute>,
671         pub items: Vec<syn::Item>,
672         pub submods: Vec<String>,
673 }
674 /// A struct containing the syn::File AST for each file in the crate.
675 pub struct FullLibraryAST {
676         pub modules: HashMap<String, ASTModule, NonRandomHash>,
677         pub dependencies: HashSet<syn::Ident>,
678 }
679 impl FullLibraryAST {
680         fn load_module(&mut self, module: String, attrs: Vec<syn::Attribute>, mut items: Vec<syn::Item>) {
681                 let mut non_mod_items = Vec::with_capacity(items.len());
682                 let mut submods = Vec::with_capacity(items.len());
683                 for item in items.drain(..) {
684                         match item {
685                                 syn::Item::Mod(m) if m.content.is_some() => {
686                                         if export_status(&m.attrs) == ExportStatus::Export {
687                                                 if let syn::Visibility::Public(_) = m.vis {
688                                                         let modident = format!("{}", m.ident);
689                                                         let modname = if module != "" {
690                                                                 module.clone() + "::" + &modident
691                                                         } else {
692                                                                 modident.clone()
693                                                         };
694                                                         self.load_module(modname, m.attrs, m.content.unwrap().1);
695                                                         submods.push(modident);
696                                                 } else {
697                                                         non_mod_items.push(syn::Item::Mod(m));
698                                                 }
699                                         }
700                                 },
701                                 syn::Item::Mod(_) => panic!("--pretty=expanded output should never have non-body modules"),
702                                 syn::Item::ExternCrate(c) => {
703                                         if export_status(&c.attrs) == ExportStatus::Export {
704                                                 self.dependencies.insert(c.ident);
705                                         }
706                                 },
707                                 _ => { non_mod_items.push(item); }
708                         }
709                 }
710                 self.modules.insert(module, ASTModule { attrs, items: non_mod_items, submods });
711         }
712
713         pub fn load_lib(lib: syn::File) -> Self {
714                 assert_eq!(export_status(&lib.attrs), ExportStatus::Export);
715                 let mut res = Self { modules: HashMap::default(), dependencies: HashSet::new() };
716                 res.load_module("".to_owned(), lib.attrs, lib.items);
717                 res
718         }
719 }
720
721 /// List of manually-generated types which are clonable
722 fn initial_clonable_types() -> HashSet<String> {
723         let mut res = HashSet::new();
724         res.insert("crate::c_types::u5".to_owned());
725         res.insert("crate::c_types::ThirtyTwoBytes".to_owned());
726         res.insert("crate::c_types::PublicKey".to_owned());
727         res.insert("crate::c_types::Transaction".to_owned());
728         res.insert("crate::c_types::TxOut".to_owned());
729         res.insert("crate::c_types::Signature".to_owned());
730         res.insert("crate::c_types::RecoverableSignature".to_owned());
731         res.insert("crate::c_types::Secp256k1Error".to_owned());
732         res.insert("crate::c_types::IOError".to_owned());
733         res
734 }
735
736 /// Top-level struct tracking everything which has been defined while walking the crate.
737 pub struct CrateTypes<'a> {
738         /// This may contain structs or enums, but only when either is mapped as
739         /// struct X { inner: *mut originalX, .. }
740         pub opaques: HashMap<String, (&'a syn::Ident, &'a syn::Generics)>,
741         /// Enums which are mapped as C enums with conversion functions
742         pub mirrored_enums: HashMap<String, &'a syn::ItemEnum>,
743         /// Traits which are mapped as a pointer + jump table
744         pub traits: HashMap<String, &'a syn::ItemTrait>,
745         /// Aliases from paths to some other Type
746         pub type_aliases: HashMap<String, syn::Type>,
747         /// Value is an alias to Key (maybe with some generics)
748         pub reverse_alias_map: HashMap<String, Vec<(syn::Path, syn::PathArguments)>>,
749         /// Template continer types defined, map from mangled type name -> whether a destructor fn
750         /// exists.
751         ///
752         /// This is used at the end of processing to make C++ wrapper classes
753         pub templates_defined: RefCell<HashMap<String, bool, NonRandomHash>>,
754         /// The output file for any created template container types, written to as we find new
755         /// template containers which need to be defined.
756         template_file: RefCell<&'a mut File>,
757         /// Set of containers which are clonable
758         clonable_types: RefCell<HashSet<String>>,
759         /// Key impls Value
760         pub trait_impls: HashMap<String, Vec<String>>,
761         /// The full set of modules in the crate(s)
762         pub lib_ast: &'a FullLibraryAST,
763 }
764
765 impl<'a> CrateTypes<'a> {
766         pub fn new(template_file: &'a mut File, libast: &'a FullLibraryAST) -> Self {
767                 CrateTypes {
768                         opaques: HashMap::new(), mirrored_enums: HashMap::new(), traits: HashMap::new(),
769                         type_aliases: HashMap::new(), reverse_alias_map: HashMap::new(),
770                         templates_defined: RefCell::new(HashMap::default()),
771                         clonable_types: RefCell::new(initial_clonable_types()), trait_impls: HashMap::new(),
772                         template_file: RefCell::new(template_file), lib_ast: &libast,
773                 }
774         }
775         pub fn set_clonable(&self, object: String) {
776                 self.clonable_types.borrow_mut().insert(object);
777         }
778         pub fn is_clonable(&self, object: &str) -> bool {
779                 self.clonable_types.borrow().contains(object)
780         }
781         pub fn write_new_template(&self, mangled_container: String, has_destructor: bool, created_container: &[u8]) {
782                 self.template_file.borrow_mut().write(created_container).unwrap();
783                 self.templates_defined.borrow_mut().insert(mangled_container, has_destructor);
784         }
785 }
786
787 /// A struct which tracks resolving rust types into C-mapped equivalents, exists for one specific
788 /// module but contains a reference to the overall CrateTypes tracking.
789 pub struct TypeResolver<'mod_lifetime, 'crate_lft: 'mod_lifetime> {
790         pub module_path: &'mod_lifetime str,
791         pub crate_types: &'mod_lifetime CrateTypes<'crate_lft>,
792         types: ImportResolver<'mod_lifetime, 'crate_lft>,
793 }
794
795 /// Returned by write_empty_rust_val_check_suffix to indicate what type of dereferencing needs to
796 /// happen to get the inner value of a generic.
797 enum EmptyValExpectedTy {
798         /// A type which has a flag for being empty (eg an array where we treat all-0s as empty).
799         NonPointer,
800         /// A Option mapped as a COption_*Z
801         OptionType,
802         /// A pointer which we want to convert to a reference.
803         ReferenceAsPointer,
804 }
805
806 #[derive(PartialEq)]
807 /// Describes the appropriate place to print a general type-conversion string when converting a
808 /// container.
809 enum ContainerPrefixLocation {
810         /// Prints a general type-conversion string prefix and suffix outside of the
811         /// container-conversion strings.
812         OutsideConv,
813         /// Prints a general type-conversion string prefix and suffix inside of the
814         /// container-conversion strings.
815         PerConv,
816         /// Does not print the usual type-conversion string prefix and suffix.
817         NoPrefix,
818 }
819
820 impl<'a, 'c: 'a> TypeResolver<'a, 'c> {
821         pub fn new(module_path: &'a str, types: ImportResolver<'a, 'c>, crate_types: &'a CrateTypes<'c>) -> Self {
822                 Self { module_path, types, crate_types }
823         }
824
825         // *************************************************
826         // *** Well know type and conversion definitions ***
827         // *************************************************
828
829         /// Returns true we if can just skip passing this to C entirely
830         pub fn skip_path(&self, full_path: &str) -> bool {
831                 full_path == "bitcoin::secp256k1::Secp256k1" ||
832                 full_path == "bitcoin::secp256k1::Signing" ||
833                 full_path == "bitcoin::secp256k1::Verification"
834         }
835         /// Returns true we if can just skip passing this to C entirely
836         fn no_arg_path_to_rust(&self, full_path: &str) -> &str {
837                 if full_path == "bitcoin::secp256k1::Secp256k1" {
838                         "secp256k1::SECP256K1"
839                 } else { unimplemented!(); }
840         }
841
842         /// Returns true if the object is a primitive and is mapped as-is with no conversion
843         /// whatsoever.
844         pub fn is_primitive(&self, full_path: &str) -> bool {
845                 match full_path {
846                         "bool" => true,
847                         "u64" => true,
848                         "u32" => true,
849                         "u16" => true,
850                         "u8" => true,
851                         "usize" => true,
852                         _ => false,
853                 }
854         }
855         pub fn is_clonable(&self, ty: &str) -> bool {
856                 if self.crate_types.is_clonable(ty) { return true; }
857                 if self.is_primitive(ty) { return true; }
858                 match ty {
859                         "()" => true,
860                         _ => false,
861                 }
862         }
863         /// Gets the C-mapped type for types which are outside of the crate, or which are manually
864         /// ignored by for some reason need mapping anyway.
865         fn c_type_from_path<'b>(&self, full_path: &'b str, is_ref: bool, _ptr_for_ref: bool) -> Option<&'b str> {
866                 if self.is_primitive(full_path) {
867                         return Some(full_path);
868                 }
869                 match full_path {
870                         // Note that no !is_ref types can map to an array because Rust and C's call semantics
871                         // for arrays are different (https://github.com/eqrion/cbindgen/issues/528)
872
873                         "[u8; 32]" if !is_ref => Some("crate::c_types::ThirtyTwoBytes"),
874                         "[u8; 20]" if !is_ref => Some("crate::c_types::TwentyBytes"),
875                         "[u8; 16]" if !is_ref => Some("crate::c_types::SixteenBytes"),
876                         "[u8; 12]" if !is_ref => Some("crate::c_types::TwelveBytes"),
877                         "[u8; 4]" if !is_ref => Some("crate::c_types::FourBytes"),
878                         "[u8; 3]" if !is_ref => Some("crate::c_types::ThreeBytes"), // Used for RGB values
879
880                         "str" if is_ref => Some("crate::c_types::Str"),
881                         "alloc::string::String"|"String" => Some("crate::c_types::Str"),
882
883                         "std::time::Duration"|"core::time::Duration" => Some("u64"),
884                         "std::time::SystemTime" => Some("u64"),
885                         "std::io::Error" => Some("crate::c_types::IOError"),
886                         "core::fmt::Arguments" if is_ref => Some("crate::c_types::Str"),
887
888                         "core::convert::Infallible" => Some("crate::c_types::NotConstructable"),
889
890                         "bitcoin::bech32::u5"|"bech32::u5" => Some("crate::c_types::u5"),
891                         "core::num::NonZeroU8" => Some("u8"),
892
893                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
894                                 => Some("crate::c_types::PublicKey"),
895                         "bitcoin::secp256k1::Signature" => Some("crate::c_types::Signature"),
896                         "bitcoin::secp256k1::recovery::RecoverableSignature" => Some("crate::c_types::RecoverableSignature"),
897                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
898                                 if is_ref  => Some("*const [u8; 32]"),
899                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
900                                 if !is_ref => Some("crate::c_types::SecretKey"),
901                         "bitcoin::secp256k1::Error"|"secp256k1::Error"
902                                 if !is_ref => Some("crate::c_types::Secp256k1Error"),
903                         "bitcoin::blockdata::script::Script" if is_ref => Some("crate::c_types::u8slice"),
904                         "bitcoin::blockdata::script::Script" if !is_ref => Some("crate::c_types::derived::CVec_u8Z"),
905                         "bitcoin::blockdata::transaction::OutPoint" => Some("crate::lightning::chain::transaction::OutPoint"),
906                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" => Some("crate::c_types::Transaction"),
907                         "bitcoin::blockdata::transaction::TxOut" if !is_ref => Some("crate::c_types::TxOut"),
908                         "bitcoin::network::constants::Network" => Some("crate::bitcoin::network::Network"),
909                         "bitcoin::blockdata::block::BlockHeader" if is_ref  => Some("*const [u8; 80]"),
910                         "bitcoin::blockdata::block::Block" if is_ref  => Some("crate::c_types::u8slice"),
911
912                         "bitcoin::hash_types::PubkeyHash"|"bitcoin::hash_types::WPubkeyHash"|"bitcoin::hash_types::ScriptHash"
913                                 if is_ref => Some("*const [u8; 20]"),
914                         "bitcoin::hash_types::WScriptHash"
915                                 if is_ref => Some("*const [u8; 32]"),
916
917                         // Newtypes that we just expose in their original form.
918                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
919                                 if is_ref  => Some("*const [u8; 32]"),
920                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
921                                 if !is_ref => Some("crate::c_types::ThirtyTwoBytes"),
922                         "bitcoin::secp256k1::Message" if !is_ref => Some("crate::c_types::ThirtyTwoBytes"),
923                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"
924                         |"lightning::ln::channelmanager::PaymentId"|"lightning::chain::keysinterface::KeyMaterial"
925                                 if is_ref => Some("*const [u8; 32]"),
926                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"
927                         |"lightning::ln::channelmanager::PaymentId"|"lightning::chain::keysinterface::KeyMaterial"
928                                 if !is_ref => Some("crate::c_types::ThirtyTwoBytes"),
929
930                         "lightning::io::Read" => Some("crate::c_types::u8slice"),
931
932                         _ => None,
933                 }
934         }
935
936         fn from_c_conversion_new_var_from_path<'b>(&self, _full_path: &str, _is_ref: bool) -> Option<(&'b str, &'b str)> {
937                 None
938         }
939         fn from_c_conversion_prefix_from_path<'b>(&self, full_path: &str, is_ref: bool) -> Option<String> {
940                 if self.is_primitive(full_path) {
941                         return Some("".to_owned());
942                 }
943                 match full_path {
944                         "Vec" if !is_ref => Some("local_"),
945                         "Result" if !is_ref => Some("local_"),
946                         "Option" if is_ref => Some("&local_"),
947                         "Option" => Some("local_"),
948
949                         "[u8; 32]" if is_ref => Some("unsafe { &*"),
950                         "[u8; 32]" if !is_ref => Some(""),
951                         "[u8; 20]" if !is_ref => Some(""),
952                         "[u8; 16]" if !is_ref => Some(""),
953                         "[u8; 12]" if !is_ref => Some(""),
954                         "[u8; 4]" if !is_ref => Some(""),
955                         "[u8; 3]" if !is_ref => Some(""),
956
957                         "[u8]" if is_ref => Some(""),
958                         "[usize]" if is_ref => Some(""),
959
960                         "str" if is_ref => Some(""),
961                         "alloc::string::String"|"String" => Some(""),
962                         "std::io::Error" if !is_ref => Some(""),
963                         // Note that we'll panic for String if is_ref, as we only have non-owned memory, we
964                         // cannot create a &String.
965
966                         "core::convert::Infallible" => Some("panic!(\"You must never construct a NotConstructable! : "),
967
968                         "std::time::Duration"|"core::time::Duration" => Some("core::time::Duration::from_secs("),
969                         "std::time::SystemTime" => Some("(::std::time::SystemTime::UNIX_EPOCH + std::time::Duration::from_secs("),
970
971                         "bitcoin::bech32::u5"|"bech32::u5" => Some(""),
972                         "core::num::NonZeroU8" => Some("core::num::NonZeroU8::new("),
973
974                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
975                                 if is_ref => Some("&"),
976                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
977                                 => Some(""),
978                         "bitcoin::secp256k1::Signature" if is_ref => Some("&"),
979                         "bitcoin::secp256k1::Signature" => Some(""),
980                         "bitcoin::secp256k1::recovery::RecoverableSignature" => Some(""),
981                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
982                                 if is_ref => Some("&::bitcoin::secp256k1::key::SecretKey::from_slice(&unsafe { *"),
983                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
984                                 if !is_ref => Some(""),
985                         "bitcoin::blockdata::script::Script" if is_ref => Some("&::bitcoin::blockdata::script::Script::from(Vec::from("),
986                         "bitcoin::blockdata::script::Script" if !is_ref => Some("::bitcoin::blockdata::script::Script::from("),
987                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" if is_ref => Some("&"),
988                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" => Some(""),
989                         "bitcoin::blockdata::transaction::OutPoint" => Some("crate::c_types::C_to_bitcoin_outpoint("),
990                         "bitcoin::blockdata::transaction::TxOut" if !is_ref => Some(""),
991                         "bitcoin::network::constants::Network" => Some(""),
992                         "bitcoin::blockdata::block::BlockHeader" => Some("&::bitcoin::consensus::encode::deserialize(unsafe { &*"),
993                         "bitcoin::blockdata::block::Block" if is_ref => Some("&::bitcoin::consensus::encode::deserialize("),
994
995                         "bitcoin::hash_types::PubkeyHash" if is_ref =>
996                                 Some("&bitcoin::hash_types::PubkeyHash::from_hash(bitcoin::hashes::Hash::from_inner(unsafe { *"),
997                         "bitcoin::hash_types::WPubkeyHash" if is_ref =>
998                                 Some("&bitcoin::hash_types::WPubkeyHash::from_hash(bitcoin::hashes::Hash::from_inner(unsafe { *"),
999                         "bitcoin::hash_types::ScriptHash" if is_ref =>
1000                                 Some("&bitcoin::hash_types::ScriptHash::from_hash(bitcoin::hashes::Hash::from_inner(unsafe { *"),
1001                         "bitcoin::hash_types::WScriptHash" if is_ref =>
1002                                 Some("&bitcoin::hash_types::WScriptHash::from_hash(bitcoin::hashes::Hash::from_inner(unsafe { *"),
1003
1004                         // Newtypes that we just expose in their original form.
1005                         "bitcoin::hash_types::Txid" if is_ref => Some("&::bitcoin::hash_types::Txid::from_slice(&unsafe { &*"),
1006                         "bitcoin::hash_types::Txid" if !is_ref => Some("::bitcoin::hash_types::Txid::from_slice(&"),
1007                         "bitcoin::hash_types::BlockHash" => Some("::bitcoin::hash_types::BlockHash::from_slice(&"),
1008                         "lightning::ln::PaymentHash" if !is_ref => Some("::lightning::ln::PaymentHash("),
1009                         "lightning::ln::PaymentHash" if is_ref => Some("&::lightning::ln::PaymentHash(unsafe { *"),
1010                         "lightning::ln::PaymentPreimage" if !is_ref => Some("::lightning::ln::PaymentPreimage("),
1011                         "lightning::ln::PaymentPreimage" if is_ref => Some("&::lightning::ln::PaymentPreimage(unsafe { *"),
1012                         "lightning::ln::PaymentSecret" if !is_ref => Some("::lightning::ln::PaymentSecret("),
1013                         "lightning::ln::channelmanager::PaymentId" if !is_ref => Some("::lightning::ln::channelmanager::PaymentId("),
1014                         "lightning::ln::channelmanager::PaymentId" if is_ref=> Some("&::lightning::ln::channelmanager::PaymentId( unsafe { *"),
1015                         "lightning::chain::keysinterface::KeyMaterial" if !is_ref => Some("::lightning::chain::keysinterface::KeyMaterial("),
1016                         "lightning::chain::keysinterface::KeyMaterial" if is_ref=> Some("&::lightning::chain::keysinterface::KeyMaterial( unsafe { *"),
1017
1018                         // List of traits we map (possibly during processing of other files):
1019                         "lightning::io::Read" => Some("&mut "),
1020
1021                         _ => None,
1022                 }.map(|s| s.to_owned())
1023         }
1024         fn from_c_conversion_suffix_from_path<'b>(&self, full_path: &str, is_ref: bool) -> Option<String> {
1025                 if self.is_primitive(full_path) {
1026                         return Some("".to_owned());
1027                 }
1028                 match full_path {
1029                         "Vec" if !is_ref => Some(""),
1030                         "Option" => Some(""),
1031                         "Result" if !is_ref => Some(""),
1032
1033                         "[u8; 32]" if is_ref => Some("}"),
1034                         "[u8; 32]" if !is_ref => Some(".data"),
1035                         "[u8; 20]" if !is_ref => Some(".data"),
1036                         "[u8; 16]" if !is_ref => Some(".data"),
1037                         "[u8; 12]" if !is_ref => Some(".data"),
1038                         "[u8; 4]" if !is_ref => Some(".data"),
1039                         "[u8; 3]" if !is_ref => Some(".data"),
1040
1041                         "[u8]" if is_ref => Some(".to_slice()"),
1042                         "[usize]" if is_ref => Some(".to_slice()"),
1043
1044                         "str" if is_ref => Some(".into_str()"),
1045                         "alloc::string::String"|"String" => Some(".into_string()"),
1046                         "std::io::Error" if !is_ref => Some(".to_rust()"),
1047
1048                         "core::convert::Infallible" => Some("\")"),
1049
1050                         "std::time::Duration"|"core::time::Duration" => Some(")"),
1051                         "std::time::SystemTime" => Some("))"),
1052
1053                         "bitcoin::bech32::u5"|"bech32::u5" => Some(".into()"),
1054                         "core::num::NonZeroU8" => Some(").expect(\"Value must be non-zero\")"),
1055
1056                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
1057                                 => Some(".into_rust()"),
1058                         "bitcoin::secp256k1::Signature" => Some(".into_rust()"),
1059                         "bitcoin::secp256k1::recovery::RecoverableSignature" => Some(".into_rust()"),
1060                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1061                                 if !is_ref => Some(".into_rust()"),
1062                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1063                                 if is_ref => Some("}[..]).unwrap()"),
1064                         "bitcoin::blockdata::script::Script" if is_ref => Some(".to_slice()))"),
1065                         "bitcoin::blockdata::script::Script" if !is_ref => Some(".into_rust())"),
1066                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" => Some(".into_bitcoin()"),
1067                         "bitcoin::blockdata::transaction::OutPoint" => Some(")"),
1068                         "bitcoin::blockdata::transaction::TxOut" if !is_ref => Some(".into_rust()"),
1069                         "bitcoin::network::constants::Network" => Some(".into_bitcoin()"),
1070                         "bitcoin::blockdata::block::BlockHeader" => Some(" }).unwrap()"),
1071                         "bitcoin::blockdata::block::Block" => Some(".to_slice()).unwrap()"),
1072
1073                         "bitcoin::hash_types::PubkeyHash"|"bitcoin::hash_types::WPubkeyHash"|
1074                         "bitcoin::hash_types::ScriptHash"|"bitcoin::hash_types::WScriptHash"
1075                                 if is_ref => Some(" }.clone()))"),
1076
1077                         // Newtypes that we just expose in their original form.
1078                         "bitcoin::hash_types::Txid" if is_ref => Some(" }[..]).unwrap()"),
1079                         "bitcoin::hash_types::Txid" => Some(".data[..]).unwrap()"),
1080                         "bitcoin::hash_types::BlockHash" if !is_ref => Some(".data[..]).unwrap()"),
1081                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"
1082                         |"lightning::ln::channelmanager::PaymentId"|"lightning::chain::keysinterface::KeyMaterial"
1083                                 if !is_ref => Some(".data)"),
1084                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"
1085                         |"lightning::ln::channelmanager::PaymentId"|"lightning::chain::keysinterface::KeyMaterial"
1086                                 if is_ref => Some(" })"),
1087
1088                         // List of traits we map (possibly during processing of other files):
1089                         "lightning::io::Read" => Some(".to_reader()"),
1090
1091                         _ => None,
1092                 }.map(|s| s.to_owned())
1093         }
1094
1095         fn to_c_conversion_new_var_from_path<'b>(&self, full_path: &str, is_ref: bool) -> Option<(&'b str, &'b str)> {
1096                 if self.is_primitive(full_path) {
1097                         return None;
1098                 }
1099                 match full_path {
1100                         "[u8]" if is_ref => Some(("crate::c_types::u8slice::from_slice(", ")")),
1101                         "[usize]" if is_ref => Some(("crate::c_types::usizeslice::from_slice(", ")")),
1102
1103                         "bitcoin::blockdata::block::BlockHeader" if is_ref => Some(("{ let mut s = [0u8; 80]; s[..].copy_from_slice(&::bitcoin::consensus::encode::serialize(", ")); s }")),
1104                         "bitcoin::blockdata::block::Block" if is_ref => Some(("::bitcoin::consensus::encode::serialize(", ")")),
1105                         "bitcoin::hash_types::Txid" => None,
1106
1107                         _ => None,
1108                 }.map(|s| s.to_owned())
1109         }
1110         fn to_c_conversion_inline_prefix_from_path(&self, full_path: &str, is_ref: bool, _ptr_for_ref: bool) -> Option<String> {
1111                 if self.is_primitive(full_path) {
1112                         return Some("".to_owned());
1113                 }
1114                 match full_path {
1115                         "Result" if !is_ref => Some("local_"),
1116                         "Vec" if !is_ref => Some("local_"),
1117                         "Option" => Some("local_"),
1118
1119                         "[u8; 32]" if !is_ref => Some("crate::c_types::ThirtyTwoBytes { data: "),
1120                         "[u8; 32]" if is_ref => Some(""),
1121                         "[u8; 20]" if !is_ref => Some("crate::c_types::TwentyBytes { data: "),
1122                         "[u8; 16]" if !is_ref => Some("crate::c_types::SixteenBytes { data: "),
1123                         "[u8; 12]" if !is_ref => Some("crate::c_types::TwelveBytes { data: "),
1124                         "[u8; 4]" if !is_ref => Some("crate::c_types::FourBytes { data: "),
1125                         "[u8; 3]" if is_ref => Some(""),
1126
1127                         "[u8]" if is_ref => Some("local_"),
1128                         "[usize]" if is_ref => Some("local_"),
1129
1130                         "str" if is_ref => Some(""),
1131                         "alloc::string::String"|"String" => Some(""),
1132
1133                         "std::time::Duration"|"core::time::Duration" => Some(""),
1134                         "std::time::SystemTime" => Some(""),
1135                         "std::io::Error" if !is_ref => Some("crate::c_types::IOError::from_rust("),
1136                         "core::fmt::Arguments" => Some("alloc::format!(\"{}\", "),
1137
1138                         "core::convert::Infallible" => Some("panic!(\"Cannot construct an Infallible: "),
1139
1140                         "bitcoin::bech32::u5"|"bech32::u5" => Some(""),
1141
1142                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
1143                                 => Some("crate::c_types::PublicKey::from_rust(&"),
1144                         "bitcoin::secp256k1::Signature" => Some("crate::c_types::Signature::from_rust(&"),
1145                         "bitcoin::secp256k1::recovery::RecoverableSignature" => Some("crate::c_types::RecoverableSignature::from_rust(&"),
1146                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1147                                 if is_ref => Some(""),
1148                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1149                                 if !is_ref => Some("crate::c_types::SecretKey::from_rust("),
1150                         "bitcoin::secp256k1::Error"|"secp256k1::Error"
1151                                 if !is_ref => Some("crate::c_types::Secp256k1Error::from_rust("),
1152                         "bitcoin::blockdata::script::Script" if is_ref => Some("crate::c_types::u8slice::from_slice(&"),
1153                         "bitcoin::blockdata::script::Script" if !is_ref => Some(""),
1154                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" if is_ref => Some("crate::c_types::Transaction::from_bitcoin("),
1155                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" => Some("crate::c_types::Transaction::from_bitcoin(&"),
1156                         "bitcoin::blockdata::transaction::OutPoint" => Some("crate::c_types::bitcoin_to_C_outpoint("),
1157                         "bitcoin::blockdata::transaction::TxOut" if !is_ref => Some("crate::c_types::TxOut::from_rust("),
1158                         "bitcoin::network::constants::Network" => Some("crate::bitcoin::network::Network::from_bitcoin("),
1159                         "bitcoin::blockdata::block::BlockHeader" if is_ref => Some("&local_"),
1160                         "bitcoin::blockdata::block::Block" if is_ref => Some("crate::c_types::u8slice::from_slice(&local_"),
1161
1162                         "bitcoin::hash_types::Txid" if !is_ref => Some("crate::c_types::ThirtyTwoBytes { data: "),
1163
1164                         // Newtypes that we just expose in their original form.
1165                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
1166                                 if is_ref => Some(""),
1167                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
1168                                 if !is_ref => Some("crate::c_types::ThirtyTwoBytes { data: "),
1169                         "bitcoin::secp256k1::Message" if !is_ref => Some("crate::c_types::ThirtyTwoBytes { data: "),
1170                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"
1171                         |"lightning::ln::channelmanager::PaymentId"|"lightning::chain::keysinterface::KeyMaterial"
1172                                 if is_ref => Some("&"),
1173                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"
1174                         |"lightning::ln::channelmanager::PaymentId"|"lightning::chain::keysinterface::KeyMaterial"
1175                                 if !is_ref => Some("crate::c_types::ThirtyTwoBytes { data: "),
1176
1177                         "lightning::io::Read" => Some("crate::c_types::u8slice::from_vec(&crate::c_types::reader_to_vec("),
1178
1179                         _ => None,
1180                 }.map(|s| s.to_owned())
1181         }
1182         fn to_c_conversion_inline_suffix_from_path(&self, full_path: &str, is_ref: bool, _ptr_for_ref: bool) -> Option<String> {
1183                 if self.is_primitive(full_path) {
1184                         return Some("".to_owned());
1185                 }
1186                 match full_path {
1187                         "Result" if !is_ref => Some(""),
1188                         "Vec" if !is_ref => Some(".into()"),
1189                         "Option" => Some(""),
1190
1191                         "[u8; 32]" if !is_ref => Some(" }"),
1192                         "[u8; 32]" if is_ref => Some(""),
1193                         "[u8; 20]" if !is_ref => Some(" }"),
1194                         "[u8; 16]" if !is_ref => Some(" }"),
1195                         "[u8; 12]" if !is_ref => Some(" }"),
1196                         "[u8; 4]" if !is_ref => Some(" }"),
1197                         "[u8; 3]" if is_ref => Some(""),
1198
1199                         "[u8]" if is_ref => Some(""),
1200                         "[usize]" if is_ref => Some(""),
1201
1202                         "str" if is_ref => Some(".into()"),
1203                         "alloc::string::String"|"String" if is_ref => Some(".as_str().into()"),
1204                         "alloc::string::String"|"String" => Some(".into()"),
1205
1206                         "std::time::Duration"|"core::time::Duration" => Some(".as_secs()"),
1207                         "std::time::SystemTime" => Some(".duration_since(::std::time::SystemTime::UNIX_EPOCH).expect(\"Times must be post-1970\").as_secs()"),
1208                         "std::io::Error" if !is_ref => Some(")"),
1209                         "core::fmt::Arguments" => Some(").into()"),
1210
1211                         "core::convert::Infallible" => Some("\")"),
1212
1213                         "bitcoin::bech32::u5"|"bech32::u5" => Some(".into()"),
1214
1215                         "bitcoin::secp256k1::key::PublicKey"|"bitcoin::secp256k1::PublicKey"|"secp256k1::key::PublicKey"
1216                                 => Some(")"),
1217                         "bitcoin::secp256k1::Signature" => Some(")"),
1218                         "bitcoin::secp256k1::recovery::RecoverableSignature" => Some(")"),
1219                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1220                                 if !is_ref => Some(")"),
1221                         "bitcoin::secp256k1::key::SecretKey"|"bitcoin::secp256k1::SecretKey"
1222                                 if is_ref => Some(".as_ref()"),
1223                         "bitcoin::secp256k1::Error"|"secp256k1::Error"
1224                                 if !is_ref => Some(")"),
1225                         "bitcoin::blockdata::script::Script" if is_ref => Some("[..])"),
1226                         "bitcoin::blockdata::script::Script" if !is_ref => Some(".into_bytes().into()"),
1227                         "bitcoin::blockdata::transaction::Transaction"|"bitcoin::Transaction" => Some(")"),
1228                         "bitcoin::blockdata::transaction::OutPoint" => Some(")"),
1229                         "bitcoin::blockdata::transaction::TxOut" if !is_ref => Some(")"),
1230                         "bitcoin::network::constants::Network" => Some(")"),
1231                         "bitcoin::blockdata::block::BlockHeader" if is_ref => Some(""),
1232                         "bitcoin::blockdata::block::Block" if is_ref => Some(")"),
1233
1234                         "bitcoin::hash_types::Txid" if !is_ref => Some(".into_inner() }"),
1235
1236                         // Newtypes that we just expose in their original form.
1237                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
1238                                 if is_ref => Some(".as_inner()"),
1239                         "bitcoin::hash_types::Txid"|"bitcoin::hash_types::BlockHash"|"bitcoin_hashes::sha256::Hash"
1240                                 if !is_ref => Some(".into_inner() }"),
1241                         "bitcoin::secp256k1::Message" if !is_ref => Some(".as_ref().clone() }"),
1242                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"
1243                         |"lightning::ln::channelmanager::PaymentId"|"lightning::chain::keysinterface::KeyMaterial"
1244                                 if is_ref => Some(".0"),
1245                         "lightning::ln::PaymentHash"|"lightning::ln::PaymentPreimage"|"lightning::ln::PaymentSecret"
1246                         |"lightning::ln::channelmanager::PaymentId"|"lightning::chain::keysinterface::KeyMaterial"
1247                                 if !is_ref => Some(".0 }"),
1248
1249                         "lightning::io::Read" => Some("))"),
1250
1251                         _ => None,
1252                 }.map(|s| s.to_owned())
1253         }
1254
1255         fn empty_val_check_suffix_from_path(&self, full_path: &str) -> Option<&str> {
1256                 match full_path {
1257                         "lightning::ln::PaymentSecret" => Some(".data == [0; 32]"),
1258                         "secp256k1::key::PublicKey"|"bitcoin::secp256k1::key::PublicKey" => Some(".is_null()"),
1259                         "bitcoin::secp256k1::Signature" => Some(".is_null()"),
1260                         _ => None
1261                 }
1262         }
1263
1264         /// When printing a reference to the source crate's rust type, if we need to map it to a
1265         /// different "real" type, it can be done so here.
1266         /// This is useful to work around limitations in the binding type resolver, where we reference
1267         /// a non-public `use` alias.
1268         /// TODO: We should never need to use this!
1269         fn real_rust_type_mapping<'equiv>(&self, thing: &'equiv str) -> &'equiv str {
1270                 match thing {
1271                         "lightning::io::Read" => "crate::c_types::io::Read",
1272                         _ => thing,
1273                 }
1274         }
1275
1276         // ****************************
1277         // *** Container Processing ***
1278         // ****************************
1279
1280         /// Returns the module path in the generated mapping crate to the containers which we generate
1281         /// when writing to CrateTypes::template_file.
1282         pub fn generated_container_path() -> &'static str {
1283                 "crate::c_types::derived"
1284         }
1285         /// Returns the module path in the generated mapping crate to the container templates, which
1286         /// are then concretized and put in the generated container path/template_file.
1287         fn container_templ_path() -> &'static str {
1288                 "crate::c_types"
1289         }
1290
1291         /// Returns true if the path containing the given args is a "transparent" container, ie an
1292         /// Option or a container which does not require a generated continer class.
1293         fn is_transparent_container<'i, I: Iterator<Item=&'i syn::Type>>(&self, full_path: &str, _is_ref: bool, mut args: I, generics: Option<&GenericTypes>) -> bool {
1294                 if full_path == "Option" {
1295                         let inner = args.next().unwrap();
1296                         assert!(args.next().is_none());
1297                         match inner {
1298                                 syn::Type::Reference(_) => true,
1299                                 syn::Type::Array(a) => {
1300                                         if let syn::Expr::Lit(l) = &a.len {
1301                                                 if let syn::Lit::Int(i) = &l.lit {
1302                                                         if i.base10_digits().parse::<usize>().unwrap() >= 32 {
1303                                                                 let mut buf = Vec::new();
1304                                                                 self.write_rust_type(&mut buf, generics, &a.elem);
1305                                                                 let ty = String::from_utf8(buf).unwrap();
1306                                                                 ty == "u8"
1307                                                         } else {
1308                                                                 // Blindly assume that if we're trying to create an empty value for an
1309                                                                 // array < 32 entries that all-0s may be a valid state.
1310                                                                 unimplemented!();
1311                                                         }
1312                                                 } else { unimplemented!(); }
1313                                         } else { unimplemented!(); }
1314                                 },
1315                                 syn::Type::Path(p) => {
1316                                         if let Some(resolved) = self.maybe_resolve_path(&p.path, generics) {
1317                                                 if self.c_type_has_inner_from_path(&resolved) { return true; }
1318                                                 if self.is_primitive(&resolved) { return false; }
1319                                                 if self.c_type_from_path(&resolved, false, false).is_some() { true } else { false }
1320                                         } else { true }
1321                                 },
1322                                 syn::Type::Tuple(_) => false,
1323                                 _ => unimplemented!(),
1324                         }
1325                 } else { false }
1326         }
1327         /// Returns true if the path is a "transparent" container, ie an Option or a container which does
1328         /// not require a generated continer class.
1329         pub fn is_path_transparent_container(&self, full_path: &syn::Path, generics: Option<&GenericTypes>, is_ref: bool) -> bool {
1330                 let inner_iter = match &full_path.segments.last().unwrap().arguments {
1331                         syn::PathArguments::None => return false,
1332                         syn::PathArguments::AngleBracketed(args) => args.args.iter().map(|arg| {
1333                                 if let syn::GenericArgument::Type(ref ty) = arg {
1334                                         ty
1335                                 } else { unimplemented!() }
1336                         }),
1337                         syn::PathArguments::Parenthesized(_) => unimplemented!(),
1338                 };
1339                 self.is_transparent_container(&self.resolve_path(full_path, generics), is_ref, inner_iter, generics)
1340         }
1341         /// Returns true if this is a known, supported, non-transparent container.
1342         fn is_known_container(&self, full_path: &str, is_ref: bool) -> bool {
1343                 (full_path == "Result" && !is_ref) || (full_path == "Vec" && !is_ref) || full_path.ends_with("Tuple") || full_path == "Option"
1344         }
1345         fn to_c_conversion_container_new_var<'b>(&self, generics: Option<&GenericTypes>, full_path: &str, is_ref: bool, single_contained: Option<&syn::Type>, var_name: &syn::Ident, var_access: &str)
1346                         // Returns prefix + Vec<(prefix, var-name-to-inline-convert)> + suffix
1347                         // expecting one element in the vec per generic type, each of which is inline-converted
1348                         -> Option<(&'b str, Vec<(String, String)>, &'b str, ContainerPrefixLocation)> {
1349                 match full_path {
1350                         "Result" if !is_ref => {
1351                                 Some(("match ",
1352                                                 vec![(" { Ok(mut o) => crate::c_types::CResultTempl::ok(".to_string(), "o".to_string()),
1353                                                         (").into(), Err(mut e) => crate::c_types::CResultTempl::err(".to_string(), "e".to_string())],
1354                                                 ").into() }", ContainerPrefixLocation::PerConv))
1355                         },
1356                         "Vec" => {
1357                                 if is_ref {
1358                                         // We should only get here if the single contained has an inner
1359                                         assert!(self.c_type_has_inner(single_contained.unwrap()));
1360                                 }
1361                                 Some(("Vec::new(); for mut item in ", vec![(format!(".drain(..) {{ local_{}.push(", var_name), "item".to_string())], "); }", ContainerPrefixLocation::PerConv))
1362                         },
1363                         "Slice" => {
1364                                 if let Some(syn::Type::Reference(_)) = single_contained {
1365                                         Some(("Vec::new(); for item in ", vec![(format!(".iter() {{ local_{}.push(", var_name), "(*item)".to_string())], "); }", ContainerPrefixLocation::PerConv))
1366                                 } else {
1367                                         Some(("Vec::new(); for item in ", vec![(format!(".iter() {{ local_{}.push(", var_name), "item".to_string())], "); }", ContainerPrefixLocation::PerConv))
1368                                 }
1369                         },
1370                         "Option" => {
1371                                 let contained_struct = if let Some(syn::Type::Path(p)) = single_contained {
1372                                         Some(self.resolve_path(&p.path, generics))
1373                                 } else if let Some(syn::Type::Reference(r)) = single_contained {
1374                                         if let syn::Type::Path(p) = &*r.elem {
1375                                                 Some(self.resolve_path(&p.path, generics))
1376                                         } else { None }
1377                                 } else { None };
1378                                 if let Some(inner_path) = contained_struct {
1379                                         if self.c_type_has_inner_from_path(&inner_path) {
1380                                                 let is_inner_ref = if let Some(syn::Type::Reference(_)) = single_contained { true } else { false };
1381                                                 if is_ref {
1382                                                         return Some(("if ", vec![
1383                                                                 (".is_none() { core::ptr::null() } else { ObjOps::nonnull_ptr_to_inner(".to_owned(),
1384                                                                         format!("({}{}.unwrap())", var_access, if is_inner_ref { "" } else { ".as_ref()" }))
1385                                                                 ], ") }", ContainerPrefixLocation::OutsideConv));
1386                                                 } else {
1387                                                         return Some(("if ", vec![
1388                                                                 (".is_none() { core::ptr::null_mut() } else { ".to_owned(), format!("({}.unwrap())", var_access))
1389                                                                 ], " }", ContainerPrefixLocation::OutsideConv));
1390                                                 }
1391                                         } else if self.is_primitive(&inner_path) || self.c_type_from_path(&inner_path, false, false).is_none() {
1392                                                 let inner_name = self.get_c_mangled_container_type(vec![single_contained.unwrap()], generics, "Option").unwrap();
1393                                                 return Some(("if ", vec![
1394                                                         (format!(".is_none() {{ {}::None }} else {{ {}::Some(",
1395                                                                 inner_name, inner_name),
1396                                                          format!("{}.unwrap()", var_access))
1397                                                         ], ") }", ContainerPrefixLocation::PerConv));
1398                                         } else {
1399                                                 // If c_type_from_path is some (ie there's a manual mapping for the inner
1400                                                 // type), lean on write_empty_rust_val, below.
1401                                         }
1402                                 }
1403                                 if let Some(t) = single_contained {
1404                                         if let syn::Type::Tuple(syn::TypeTuple { elems, .. }) = t {
1405                                                 assert!(elems.is_empty());
1406                                                 let inner_name = self.get_c_mangled_container_type(vec![single_contained.unwrap()], generics, "Option").unwrap();
1407                                                 return Some(("if ", vec![
1408                                                         (format!(".is_none() {{ {}::None }} else {{ {}::Some /*",
1409                                                                 inner_name, inner_name), format!(""))
1410                                                         ], " */}", ContainerPrefixLocation::PerConv));
1411                                         }
1412                                         if let syn::Type::Reference(syn::TypeReference { elem, .. }) = t {
1413                                                 if let syn::Type::Slice(_) = &**elem {
1414                                                         return Some(("if ", vec![
1415                                                                         (".is_none() { SmartPtr::null() } else { SmartPtr::from_obj(".to_string(),
1416                                                                          format!("({}.unwrap())", var_access))
1417                                                                 ], ") }", ContainerPrefixLocation::PerConv));
1418                                                 }
1419                                         }
1420                                         let mut v = Vec::new();
1421                                         self.write_empty_rust_val(generics, &mut v, t);
1422                                         let s = String::from_utf8(v).unwrap();
1423                                         return Some(("if ", vec![
1424                                                 (format!(".is_none() {{ {} }} else {{ ", s), format!("({}.unwrap())", var_access))
1425                                                 ], " }", ContainerPrefixLocation::PerConv));
1426                                 } else { unreachable!(); }
1427                         },
1428                         _ => None,
1429                 }
1430         }
1431
1432         /// only_contained_has_inner implies that there is only one contained element in the container
1433         /// and it has an inner field (ie is an "opaque" type we've defined).
1434         fn from_c_conversion_container_new_var<'b>(&self, generics: Option<&GenericTypes>, full_path: &str, is_ref: bool, single_contained: Option<&syn::Type>, var_name: &syn::Ident, var_access: &str)
1435                         // Returns prefix + Vec<(prefix, var-name-to-inline-convert)> + suffix
1436                         // expecting one element in the vec per generic type, each of which is inline-converted
1437                         -> Option<(&'b str, Vec<(String, String)>, &'b str, ContainerPrefixLocation)> {
1438                 match full_path {
1439                         "Result" if !is_ref => {
1440                                 Some(("match ",
1441                                                 vec![(".result_ok { true => Ok(".to_string(), format!("(*unsafe {{ Box::from_raw(<*mut _>::take_ptr(&mut {}.contents.result)) }})", var_access)),
1442                                                      ("), false => Err(".to_string(), format!("(*unsafe {{ Box::from_raw(<*mut _>::take_ptr(&mut {}.contents.err)) }})", var_access))],
1443                                                 ")}", ContainerPrefixLocation::PerConv))
1444                         },
1445                         "Slice" if is_ref => {
1446                                 Some(("Vec::new(); for mut item in ", vec![(format!(".as_slice().iter() {{ local_{}.push(", var_name), "item".to_string())], "); }", ContainerPrefixLocation::PerConv))
1447                         },
1448                         "Vec"|"Slice" => {
1449                                 Some(("Vec::new(); for mut item in ", vec![(format!(".into_rust().drain(..) {{ local_{}.push(", var_name), "item".to_string())], "); }", ContainerPrefixLocation::PerConv))
1450                         },
1451                         "Option" => {
1452                                 if let Some(syn::Type::Path(p)) = single_contained {
1453                                         let inner_path = self.resolve_path(&p.path, generics);
1454                                         if self.is_primitive(&inner_path) {
1455                                                 return Some(("if ", vec![(".is_some() { Some(".to_string(), format!("{}.take()", var_access))], ") } else { None }", ContainerPrefixLocation::NoPrefix))
1456                                         } else if self.c_type_has_inner_from_path(&inner_path) {
1457                                                 if is_ref {
1458                                                         return Some(("if ", vec![(".inner.is_null() { None } else { Some((*".to_string(), format!("{}", var_access))], ").clone()) }", ContainerPrefixLocation::PerConv))
1459                                                 } else {
1460                                                         return Some(("if ", vec![(".inner.is_null() { None } else { Some(".to_string(), format!("{}", var_access))], ") }", ContainerPrefixLocation::PerConv));
1461                                                 }
1462                                         }
1463                                 }
1464
1465                                 if let Some(t) = single_contained {
1466                                         match t {
1467                                                 syn::Type::Reference(_)|syn::Type::Path(_)|syn::Type::Slice(_) => {
1468                                                         let mut v = Vec::new();
1469                                                         let ret_ref = self.write_empty_rust_val_check_suffix(generics, &mut v, t);
1470                                                         let s = String::from_utf8(v).unwrap();
1471                                                         match ret_ref {
1472                                                                 EmptyValExpectedTy::ReferenceAsPointer =>
1473                                                                         return Some(("if ", vec![
1474                                                                                 (format!("{} {{ None }} else {{ Some(", s), format!("unsafe {{ &mut *{} }}", var_access))
1475                                                                         ], ") }", ContainerPrefixLocation::NoPrefix)),
1476                                                                 EmptyValExpectedTy::OptionType =>
1477                                                                         return Some(("{ /* ", vec![
1478                                                                                 (format!("*/ let {}_opt = {};", var_name, var_access),
1479                                                                                 format!("}} if {}_opt{} {{ None }} else {{ Some({{ {}_opt.take()", var_name, s, var_name))
1480                                                                         ], ") } }", ContainerPrefixLocation::PerConv)),
1481                                                                 EmptyValExpectedTy::NonPointer =>
1482                                                                         return Some(("if ", vec![
1483                                                                                 (format!("{} {{ None }} else {{ Some(", s), format!("{}", var_access))
1484                                                                         ], ") }", ContainerPrefixLocation::PerConv)),
1485                                                         }
1486                                                 },
1487                                                 syn::Type::Tuple(_) => {
1488                                                         return Some(("if ", vec![(".is_some() { Some(".to_string(), format!("{}.take()", var_access))], ") } else { None }", ContainerPrefixLocation::PerConv))
1489                                                 },
1490                                                 _ => unimplemented!(),
1491                                         }
1492                                 } else { unreachable!(); }
1493                         },
1494                         _ => None,
1495                 }
1496         }
1497
1498         /// Constructs a reference to the given type, possibly tweaking the type if relevant to make it
1499         /// convertable to C.
1500         pub fn create_ownable_reference(&self, t: &syn::Type, generics: Option<&GenericTypes>) -> Option<syn::Type> {
1501                 let default_value = Some(syn::Type::Reference(syn::TypeReference {
1502                         and_token: syn::Token!(&)(Span::call_site()), lifetime: None, mutability: None,
1503                         elem: Box::new(t.clone()) }));
1504                 match generics.resolve_type(t) {
1505                         syn::Type::Path(p) => {
1506                                 if let Some(resolved_path) = self.maybe_resolve_path(&p.path, generics) {
1507                                         if resolved_path != "Vec" { return default_value; }
1508                                         if p.path.segments.len() != 1 { unimplemented!(); }
1509                                         let only_seg = p.path.segments.iter().next().unwrap();
1510                                         if let syn::PathArguments::AngleBracketed(args) = &only_seg.arguments {
1511                                                 if args.args.len() != 1 { unimplemented!(); }
1512                                                 let inner_arg = args.args.iter().next().unwrap();
1513                                                 if let syn::GenericArgument::Type(ty) = &inner_arg {
1514                                                         let mut can_create = self.c_type_has_inner(&ty);
1515                                                         if let syn::Type::Path(inner) = ty {
1516                                                                 if inner.path.segments.len() == 1 &&
1517                                                                                 format!("{}", inner.path.segments[0].ident) == "Vec" {
1518                                                                         can_create = true;
1519                                                                 }
1520                                                         }
1521                                                         if !can_create { return default_value; }
1522                                                         if let Some(inner_ty) = self.create_ownable_reference(&ty, generics) {
1523                                                                 return Some(syn::Type::Reference(syn::TypeReference {
1524                                                                         and_token: syn::Token![&](Span::call_site()),
1525                                                                         lifetime: None,
1526                                                                         mutability: None,
1527                                                                         elem: Box::new(syn::Type::Slice(syn::TypeSlice {
1528                                                                                 bracket_token: syn::token::Bracket { span: Span::call_site() },
1529                                                                                 elem: Box::new(inner_ty)
1530                                                                         }))
1531                                                                 }));
1532                                                         } else { return default_value; }
1533                                                 } else { unimplemented!(); }
1534                                         } else { unimplemented!(); }
1535                                 } else { return None; }
1536                         },
1537                         _ => default_value,
1538                 }
1539         }
1540
1541         // *************************************************
1542         // *** Type definition during main.rs processing ***
1543         // *************************************************
1544
1545         pub fn get_declared_type(&'a self, ident: &syn::Ident) -> Option<&'a DeclType<'c>> {
1546                 self.types.get_declared_type(ident)
1547         }
1548         /// Returns true if the object at the given path is mapped as X { inner: *mut origX, .. }.
1549         pub fn c_type_has_inner_from_path(&self, full_path: &str) -> bool {
1550                 self.crate_types.opaques.get(full_path).is_some()
1551         }
1552
1553         /// Returns true if the object at the given path is mapped as X { inner: *mut origX, .. }.
1554         pub fn c_type_has_inner(&self, ty: &syn::Type) -> bool {
1555                 match ty {
1556                         syn::Type::Path(p) => {
1557                                 if let Some(full_path) = self.maybe_resolve_path(&p.path, None) {
1558                                         self.c_type_has_inner_from_path(&full_path)
1559                                 } else { false }
1560                         },
1561                         syn::Type::Reference(r) => {
1562                                 self.c_type_has_inner(&*r.elem)
1563                         },
1564                         _ => false,
1565                 }
1566         }
1567
1568         pub fn maybe_resolve_ident(&self, id: &syn::Ident) -> Option<String> {
1569                 self.types.maybe_resolve_ident(id)
1570         }
1571
1572         pub fn maybe_resolve_non_ignored_ident(&self, id: &syn::Ident) -> Option<String> {
1573                 self.types.maybe_resolve_non_ignored_ident(id)
1574         }
1575
1576         pub fn maybe_resolve_path(&self, p_arg: &syn::Path, generics: Option<&GenericTypes>) -> Option<String> {
1577                 self.types.maybe_resolve_path(p_arg, generics)
1578         }
1579         pub fn resolve_path(&self, p: &syn::Path, generics: Option<&GenericTypes>) -> String {
1580                 self.maybe_resolve_path(p, generics).unwrap()
1581         }
1582
1583         // ***********************************
1584         // *** Original Rust Type Printing ***
1585         // ***********************************
1586
1587         fn in_rust_prelude(resolved_path: &str) -> bool {
1588                 match resolved_path {
1589                         "Vec" => true,
1590                         "Result" => true,
1591                         "Option" => true,
1592                         _ => false,
1593                 }
1594         }
1595
1596         fn write_rust_path<W: std::io::Write>(&self, w: &mut W, generics_resolver: Option<&GenericTypes>, path: &syn::Path) {
1597                 if let Some(resolved) = self.maybe_resolve_path(&path, generics_resolver) {
1598                         if self.is_primitive(&resolved) {
1599                                 write!(w, "{}", path.get_ident().unwrap()).unwrap();
1600                         } else {
1601                                 // TODO: We should have a generic "is from a dependency" check here instead of
1602                                 // checking for "bitcoin" explicitly.
1603                                 if resolved.starts_with("bitcoin::") || Self::in_rust_prelude(&resolved) {
1604                                         write!(w, "{}", resolved).unwrap();
1605                                 // If we're printing a generic argument, it needs to reference the crate, otherwise
1606                                 // the original crate:
1607                                 } else if self.maybe_resolve_path(&path, None).as_ref() == Some(&resolved) {
1608                                         write!(w, "{}", self.real_rust_type_mapping(&resolved)).unwrap();
1609                                 } else {
1610                                         write!(w, "crate::{}", resolved).unwrap();
1611                                 }
1612                         }
1613                         if let syn::PathArguments::AngleBracketed(args) = &path.segments.iter().last().unwrap().arguments {
1614                                 self.write_rust_generic_arg(w, generics_resolver, args.args.iter());
1615                         }
1616                 } else {
1617                         if path.leading_colon.is_some() {
1618                                 write!(w, "::").unwrap();
1619                         }
1620                         for (idx, seg) in path.segments.iter().enumerate() {
1621                                 if idx != 0 { write!(w, "::").unwrap(); }
1622                                 write!(w, "{}", seg.ident).unwrap();
1623                                 if let syn::PathArguments::AngleBracketed(args) = &seg.arguments {
1624                                         self.write_rust_generic_arg(w, generics_resolver, args.args.iter());
1625                                 }
1626                         }
1627                 }
1628         }
1629         pub fn write_rust_generic_param<'b, W: std::io::Write>(&self, w: &mut W, generics_resolver: Option<&GenericTypes>, generics: impl Iterator<Item=&'b syn::GenericParam>) {
1630                 let mut had_params = false;
1631                 for (idx, arg) in generics.enumerate() {
1632                         if idx != 0 { write!(w, ", ").unwrap(); } else { write!(w, "<").unwrap(); }
1633                         had_params = true;
1634                         match arg {
1635                                 syn::GenericParam::Lifetime(lt) => write!(w, "'{}", lt.lifetime.ident).unwrap(),
1636                                 syn::GenericParam::Type(t) => {
1637                                         write!(w, "{}", t.ident).unwrap();
1638                                         if t.colon_token.is_some() { write!(w, ":").unwrap(); }
1639                                         for (idx, bound) in t.bounds.iter().enumerate() {
1640                                                 if idx != 0 { write!(w, " + ").unwrap(); }
1641                                                 match bound {
1642                                                         syn::TypeParamBound::Trait(tb) => {
1643                                                                 if tb.paren_token.is_some() || tb.lifetimes.is_some() { unimplemented!(); }
1644                                                                 self.write_rust_path(w, generics_resolver, &tb.path);
1645                                                         },
1646                                                         _ => unimplemented!(),
1647                                                 }
1648                                         }
1649                                         if t.eq_token.is_some() || t.default.is_some() { unimplemented!(); }
1650                                 },
1651                                 _ => unimplemented!(),
1652                         }
1653                 }
1654                 if had_params { write!(w, ">").unwrap(); }
1655         }
1656
1657         pub fn write_rust_generic_arg<'b, W: std::io::Write>(&self, w: &mut W, generics_resolver: Option<&GenericTypes>, generics: impl Iterator<Item=&'b syn::GenericArgument>) {
1658                 write!(w, "<").unwrap();
1659                 for (idx, arg) in generics.enumerate() {
1660                         if idx != 0 { write!(w, ", ").unwrap(); }
1661                         match arg {
1662                                 syn::GenericArgument::Type(t) => self.write_rust_type(w, generics_resolver, t),
1663                                 _ => unimplemented!(),
1664                         }
1665                 }
1666                 write!(w, ">").unwrap();
1667         }
1668         pub fn write_rust_type<W: std::io::Write>(&self, w: &mut W, generics: Option<&GenericTypes>, t: &syn::Type) {
1669                 match t {
1670                         syn::Type::Path(p) => {
1671                                 if p.qself.is_some() {
1672                                         unimplemented!();
1673                                 }
1674                                 self.write_rust_path(w, generics, &p.path);
1675                         },
1676                         syn::Type::Reference(r) => {
1677                                 write!(w, "&").unwrap();
1678                                 if let Some(lft) = &r.lifetime {
1679                                         write!(w, "'{} ", lft.ident).unwrap();
1680                                 }
1681                                 if r.mutability.is_some() {
1682                                         write!(w, "mut ").unwrap();
1683                                 }
1684                                 self.write_rust_type(w, generics, &*r.elem);
1685                         },
1686                         syn::Type::Array(a) => {
1687                                 write!(w, "[").unwrap();
1688                                 self.write_rust_type(w, generics, &a.elem);
1689                                 if let syn::Expr::Lit(l) = &a.len {
1690                                         if let syn::Lit::Int(i) = &l.lit {
1691                                                 write!(w, "; {}]", i).unwrap();
1692                                         } else { unimplemented!(); }
1693                                 } else { unimplemented!(); }
1694                         }
1695                         syn::Type::Slice(s) => {
1696                                 write!(w, "[").unwrap();
1697                                 self.write_rust_type(w, generics, &s.elem);
1698                                 write!(w, "]").unwrap();
1699                         },
1700                         syn::Type::Tuple(s) => {
1701                                 write!(w, "(").unwrap();
1702                                 for (idx, t) in s.elems.iter().enumerate() {
1703                                         if idx != 0 { write!(w, ", ").unwrap(); }
1704                                         self.write_rust_type(w, generics, &t);
1705                                 }
1706                                 write!(w, ")").unwrap();
1707                         },
1708                         _ => unimplemented!(),
1709                 }
1710         }
1711
1712         /// Prints a constructor for something which is "uninitialized" (but obviously not actually
1713         /// unint'd memory).
1714         pub fn write_empty_rust_val<W: std::io::Write>(&self, generics: Option<&GenericTypes>, w: &mut W, t: &syn::Type) {
1715                 match t {
1716                         syn::Type::Reference(r) => {
1717                                 self.write_empty_rust_val(generics, w, &*r.elem)
1718                         },
1719                         syn::Type::Path(p) => {
1720                                 let resolved = self.resolve_path(&p.path, generics);
1721                                 if self.crate_types.opaques.get(&resolved).is_some() {
1722                                         write!(w, "crate::{} {{ inner: core::ptr::null_mut(), is_owned: true }}", resolved).unwrap();
1723                                 } else {
1724                                         // Assume its a manually-mapped C type, where we can just define an null() fn
1725                                         write!(w, "{}::null()", self.c_type_from_path(&resolved, false, false).unwrap()).unwrap();
1726                                 }
1727                         },
1728                         syn::Type::Array(a) => {
1729                                 if let syn::Expr::Lit(l) = &a.len {
1730                                         if let syn::Lit::Int(i) = &l.lit {
1731                                                 if i.base10_digits().parse::<usize>().unwrap() < 32 {
1732                                                         // Blindly assume that if we're trying to create an empty value for an
1733                                                         // array < 32 entries that all-0s may be a valid state.
1734                                                         unimplemented!();
1735                                                 }
1736                                                 let arrty = format!("[u8; {}]", i.base10_digits());
1737                                                 write!(w, "{}", self.to_c_conversion_inline_prefix_from_path(&arrty, false, false).unwrap()).unwrap();
1738                                                 write!(w, "[0; {}]", i.base10_digits()).unwrap();
1739                                                 write!(w, "{}", self.to_c_conversion_inline_suffix_from_path(&arrty, false, false).unwrap()).unwrap();
1740                                         } else { unimplemented!(); }
1741                                 } else { unimplemented!(); }
1742                         }
1743                         _ => unimplemented!(),
1744                 }
1745         }
1746
1747         fn is_real_type_array(&self, resolved_type: &str) -> Option<syn::Type> {
1748                 if let Some(real_ty) = self.c_type_from_path(&resolved_type, true, false) {
1749                         if real_ty.ends_with("]") && real_ty.starts_with("*const [u8; ") {
1750                                 let mut split = real_ty.split("; ");
1751                                 split.next().unwrap();
1752                                 let tail_str = split.next().unwrap();
1753                                 assert!(split.next().is_none());
1754                                 let len = usize::from_str_radix(&tail_str[..tail_str.len() - 1], 10).unwrap();
1755                                 Some(parse_quote!([u8; #len]))
1756                         } else { None }
1757                 } else { None }
1758         }
1759
1760         /// Prints a suffix to determine if a variable is empty (ie was set by write_empty_rust_val).
1761         /// See EmptyValExpectedTy for information on return types.
1762         fn write_empty_rust_val_check_suffix<W: std::io::Write>(&self, generics: Option<&GenericTypes>, w: &mut W, t: &syn::Type) -> EmptyValExpectedTy {
1763                 match t {
1764                         syn::Type::Reference(r) => {
1765                                 return self.write_empty_rust_val_check_suffix(generics, w, &*r.elem);
1766                         },
1767                         syn::Type::Path(p) => {
1768                                 let resolved = self.resolve_path(&p.path, generics);
1769                                 if let Some(arr_ty) = self.is_real_type_array(&resolved) {
1770                                         write!(w, ".data").unwrap();
1771                                         return self.write_empty_rust_val_check_suffix(generics, w, &arr_ty);
1772                                 }
1773                                 if self.crate_types.opaques.get(&resolved).is_some() {
1774                                         write!(w, ".inner.is_null()").unwrap();
1775                                         EmptyValExpectedTy::NonPointer
1776                                 } else {
1777                                         if let Some(suffix) = self.empty_val_check_suffix_from_path(&resolved) {
1778                                                 write!(w, "{}", suffix).unwrap();
1779                                                 // We may eventually need to allow empty_val_check_suffix_from_path to specify if we need a deref or not
1780                                                 EmptyValExpectedTy::NonPointer
1781                                         } else {
1782                                                 write!(w, ".is_none()").unwrap();
1783                                                 EmptyValExpectedTy::OptionType
1784                                         }
1785                                 }
1786                         },
1787                         syn::Type::Array(a) => {
1788                                 if let syn::Expr::Lit(l) = &a.len {
1789                                         if let syn::Lit::Int(i) = &l.lit {
1790                                                 write!(w, " == [0; {}]", i.base10_digits()).unwrap();
1791                                                 EmptyValExpectedTy::NonPointer
1792                                         } else { unimplemented!(); }
1793                                 } else { unimplemented!(); }
1794                         },
1795                         syn::Type::Slice(_) => {
1796                                 // Option<[]> always implies that we want to treat len() == 0 differently from
1797                                 // None, so we always map an Option<[]> into a pointer.
1798                                 write!(w, " == core::ptr::null_mut()").unwrap();
1799                                 EmptyValExpectedTy::ReferenceAsPointer
1800                         },
1801                         _ => unimplemented!(),
1802                 }
1803         }
1804
1805         /// Prints a suffix to determine if a variable is empty (ie was set by write_empty_rust_val).
1806         pub fn write_empty_rust_val_check<W: std::io::Write>(&self, generics: Option<&GenericTypes>, w: &mut W, t: &syn::Type, var_access: &str) {
1807                 match t {
1808                         syn::Type::Reference(r) => {
1809                                 self.write_empty_rust_val_check(generics, w, &*r.elem, var_access);
1810                         },
1811                         syn::Type::Path(_) => {
1812                                 write!(w, "{}", var_access).unwrap();
1813                                 self.write_empty_rust_val_check_suffix(generics, w, t);
1814                         },
1815                         syn::Type::Array(a) => {
1816                                 if let syn::Expr::Lit(l) = &a.len {
1817                                         if let syn::Lit::Int(i) = &l.lit {
1818                                                 let arrty = format!("[u8; {}]", i.base10_digits());
1819                                                 // We don't (yet) support a new-var conversion here.
1820                                                 assert!(self.from_c_conversion_new_var_from_path(&arrty, false).is_none());
1821                                                 write!(w, "{}{}{}",
1822                                                         self.from_c_conversion_prefix_from_path(&arrty, false).unwrap(),
1823                                                         var_access,
1824                                                         self.from_c_conversion_suffix_from_path(&arrty, false).unwrap()).unwrap();
1825                                                 self.write_empty_rust_val_check_suffix(generics, w, t);
1826                                         } else { unimplemented!(); }
1827                                 } else { unimplemented!(); }
1828                         }
1829                         _ => unimplemented!(),
1830                 }
1831         }
1832
1833         // ********************************
1834         // *** Type conversion printing ***
1835         // ********************************
1836
1837         /// Returns true we if can just skip passing this to C entirely
1838         pub fn skip_arg(&self, t: &syn::Type, generics: Option<&GenericTypes>) -> bool {
1839                 match t {
1840                         syn::Type::Path(p) => {
1841                                 if p.qself.is_some() { unimplemented!(); }
1842                                 if let Some(full_path) = self.maybe_resolve_path(&p.path, generics) {
1843                                         self.skip_path(&full_path)
1844                                 } else { false }
1845                         },
1846                         syn::Type::Reference(r) => {
1847                                 self.skip_arg(&*r.elem, generics)
1848                         },
1849                         _ => false,
1850                 }
1851         }
1852         pub fn no_arg_to_rust<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>) {
1853                 match t {
1854                         syn::Type::Path(p) => {
1855                                 if p.qself.is_some() { unimplemented!(); }
1856                                 if let Some(full_path) = self.maybe_resolve_path(&p.path, generics) {
1857                                         write!(w, "{}", self.no_arg_path_to_rust(&full_path)).unwrap();
1858                                 }
1859                         },
1860                         syn::Type::Reference(r) => {
1861                                 self.no_arg_to_rust(w, &*r.elem, generics);
1862                         },
1863                         _ => {},
1864                 }
1865         }
1866
1867         fn write_conversion_inline_intern<W: std::io::Write,
1868                         LP: Fn(&str, bool, bool) -> Option<String>, DL: Fn(&mut W, &DeclType, &str, bool, bool), SC: Fn(bool, Option<&str>) -> String>
1869                         (&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, is_mut: bool, ptr_for_ref: bool,
1870                          tupleconv: &str, prefix: bool, sliceconv: SC, path_lookup: LP, decl_lookup: DL) {
1871                 match generics.resolve_type(t) {
1872                         syn::Type::Reference(r) => {
1873                                 self.write_conversion_inline_intern(w, &*r.elem, generics, true, r.mutability.is_some(),
1874                                         ptr_for_ref, tupleconv, prefix, sliceconv, path_lookup, decl_lookup);
1875                         },
1876                         syn::Type::Path(p) => {
1877                                 if p.qself.is_some() {
1878                                         unimplemented!();
1879                                 }
1880
1881                                 let resolved_path = self.resolve_path(&p.path, generics);
1882                                 if let Some(aliased_type) = self.crate_types.type_aliases.get(&resolved_path) {
1883                                         return self.write_conversion_inline_intern(w, aliased_type, None, is_ref, is_mut, ptr_for_ref, tupleconv, prefix, sliceconv, path_lookup, decl_lookup);
1884                                 } else if self.is_primitive(&resolved_path) {
1885                                         if is_ref && prefix {
1886                                                 write!(w, "*").unwrap();
1887                                         }
1888                                 } else if let Some(c_type) = path_lookup(&resolved_path, is_ref, ptr_for_ref) {
1889                                         write!(w, "{}", c_type).unwrap();
1890                                 } else if let Some((_, generics)) = self.crate_types.opaques.get(&resolved_path) {
1891                                         decl_lookup(w, &DeclType::StructImported { generics: &generics }, &resolved_path, is_ref, is_mut);
1892                                 } else if self.crate_types.mirrored_enums.get(&resolved_path).is_some() {
1893                                         decl_lookup(w, &DeclType::MirroredEnum, &resolved_path, is_ref, is_mut);
1894                                 } else if let Some(t) = self.crate_types.traits.get(&resolved_path) {
1895                                         decl_lookup(w, &DeclType::Trait(t), &resolved_path, is_ref, is_mut);
1896                                 } else if let Some(ident) = single_ident_generic_path_to_ident(&p.path) {
1897                                         if let Some(decl_type) = self.types.maybe_resolve_declared(ident) {
1898                                                 decl_lookup(w, decl_type, &self.maybe_resolve_ident(ident).unwrap(), is_ref, is_mut);
1899                                         } else { unimplemented!(); }
1900                                 } else { unimplemented!(); }
1901                         },
1902                         syn::Type::Array(a) => {
1903                                 // We assume all arrays contain only [int_literal; X]s.
1904                                 // This may result in some outputs not compiling.
1905                                 if let syn::Expr::Lit(l) = &a.len {
1906                                         if let syn::Lit::Int(i) = &l.lit {
1907                                                 write!(w, "{}", path_lookup(&format!("[u8; {}]", i.base10_digits()), is_ref, ptr_for_ref).unwrap()).unwrap();
1908                                         } else { unimplemented!(); }
1909                                 } else { unimplemented!(); }
1910                         },
1911                         syn::Type::Slice(s) => {
1912                                 // We assume all slices contain only literals or references.
1913                                 // This may result in some outputs not compiling.
1914                                 if let syn::Type::Path(p) = &*s.elem {
1915                                         let resolved = self.resolve_path(&p.path, generics);
1916                                         if self.is_primitive(&resolved) {
1917                                                 write!(w, "{}", path_lookup("[u8]", is_ref, ptr_for_ref).unwrap()).unwrap();
1918                                         } else {
1919                                                 write!(w, "{}", sliceconv(true, None)).unwrap();
1920                                         }
1921                                 } else if let syn::Type::Reference(r) = &*s.elem {
1922                                         if let syn::Type::Path(p) = &*r.elem {
1923                                                 write!(w, "{}", sliceconv(self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics)), None)).unwrap();
1924                                         } else if let syn::Type::Slice(_) = &*r.elem {
1925                                                 write!(w, "{}", sliceconv(false, None)).unwrap();
1926                                         } else { unimplemented!(); }
1927                                 } else if let syn::Type::Tuple(t) = &*s.elem {
1928                                         assert!(!t.elems.is_empty());
1929                                         if prefix {
1930                                                 write!(w, "{}", sliceconv(false, None)).unwrap();
1931                                         } else {
1932                                                 let mut needs_map = false;
1933                                                 for e in t.elems.iter() {
1934                                                         if let syn::Type::Reference(_) = e {
1935                                                                 needs_map = true;
1936                                                         }
1937                                                 }
1938                                                 if needs_map {
1939                                                         let mut map_str = Vec::new();
1940                                                         write!(&mut map_str, ".map(|(").unwrap();
1941                                                         for i in 0..t.elems.len() {
1942                                                                 write!(&mut map_str, "{}{}", if i != 0 { ", " } else { "" }, ('a' as u8 + i as u8) as char).unwrap();
1943                                                         }
1944                                                         write!(&mut map_str, ")| (").unwrap();
1945                                                         for (idx, e) in t.elems.iter().enumerate() {
1946                                                                 if let syn::Type::Reference(_) = e {
1947                                                                         write!(&mut map_str, "{}{}", if idx != 0 { ", " } else { "" }, (idx as u8 + 'a' as u8) as char).unwrap();
1948                                                                 } else if let syn::Type::Path(_) = e {
1949                                                                         write!(&mut map_str, "{}*{}", if idx != 0 { ", " } else { "" }, (idx as u8 + 'a' as u8) as char).unwrap();
1950                                                                 } else { unimplemented!(); }
1951                                                         }
1952                                                         write!(&mut map_str, "))").unwrap();
1953                                                         write!(w, "{}", sliceconv(false, Some(&String::from_utf8(map_str).unwrap()))).unwrap();
1954                                                 } else {
1955                                                         write!(w, "{}", sliceconv(false, None)).unwrap();
1956                                                 }
1957                                         }
1958                                 } else { unimplemented!(); }
1959                         },
1960                         syn::Type::Tuple(t) => {
1961                                 if t.elems.is_empty() {
1962                                         // cbindgen has poor support for (), see, eg https://github.com/eqrion/cbindgen/issues/527
1963                                         // so work around it by just pretending its a 0u8
1964                                         write!(w, "{}", tupleconv).unwrap();
1965                                 } else {
1966                                         if prefix { write!(w, "local_").unwrap(); }
1967                                 }
1968                         },
1969                         _ => unimplemented!(),
1970                 }
1971         }
1972
1973         fn write_to_c_conversion_inline_prefix_inner<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, ptr_for_ref: bool, from_ptr: bool) {
1974                 self.write_conversion_inline_intern(w, t, generics, is_ref, false, ptr_for_ref, "() /*", true, |_, _| "local_".to_owned(),
1975                                 |a, b, c| self.to_c_conversion_inline_prefix_from_path(a, b, c),
1976                                 |w, decl_type, decl_path, is_ref, _is_mut| {
1977                                         match decl_type {
1978                                                 DeclType::MirroredEnum if is_ref && ptr_for_ref => write!(w, "crate::{}::from_native(", decl_path).unwrap(),
1979                                                 DeclType::MirroredEnum if is_ref => write!(w, "&crate::{}::from_native(", decl_path).unwrap(),
1980                                                 DeclType::MirroredEnum => write!(w, "crate::{}::native_into(", decl_path).unwrap(),
1981                                                 DeclType::EnumIgnored {..}|DeclType::StructImported {..} if is_ref && from_ptr => {
1982                                                         if !ptr_for_ref { write!(w, "&").unwrap(); }
1983                                                         write!(w, "crate::{} {{ inner: unsafe {{ (", decl_path).unwrap()
1984                                                 },
1985                                                 DeclType::EnumIgnored {..}|DeclType::StructImported {..} if is_ref => {
1986                                                         if !ptr_for_ref { write!(w, "&").unwrap(); }
1987                                                         write!(w, "crate::{} {{ inner: unsafe {{ ObjOps::nonnull_ptr_to_inner((", decl_path).unwrap()
1988                                                 },
1989                                                 DeclType::EnumIgnored {..}|DeclType::StructImported {..} if !is_ref && from_ptr =>
1990                                                         write!(w, "crate::{} {{ inner: ", decl_path).unwrap(),
1991                                                 DeclType::EnumIgnored {..}|DeclType::StructImported {..} if !is_ref =>
1992                                                         write!(w, "crate::{} {{ inner: ObjOps::heap_alloc(", decl_path).unwrap(),
1993                                                 DeclType::Trait(_) if is_ref => write!(w, "").unwrap(),
1994                                                 DeclType::Trait(_) if !is_ref => write!(w, "Into::into(").unwrap(),
1995                                                 _ => panic!("{:?}", decl_path),
1996                                         }
1997                                 });
1998         }
1999         pub fn write_to_c_conversion_inline_prefix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) {
2000                 self.write_to_c_conversion_inline_prefix_inner(w, t, generics, false, ptr_for_ref, false);
2001         }
2002         fn write_to_c_conversion_inline_suffix_inner<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, ptr_for_ref: bool, from_ptr: bool) {
2003                 self.write_conversion_inline_intern(w, t, generics, is_ref, false, ptr_for_ref, "*/", false, |_, _| ".into()".to_owned(),
2004                                 |a, b, c| self.to_c_conversion_inline_suffix_from_path(a, b, c),
2005                                 |w, decl_type, full_path, is_ref, _is_mut| match decl_type {
2006                                         DeclType::MirroredEnum => write!(w, ")").unwrap(),
2007                                         DeclType::EnumIgnored { generics }|DeclType::StructImported { generics } if is_ref => {
2008                                                 write!(w, " as *const {}<", full_path).unwrap();
2009                                                 for param in generics.params.iter() {
2010                                                         if let syn::GenericParam::Lifetime(_) = param {
2011                                                                 write!(w, "'_, ").unwrap();
2012                                                         } else {
2013                                                                 write!(w, "_, ").unwrap();
2014                                                         }
2015                                                 }
2016                                                 if from_ptr {
2017                                                         write!(w, ">) as *mut _ }}, is_owned: false }}").unwrap();
2018                                                 } else {
2019                                                         write!(w, ">) as *mut _) }}, is_owned: false }}").unwrap();
2020                                                 }
2021                                         },
2022                                         DeclType::EnumIgnored {..}|DeclType::StructImported {..} if !is_ref && from_ptr =>
2023                                                 write!(w, ", is_owned: true }}").unwrap(),
2024                                         DeclType::EnumIgnored {..}|DeclType::StructImported {..} if !is_ref => write!(w, "), is_owned: true }}").unwrap(),
2025                                         DeclType::Trait(_) if is_ref => {},
2026                                         DeclType::Trait(_) => {
2027                                                 // This is used when we're converting a concrete Rust type into a C trait
2028                                                 // for use when a Rust trait method returns an associated type.
2029                                                 // Because all of our C traits implement From<RustTypesImplementingTraits>
2030                                                 // we can just call .into() here and be done.
2031                                                 write!(w, ")").unwrap()
2032                                         },
2033                                         _ => unimplemented!(),
2034                                 });
2035         }
2036         pub fn write_to_c_conversion_inline_suffix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) {
2037                 self.write_to_c_conversion_inline_suffix_inner(w, t, generics, false, ptr_for_ref, false);
2038         }
2039
2040         fn write_from_c_conversion_prefix_inner<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, _ptr_for_ref: bool) {
2041                 self.write_conversion_inline_intern(w, t, generics, is_ref, false, false, "() /*", true, |_, _| "&local_".to_owned(),
2042                                 |a, b, _c| self.from_c_conversion_prefix_from_path(a, b),
2043                                 |w, decl_type, _full_path, is_ref, _is_mut| match decl_type {
2044                                         DeclType::StructImported {..} if is_ref => write!(w, "").unwrap(),
2045                                         DeclType::StructImported {..} if !is_ref => write!(w, "*unsafe {{ Box::from_raw(").unwrap(),
2046                                         DeclType::MirroredEnum if is_ref => write!(w, "&").unwrap(),
2047                                         DeclType::MirroredEnum => {},
2048                                         DeclType::Trait(_) => {},
2049                                         _ => unimplemented!(),
2050                                 });
2051         }
2052         pub fn write_from_c_conversion_prefix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>) {
2053                 self.write_from_c_conversion_prefix_inner(w, t, generics, false, false);
2054         }
2055         fn write_from_c_conversion_suffix_inner<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, ptr_for_ref: bool) {
2056                 self.write_conversion_inline_intern(w, t, generics, is_ref, false, false, "*/", false,
2057                                 |has_inner, map_str_opt| match (has_inner, map_str_opt) {
2058                                         (false, Some(map_str)) => format!(".iter(){}.collect::<Vec<_>>()[..]", map_str),
2059                                         (false, None) => ".iter().collect::<Vec<_>>()[..]".to_owned(),
2060                                         (true, None) => "[..]".to_owned(),
2061                                         (true, Some(_)) => unreachable!(),
2062                                 },
2063                                 |a, b, _c| self.from_c_conversion_suffix_from_path(a, b),
2064                                 |w, decl_type, _full_path, is_ref, is_mut| match decl_type {
2065                                         DeclType::StructImported {..} if is_ref && ptr_for_ref => write!(w, "XXX unimplemented").unwrap(),
2066                                         DeclType::StructImported {..} if is_mut && is_ref => write!(w, ".get_native_mut_ref()").unwrap(),
2067                                         DeclType::StructImported {..} if is_ref => write!(w, ".get_native_ref()").unwrap(),
2068                                         DeclType::StructImported {..} if !is_ref => write!(w, ".take_inner()) }}").unwrap(),
2069                                         DeclType::MirroredEnum if is_ref => write!(w, ".to_native()").unwrap(),
2070                                         DeclType::MirroredEnum => write!(w, ".into_native()").unwrap(),
2071                                         DeclType::Trait(_) => {},
2072                                         _ => unimplemented!(),
2073                                 });
2074         }
2075         pub fn write_from_c_conversion_suffix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>) {
2076                 self.write_from_c_conversion_suffix_inner(w, t, generics, false, false);
2077         }
2078         // Note that compared to the above conversion functions, the following two are generally
2079         // significantly undertested:
2080         pub fn write_from_c_conversion_to_ref_prefix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>) {
2081                 self.write_conversion_inline_intern(w, t, generics, false, false, false, "() /*", true, |_, _| "&local_".to_owned(),
2082                                 |a, b, _c| {
2083                                         if let Some(conv) = self.from_c_conversion_prefix_from_path(a, b) {
2084                                                 Some(format!("&{}", conv))
2085                                         } else { None }
2086                                 },
2087                                 |w, decl_type, _full_path, is_ref, _is_mut| match decl_type {
2088                                         DeclType::StructImported {..} if !is_ref => write!(w, "").unwrap(),
2089                                         _ => unimplemented!(),
2090                                 });
2091         }
2092         pub fn write_from_c_conversion_to_ref_suffix<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>) {
2093                 self.write_conversion_inline_intern(w, t, generics, false, false, false, "*/", false,
2094                                 |has_inner, map_str_opt| match (has_inner, map_str_opt) {
2095                                         (false, Some(map_str)) => format!(".iter(){}.collect::<Vec<_>>()[..]", map_str),
2096                                         (false, None) => ".iter().collect::<Vec<_>>()[..]".to_owned(),
2097                                         (true, None) => "[..]".to_owned(),
2098                                         (true, Some(_)) => unreachable!(),
2099                                 },
2100                                 |a, b, _c| self.from_c_conversion_suffix_from_path(a, b),
2101                                 |w, decl_type, _full_path, is_ref, _is_mut| match decl_type {
2102                                         DeclType::StructImported {..} if !is_ref => write!(w, ".get_native_ref()").unwrap(),
2103                                         _ => unimplemented!(),
2104                                 });
2105         }
2106
2107         fn write_conversion_new_var_intern<'b, W: std::io::Write,
2108                 LP: Fn(&str, bool) -> Option<(&str, &str)>,
2109                 LC: Fn(&str, bool, Option<&syn::Type>, &syn::Ident, &str) ->  Option<(&'b str, Vec<(String, String)>, &'b str, ContainerPrefixLocation)>,
2110                 VP: Fn(&mut W, &syn::Type, Option<&GenericTypes>, bool, bool, bool),
2111                 VS: Fn(&mut W, &syn::Type, Option<&GenericTypes>, bool, bool, bool)>
2112                         (&self, w: &mut W, ident: &syn::Ident, var: &str, t: &syn::Type, generics: Option<&GenericTypes>,
2113                          mut is_ref: bool, mut ptr_for_ref: bool, to_c: bool, from_ownable_ref: bool,
2114                          path_lookup: &LP, container_lookup: &LC, var_prefix: &VP, var_suffix: &VS) -> bool {
2115
2116                 macro_rules! convert_container {
2117                         ($container_type: expr, $args_len: expr, $args_iter: expr) => { {
2118                                 // For slices (and Options), we refuse to directly map them as is_ref when they
2119                                 // aren't opaque types containing an inner pointer. This is due to the fact that,
2120                                 // in both cases, the actual higher-level type is non-is_ref.
2121                                 let ty_has_inner = if $args_len == 1 {
2122                                         let ty = $args_iter().next().unwrap();
2123                                         if $container_type == "Slice" && to_c {
2124                                                 // "To C ptr_for_ref" means "return the regular object with is_owned
2125                                                 // set to false", which is totally what we want in a slice if we're about to
2126                                                 // set ty_has_inner.
2127                                                 ptr_for_ref = true;
2128                                         }
2129                                         if let syn::Type::Reference(t) = ty {
2130                                                 if let syn::Type::Path(p) = &*t.elem {
2131                                                         self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics))
2132                                                 } else { false }
2133                                         } else if let syn::Type::Path(p) = ty {
2134                                                 self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics))
2135                                         } else { false }
2136                                 } else { true };
2137
2138                                 // Options get a bunch of special handling, since in general we map Option<>al
2139                                 // types into the same C type as non-Option-wrapped types. This ends up being
2140                                 // pretty manual here and most of the below special-cases are for Options.
2141                                 let mut needs_ref_map = false;
2142                                 let mut only_contained_type = None;
2143                                 let mut only_contained_type_nonref = None;
2144                                 let mut only_contained_has_inner = false;
2145                                 let mut contains_slice = false;
2146                                 if $args_len == 1 {
2147                                         only_contained_has_inner = ty_has_inner;
2148                                         let arg = $args_iter().next().unwrap();
2149                                         if let syn::Type::Reference(t) = arg {
2150                                                 only_contained_type = Some(arg);
2151                                                 only_contained_type_nonref = Some(&*t.elem);
2152                                                 if let syn::Type::Path(_) = &*t.elem {
2153                                                         is_ref = true;
2154                                                 } else if let syn::Type::Slice(_) = &*t.elem {
2155                                                         contains_slice = true;
2156                                                 } else { return false; }
2157                                                 // If the inner element contains an inner pointer, we will just use that,
2158                                                 // avoiding the need to map elements to references. Otherwise we'll need to
2159                                                 // do an extra mapping step.
2160                                                 needs_ref_map = !only_contained_has_inner && $container_type == "Option";
2161                                         } else {
2162                                                 only_contained_type = Some(arg);
2163                                                 only_contained_type_nonref = Some(arg);
2164                                         }
2165                                 }
2166
2167                                 if let Some((prefix, conversions, suffix, prefix_location)) = container_lookup(&$container_type, is_ref && ty_has_inner, only_contained_type, ident, var) {
2168                                         assert_eq!(conversions.len(), $args_len);
2169                                         write!(w, "let mut local_{}{} = ", ident,
2170                                                 if (!to_c && needs_ref_map) || (to_c && $container_type == "Option" && contains_slice) {"_base"} else { "" }).unwrap();
2171                                         if prefix_location == ContainerPrefixLocation::OutsideConv {
2172                                                 var_prefix(w, $args_iter().next().unwrap(), generics, is_ref, ptr_for_ref, true);
2173                                         }
2174                                         write!(w, "{}{}", prefix, var).unwrap();
2175
2176                                         for ((pfx, var_name), (idx, ty)) in conversions.iter().zip($args_iter().enumerate()) {
2177                                                 let mut var = std::io::Cursor::new(Vec::new());
2178                                                 write!(&mut var, "{}", var_name).unwrap();
2179                                                 let var_access = String::from_utf8(var.into_inner()).unwrap();
2180
2181                                                 let conv_ty = if needs_ref_map { only_contained_type_nonref.as_ref().unwrap() } else { ty };
2182
2183                                                 write!(w, "{} {{ ", pfx).unwrap();
2184                                                 let new_var_name = format!("{}_{}", ident, idx);
2185                                                 let new_var = self.write_conversion_new_var_intern(w, &format_ident!("{}", new_var_name),
2186                                                                 &var_access, conv_ty, generics, contains_slice || (is_ref && ty_has_inner), ptr_for_ref,
2187                                                                 to_c, from_ownable_ref, path_lookup, container_lookup, var_prefix, var_suffix);
2188                                                 if new_var { write!(w, " ").unwrap(); }
2189
2190                                                 if prefix_location == ContainerPrefixLocation::PerConv {
2191                                                         var_prefix(w, conv_ty, generics, is_ref && ty_has_inner, ptr_for_ref, false);
2192                                                 } else if !is_ref && !needs_ref_map && to_c && only_contained_has_inner {
2193                                                         write!(w, "ObjOps::heap_alloc(").unwrap();
2194                                                 }
2195
2196                                                 write!(w, "{}{}", if contains_slice && !to_c { "local_" } else { "" }, if new_var { new_var_name } else { var_access }).unwrap();
2197                                                 if prefix_location == ContainerPrefixLocation::PerConv {
2198                                                         var_suffix(w, conv_ty, generics, is_ref && ty_has_inner, ptr_for_ref, false);
2199                                                 } else if !is_ref && !needs_ref_map && to_c && only_contained_has_inner {
2200                                                         write!(w, ")").unwrap();
2201                                                 }
2202                                                 write!(w, " }}").unwrap();
2203                                         }
2204                                         write!(w, "{}", suffix).unwrap();
2205                                         if prefix_location == ContainerPrefixLocation::OutsideConv {
2206                                                 var_suffix(w, $args_iter().next().unwrap(), generics, is_ref, ptr_for_ref, true);
2207                                         }
2208                                         write!(w, ";").unwrap();
2209                                         if !to_c && needs_ref_map {
2210                                                 write!(w, " let mut local_{} = local_{}_base.as_ref()", ident, ident).unwrap();
2211                                                 if contains_slice {
2212                                                         write!(w, ".map(|a| &a[..])").unwrap();
2213                                                 }
2214                                                 write!(w, ";").unwrap();
2215                                         } else if to_c && $container_type == "Option" && contains_slice {
2216                                                 write!(w, " let mut local_{} = *local_{}_base;", ident, ident).unwrap();
2217                                         }
2218                                         return true;
2219                                 }
2220                         } }
2221                 }
2222
2223                 match generics.resolve_type(t) {
2224                         syn::Type::Reference(r) => {
2225                                 if let syn::Type::Slice(_) = &*r.elem {
2226                                         self.write_conversion_new_var_intern(w, ident, var, &*r.elem, generics, is_ref, ptr_for_ref, to_c, from_ownable_ref, path_lookup, container_lookup, var_prefix, var_suffix)
2227                                 } else {
2228                                         self.write_conversion_new_var_intern(w, ident, var, &*r.elem, generics, true, ptr_for_ref, to_c, from_ownable_ref, path_lookup, container_lookup, var_prefix, var_suffix)
2229                                 }
2230                         },
2231                         syn::Type::Path(p) => {
2232                                 if p.qself.is_some() {
2233                                         unimplemented!();
2234                                 }
2235                                 let resolved_path = self.resolve_path(&p.path, generics);
2236                                 if let Some(aliased_type) = self.crate_types.type_aliases.get(&resolved_path) {
2237                                         return self.write_conversion_new_var_intern(w, ident, var, aliased_type, None, is_ref, ptr_for_ref, to_c, from_ownable_ref, path_lookup, container_lookup, var_prefix, var_suffix);
2238                                 }
2239                                 if self.is_known_container(&resolved_path, is_ref) || self.is_path_transparent_container(&p.path, generics, is_ref) {
2240                                         if let syn::PathArguments::AngleBracketed(args) = &p.path.segments.iter().next().unwrap().arguments {
2241                                                 convert_container!(resolved_path, args.args.len(), || args.args.iter().map(|arg| {
2242                                                         if let syn::GenericArgument::Type(ty) = arg {
2243                                                                 generics.resolve_type(ty)
2244                                                         } else { unimplemented!(); }
2245                                                 }));
2246                                         } else { unimplemented!(); }
2247                                 }
2248                                 if self.is_primitive(&resolved_path) {
2249                                         false
2250                                 } else if let Some(ty_ident) = single_ident_generic_path_to_ident(&p.path) {
2251                                         if let Some((prefix, suffix)) = path_lookup(&resolved_path, is_ref) {
2252                                                 write!(w, "let mut local_{} = {}{}{};", ident, prefix, var, suffix).unwrap();
2253                                                 true
2254                                         } else if self.types.maybe_resolve_declared(ty_ident).is_some() {
2255                                                 false
2256                                         } else { false }
2257                                 } else { false }
2258                         },
2259                         syn::Type::Array(_) => {
2260                                 // We assume all arrays contain only primitive types.
2261                                 // This may result in some outputs not compiling.
2262                                 false
2263                         },
2264                         syn::Type::Slice(s) => {
2265                                 if let syn::Type::Path(p) = &*s.elem {
2266                                         let resolved = self.resolve_path(&p.path, generics);
2267                                         if self.is_primitive(&resolved) {
2268                                                 let slice_path = format!("[{}]", resolved);
2269                                                 if let Some((prefix, suffix)) = path_lookup(&slice_path, true) {
2270                                                         write!(w, "let mut local_{} = {}{}{};", ident, prefix, var, suffix).unwrap();
2271                                                         true
2272                                                 } else { false }
2273                                         } else {
2274                                                 let tyref = [&*s.elem];
2275                                                 if to_c {
2276                                                         // If we're converting from a slice to a Vec, assume we can clone the
2277                                                         // elements and clone them into a new Vec first. Next we'll walk the
2278                                                         // new Vec here and convert them to C types.
2279                                                         write!(w, "let mut local_{}_clone = Vec::new(); local_{}_clone.extend_from_slice({}); let mut {} = local_{}_clone; ", ident, ident, ident, ident, ident).unwrap();
2280                                                 }
2281                                                 is_ref = false;
2282                                                 convert_container!("Vec", 1, || tyref.iter().map(|t| generics.resolve_type(*t)));
2283                                                 unimplemented!("convert_container should return true as container_lookup should succeed for slices");
2284                                         }
2285                                 } else if let syn::Type::Reference(ty) = &*s.elem {
2286                                         let tyref = if from_ownable_ref || !to_c { [&*ty.elem] } else { [&*s.elem] };
2287                                         is_ref = true;
2288                                         convert_container!("Slice", 1, || tyref.iter().map(|t| generics.resolve_type(*t)));
2289                                         unimplemented!("convert_container should return true as container_lookup should succeed for slices");
2290                                 } else if let syn::Type::Tuple(t) = &*s.elem {
2291                                         // When mapping into a temporary new var, we need to own all the underlying objects.
2292                                         // Thus, we drop any references inside the tuple and convert with non-reference types.
2293                                         let mut elems = syn::punctuated::Punctuated::new();
2294                                         for elem in t.elems.iter() {
2295                                                 if let syn::Type::Reference(r) = elem {
2296                                                         elems.push((*r.elem).clone());
2297                                                 } else {
2298                                                         elems.push(elem.clone());
2299                                                 }
2300                                         }
2301                                         let ty = [syn::Type::Tuple(syn::TypeTuple {
2302                                                 paren_token: t.paren_token, elems
2303                                         })];
2304                                         is_ref = false;
2305                                         ptr_for_ref = true;
2306                                         convert_container!("Slice", 1, || ty.iter());
2307                                         unimplemented!("convert_container should return true as container_lookup should succeed for slices");
2308                                 } else { unimplemented!() }
2309                         },
2310                         syn::Type::Tuple(t) => {
2311                                 if !t.elems.is_empty() {
2312                                         // We don't (yet) support tuple elements which cannot be converted inline
2313                                         write!(w, "let (").unwrap();
2314                                         for idx in 0..t.elems.len() {
2315                                                 if idx != 0 { write!(w, ", ").unwrap(); }
2316                                                 write!(w, "{} orig_{}_{}", if is_ref { "ref" } else { "mut" }, ident, idx).unwrap();
2317                                         }
2318                                         write!(w, ") = {}{}; ", var, if !to_c { ".to_rust()" } else { "" }).unwrap();
2319                                         // Like other template types, tuples are always mapped as their non-ref
2320                                         // versions for types which have different ref mappings. Thus, we convert to
2321                                         // non-ref versions and handle opaque types with inner pointers manually.
2322                                         for (idx, elem) in t.elems.iter().enumerate() {
2323                                                 if let syn::Type::Path(p) = elem {
2324                                                         let v_name = format!("orig_{}_{}", ident, idx);
2325                                                         let tuple_elem_ident = format_ident!("{}", &v_name);
2326                                                         if self.write_conversion_new_var_intern(w, &tuple_elem_ident, &v_name, elem, generics,
2327                                                                         false, ptr_for_ref, to_c, from_ownable_ref,
2328                                                                         path_lookup, container_lookup, var_prefix, var_suffix) {
2329                                                                 write!(w, " ").unwrap();
2330                                                                 // Opaque types with inner pointers shouldn't ever create new stack
2331                                                                 // variables, so we don't handle it and just assert that it doesn't
2332                                                                 // here.
2333                                                                 assert!(!self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics)));
2334                                                         }
2335                                                 }
2336                                         }
2337                                         write!(w, "let mut local_{} = (", ident).unwrap();
2338                                         for (idx, elem) in t.elems.iter().enumerate() {
2339                                                 let ty_has_inner = {
2340                                                                 if to_c {
2341                                                                         // "To C ptr_for_ref" means "return the regular object with
2342                                                                         // is_owned set to false", which is totally what we want
2343                                                                         // if we're about to set ty_has_inner.
2344                                                                         ptr_for_ref = true;
2345                                                                 }
2346                                                                 if let syn::Type::Reference(t) = elem {
2347                                                                         if let syn::Type::Path(p) = &*t.elem {
2348                                                                                 self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics))
2349                                                                         } else { false }
2350                                                                 } else if let syn::Type::Path(p) = elem {
2351                                                                         self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics))
2352                                                                 } else { false }
2353                                                         };
2354                                                 if idx != 0 { write!(w, ", ").unwrap(); }
2355                                                 var_prefix(w, elem, generics, is_ref && ty_has_inner, ptr_for_ref, false);
2356                                                 if is_ref && ty_has_inner {
2357                                                         // For ty_has_inner, the regular var_prefix mapping will take a
2358                                                         // reference, so deref once here to make sure we keep the original ref.
2359                                                         write!(w, "*").unwrap();
2360                                                 }
2361                                                 write!(w, "orig_{}_{}", ident, idx).unwrap();
2362                                                 if is_ref && !ty_has_inner {
2363                                                         // If we don't have an inner variable's reference to maintain, just
2364                                                         // hope the type is Clonable and use that.
2365                                                         write!(w, ".clone()").unwrap();
2366                                                 }
2367                                                 var_suffix(w, elem, generics, is_ref && ty_has_inner, ptr_for_ref, false);
2368                                         }
2369                                         write!(w, "){};", if to_c { ".into()" } else { "" }).unwrap();
2370                                         true
2371                                 } else { false }
2372                         },
2373                         _ => unimplemented!(),
2374                 }
2375         }
2376
2377         pub fn write_to_c_conversion_new_var_inner<W: std::io::Write>(&self, w: &mut W, ident: &syn::Ident, var_access: &str, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool, from_ownable_ref: bool) -> bool {
2378                 self.write_conversion_new_var_intern(w, ident, var_access, t, generics, false, ptr_for_ref, true, from_ownable_ref,
2379                         &|a, b| self.to_c_conversion_new_var_from_path(a, b),
2380                         &|a, b, c, d, e| self.to_c_conversion_container_new_var(generics, a, b, c, d, e),
2381                         // We force ptr_for_ref here since we can't generate a ref on one line and use it later
2382                         &|a, b, c, d, e, f| self.write_to_c_conversion_inline_prefix_inner(a, b, c, d, e, f),
2383                         &|a, b, c, d, e, f| self.write_to_c_conversion_inline_suffix_inner(a, b, c, d, e, f))
2384         }
2385         pub fn write_to_c_conversion_new_var<W: std::io::Write>(&self, w: &mut W, ident: &syn::Ident, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) -> bool {
2386                 self.write_to_c_conversion_new_var_inner(w, ident, &format!("{}", ident), t, generics, ptr_for_ref, false)
2387         }
2388         /// Prints new-var conversion for an "ownable_ref" type, ie prints conversion for
2389         /// `create_ownable_reference(t)`, not `t` itself.
2390         pub fn write_to_c_conversion_from_ownable_ref_new_var<W: std::io::Write>(&self, w: &mut W, ident: &syn::Ident, t: &syn::Type, generics: Option<&GenericTypes>) -> bool {
2391                 self.write_to_c_conversion_new_var_inner(w, ident, &format!("{}", ident), t, generics, true, true)
2392         }
2393         pub fn write_from_c_conversion_new_var<W: std::io::Write>(&self, w: &mut W, ident: &syn::Ident, t: &syn::Type, generics: Option<&GenericTypes>) -> bool {
2394                 self.write_conversion_new_var_intern(w, ident, &format!("{}", ident), t, generics, false, false, false, false,
2395                         &|a, b| self.from_c_conversion_new_var_from_path(a, b),
2396                         &|a, b, c, d, e| self.from_c_conversion_container_new_var(generics, a, b, c, d, e),
2397                         // We force ptr_for_ref here since we can't generate a ref on one line and use it later
2398                         &|a, b, c, d, e, _f| self.write_from_c_conversion_prefix_inner(a, b, c, d, e),
2399                         &|a, b, c, d, e, _f| self.write_from_c_conversion_suffix_inner(a, b, c, d, e))
2400         }
2401
2402         // ******************************************************
2403         // *** C Container Type Equivalent and alias Printing ***
2404         // ******************************************************
2405
2406         fn write_template_generics<'b, W: std::io::Write>(&self, w: &mut W, args: &mut dyn Iterator<Item=&'b syn::Type>, generics: Option<&GenericTypes>, is_ref: bool) -> bool {
2407                 for (idx, t) in args.enumerate() {
2408                         if idx != 0 {
2409                                 write!(w, ", ").unwrap();
2410                         }
2411                         if let syn::Type::Reference(r_arg) = t {
2412                                 assert!(!is_ref); // We don't currently support outer reference types for non-primitive inners
2413
2414                                 if !self.write_c_type_intern(w, &*r_arg.elem, generics, false, false, false, false) { return false; }
2415
2416                                 // While write_c_type_intern, above is correct, we don't want to blindly convert a
2417                                 // reference to something stupid, so check that the container is either opaque or a
2418                                 // predefined type (currently only Transaction).
2419                                 if let syn::Type::Path(p_arg) = &*r_arg.elem {
2420                                         let resolved = self.resolve_path(&p_arg.path, generics);
2421                                         assert!(self.crate_types.opaques.get(&resolved).is_some() ||
2422                                                         self.c_type_from_path(&resolved, true, true).is_some(), "Template generics should be opaque or have a predefined mapping");
2423                                 } else { unimplemented!(); }
2424                         } else if let syn::Type::Path(p_arg) = t {
2425                                 if let Some(resolved) = self.maybe_resolve_path(&p_arg.path, generics) {
2426                                         if !self.is_primitive(&resolved) {
2427                                                 assert!(!is_ref); // We don't currently support outer reference types for non-primitive inners
2428                                         }
2429                                 } else {
2430                                         assert!(!is_ref); // We don't currently support outer reference types for non-primitive inners
2431                                 }
2432                                 if !self.write_c_type_intern(w, t, generics, false, false, false, false) { return false; }
2433                         } else {
2434                                 // We don't currently support outer reference types for non-primitive inners,
2435                                 // except for the empty tuple.
2436                                 if let syn::Type::Tuple(t_arg) = t {
2437                                         assert!(t_arg.elems.len() == 0 || !is_ref);
2438                                 } else {
2439                                         assert!(!is_ref);
2440                                 }
2441                                 if !self.write_c_type_intern(w, t, generics, false, false, false, false) { return false; }
2442                         }
2443                 }
2444                 true
2445         }
2446         fn check_create_container(&self, mangled_container: String, container_type: &str, args: Vec<&syn::Type>, generics: Option<&GenericTypes>, is_ref: bool) -> bool {
2447                 if !self.crate_types.templates_defined.borrow().get(&mangled_container).is_some() {
2448                         let mut created_container: Vec<u8> = Vec::new();
2449
2450                         if container_type == "Result" {
2451                                 let mut a_ty: Vec<u8> = Vec::new();
2452                                 if let syn::Type::Tuple(tup) = args.iter().next().unwrap() {
2453                                         if tup.elems.is_empty() {
2454                                                 write!(&mut a_ty, "()").unwrap();
2455                                         } else {
2456                                                 if !self.write_template_generics(&mut a_ty, &mut args.iter().map(|t| *t).take(1), generics, is_ref) { return false; }
2457                                         }
2458                                 } else {
2459                                         if !self.write_template_generics(&mut a_ty, &mut args.iter().map(|t| *t).take(1), generics, is_ref) { return false; }
2460                                 }
2461
2462                                 let mut b_ty: Vec<u8> = Vec::new();
2463                                 if let syn::Type::Tuple(tup) = args.iter().skip(1).next().unwrap() {
2464                                         if tup.elems.is_empty() {
2465                                                 write!(&mut b_ty, "()").unwrap();
2466                                         } else {
2467                                                 if !self.write_template_generics(&mut b_ty, &mut args.iter().map(|t| *t).skip(1), generics, is_ref) { return false; }
2468                                         }
2469                                 } else {
2470                                         if !self.write_template_generics(&mut b_ty, &mut args.iter().map(|t| *t).skip(1), generics, is_ref) { return false; }
2471                                 }
2472
2473                                 let ok_str = String::from_utf8(a_ty).unwrap();
2474                                 let err_str = String::from_utf8(b_ty).unwrap();
2475                                 let is_clonable = self.is_clonable(&ok_str) && self.is_clonable(&err_str);
2476                                 write_result_block(&mut created_container, &mangled_container, &ok_str, &err_str, is_clonable);
2477                                 if is_clonable {
2478                                         self.crate_types.set_clonable(Self::generated_container_path().to_owned() + "::" + &mangled_container);
2479                                 }
2480                         } else if container_type == "Vec" {
2481                                 let mut a_ty: Vec<u8> = Vec::new();
2482                                 if !self.write_template_generics(&mut a_ty, &mut args.iter().map(|t| *t), generics, is_ref) { return false; }
2483                                 let ty = String::from_utf8(a_ty).unwrap();
2484                                 let is_clonable = self.is_clonable(&ty);
2485                                 write_vec_block(&mut created_container, &mangled_container, &ty, is_clonable);
2486                                 if is_clonable {
2487                                         self.crate_types.set_clonable(Self::generated_container_path().to_owned() + "::" + &mangled_container);
2488                                 }
2489                         } else if container_type.ends_with("Tuple") {
2490                                 let mut tuple_args = Vec::new();
2491                                 let mut is_clonable = true;
2492                                 for arg in args.iter() {
2493                                         let mut ty: Vec<u8> = Vec::new();
2494                                         if !self.write_template_generics(&mut ty, &mut [arg].iter().map(|t| **t), generics, is_ref) { return false; }
2495                                         let ty_str = String::from_utf8(ty).unwrap();
2496                                         if !self.is_clonable(&ty_str) {
2497                                                 is_clonable = false;
2498                                         }
2499                                         tuple_args.push(ty_str);
2500                                 }
2501                                 write_tuple_block(&mut created_container, &mangled_container, &tuple_args, is_clonable);
2502                                 if is_clonable {
2503                                         self.crate_types.set_clonable(Self::generated_container_path().to_owned() + "::" + &mangled_container);
2504                                 }
2505                         } else if container_type == "Option" {
2506                                 let mut a_ty: Vec<u8> = Vec::new();
2507                                 if !self.write_template_generics(&mut a_ty, &mut args.iter().map(|t| *t), generics, is_ref) { return false; }
2508                                 let ty = String::from_utf8(a_ty).unwrap();
2509                                 let is_clonable = self.is_clonable(&ty);
2510                                 write_option_block(&mut created_container, &mangled_container, &ty, is_clonable);
2511                                 if is_clonable {
2512                                         self.crate_types.set_clonable(Self::generated_container_path().to_owned() + "::" + &mangled_container);
2513                                 }
2514                         } else {
2515                                 unreachable!();
2516                         }
2517                         self.crate_types.write_new_template(mangled_container.clone(), true, &created_container);
2518                 }
2519                 true
2520         }
2521         fn path_to_generic_args(path: &syn::Path) -> Vec<&syn::Type> {
2522                 if let syn::PathArguments::AngleBracketed(args) = &path.segments.iter().next().unwrap().arguments {
2523                         args.args.iter().map(|gen| if let syn::GenericArgument::Type(t) = gen { t } else { unimplemented!() }).collect()
2524                 } else { unimplemented!(); }
2525         }
2526         fn write_c_mangled_container_path_intern<W: std::io::Write>
2527                         (&self, w: &mut W, args: Vec<&syn::Type>, generics: Option<&GenericTypes>, ident: &str, is_ref: bool, is_mut: bool, ptr_for_ref: bool, in_type: bool) -> bool {
2528                 let mut mangled_type: Vec<u8> = Vec::new();
2529                 if !self.is_transparent_container(ident, is_ref, args.iter().map(|a| *a), generics) {
2530                         write!(w, "C{}_", ident).unwrap();
2531                         write!(mangled_type, "C{}_", ident).unwrap();
2532                 } else { assert_eq!(args.len(), 1); }
2533                 for arg in args.iter() {
2534                         macro_rules! write_path {
2535                                 ($p_arg: expr, $extra_write: expr) => {
2536                                         if let Some(subtype) = self.maybe_resolve_path(&$p_arg.path, generics) {
2537                                                 if self.is_transparent_container(ident, is_ref, args.iter().map(|a| *a), generics) {
2538                                                         if !in_type {
2539                                                                 if self.c_type_has_inner_from_path(&subtype) {
2540                                                                         if !self.write_c_path_intern(w, &$p_arg.path, generics, is_ref, is_mut, ptr_for_ref, false) { return false; }
2541                                                                 } else {
2542                                                                         if let Some(arr_ty) = self.is_real_type_array(&subtype) {
2543                                                                                 if !self.write_c_type_intern(w, &arr_ty, generics, false, true, false, false) { return false; }
2544                                                                         } else {
2545                                                                                 // Option<T> needs to be converted to a *mut T, ie mut ptr-for-ref
2546                                                                                 if !self.write_c_path_intern(w, &$p_arg.path, generics, true, true, true, false) { return false; }
2547                                                                         }
2548                                                                 }
2549                                                         } else {
2550                                                                 write!(w, "{}", $p_arg.path.segments.last().unwrap().ident).unwrap();
2551                                                         }
2552                                                 } else if self.is_known_container(&subtype, is_ref) || self.is_path_transparent_container(&$p_arg.path, generics, is_ref) {
2553                                                         if !self.write_c_mangled_container_path_intern(w, Self::path_to_generic_args(&$p_arg.path), generics,
2554                                                                         &subtype, is_ref, is_mut, ptr_for_ref, true) {
2555                                                                 return false;
2556                                                         }
2557                                                         self.write_c_mangled_container_path_intern(&mut mangled_type, Self::path_to_generic_args(&$p_arg.path),
2558                                                                 generics, &subtype, is_ref, is_mut, ptr_for_ref, true);
2559                                                         if let Some(w2) = $extra_write as Option<&mut Vec<u8>> {
2560                                                                 self.write_c_mangled_container_path_intern(w2, Self::path_to_generic_args(&$p_arg.path),
2561                                                                         generics, &subtype, is_ref, is_mut, ptr_for_ref, true);
2562                                                         }
2563                                                 } else {
2564                                                         let id = subtype.rsplitn(2, ':').next().unwrap(); // Get the "Base" name of the resolved type
2565                                                         write!(w, "{}", id).unwrap();
2566                                                         write!(mangled_type, "{}", id).unwrap();
2567                                                         if let Some(w2) = $extra_write as Option<&mut Vec<u8>> {
2568                                                                 write!(w2, "{}", id).unwrap();
2569                                                         }
2570                                                 }
2571                                         } else { return false; }
2572                                 }
2573                         }
2574                         match generics.resolve_type(arg) {
2575                                 syn::Type::Tuple(tuple) => {
2576                                         if tuple.elems.len() == 0 {
2577                                                 write!(w, "None").unwrap();
2578                                                 write!(mangled_type, "None").unwrap();
2579                                         } else {
2580                                                 let mut mangled_tuple_type: Vec<u8> = Vec::new();
2581
2582                                                 // Figure out what the mangled type should look like. To disambiguate
2583                                                 // ((A, B), C) and (A, B, C) we prefix the generic args with a _ and suffix
2584                                                 // them with a Z. Ideally we wouldn't use Z, but not many special chars are
2585                                                 // available for use in type names.
2586                                                 write!(w, "C{}Tuple_", tuple.elems.len()).unwrap();
2587                                                 write!(mangled_type, "C{}Tuple_", tuple.elems.len()).unwrap();
2588                                                 write!(mangled_tuple_type, "C{}Tuple_", tuple.elems.len()).unwrap();
2589                                                 for elem in tuple.elems.iter() {
2590                                                         if let syn::Type::Path(p) = elem {
2591                                                                 write_path!(p, Some(&mut mangled_tuple_type));
2592                                                         } else if let syn::Type::Reference(refelem) = elem {
2593                                                                 if let syn::Type::Path(p) = &*refelem.elem {
2594                                                                         write_path!(p, Some(&mut mangled_tuple_type));
2595                                                                 } else { return false; }
2596                                                         } else { return false; }
2597                                                 }
2598                                                 write!(w, "Z").unwrap();
2599                                                 write!(mangled_type, "Z").unwrap();
2600                                                 write!(mangled_tuple_type, "Z").unwrap();
2601                                                 if !self.check_create_container(String::from_utf8(mangled_tuple_type).unwrap(),
2602                                                                 &format!("{}Tuple", tuple.elems.len()), tuple.elems.iter().collect(), generics, is_ref) {
2603                                                         return false;
2604                                                 }
2605                                         }
2606                                 },
2607                                 syn::Type::Path(p_arg) => {
2608                                         write_path!(p_arg, None);
2609                                 },
2610                                 syn::Type::Reference(refty) => {
2611                                         if let syn::Type::Path(p_arg) = &*refty.elem {
2612                                                 write_path!(p_arg, None);
2613                                         } else if let syn::Type::Slice(_) = &*refty.elem {
2614                                                 // write_c_type will actually do exactly what we want here, we just need to
2615                                                 // make it a pointer so that its an option. Note that we cannot always convert
2616                                                 // the Vec-as-slice (ie non-ref types) containers, so sometimes need to be able
2617                                                 // to edit it, hence we use *mut here instead of *const.
2618                                                 if args.len() != 1 { return false; }
2619                                                 write!(w, "*mut ").unwrap();
2620                                                 self.write_c_type(w, arg, None, true);
2621                                         } else { return false; }
2622                                 },
2623                                 syn::Type::Array(a) => {
2624                                         if let syn::Type::Path(p_arg) = &*a.elem {
2625                                                 let resolved = self.resolve_path(&p_arg.path, generics);
2626                                                 if !self.is_primitive(&resolved) { return false; }
2627                                                 if let syn::Expr::Lit(syn::ExprLit { lit: syn::Lit::Int(len), .. }) = &a.len {
2628                                                         if self.c_type_from_path(&format!("[{}; {}]", resolved, len.base10_digits()), is_ref, ptr_for_ref).is_none() { return false; }
2629                                                         if in_type || args.len() != 1 {
2630                                                                 write!(w, "_{}{}", resolved, len.base10_digits()).unwrap();
2631                                                                 write!(mangled_type, "_{}{}", resolved, len.base10_digits()).unwrap();
2632                                                         } else {
2633                                                                 let arrty = format!("[{}; {}]", resolved, len.base10_digits());
2634                                                                 let realty = self.c_type_from_path(&arrty, is_ref, ptr_for_ref).unwrap_or(&arrty);
2635                                                                 write!(w, "{}", realty).unwrap();
2636                                                                 write!(mangled_type, "{}", realty).unwrap();
2637                                                         }
2638                                                 } else { return false; }
2639                                         } else { return false; }
2640                                 },
2641                                 _ => { return false; },
2642                         }
2643                 }
2644                 if self.is_transparent_container(ident, is_ref, args.iter().map(|a| *a), generics) { return true; }
2645                 // Push the "end of type" Z
2646                 write!(w, "Z").unwrap();
2647                 write!(mangled_type, "Z").unwrap();
2648
2649                 // Make sure the type is actually defined:
2650                 self.check_create_container(String::from_utf8(mangled_type).unwrap(), ident, args, generics, is_ref)
2651         }
2652         fn write_c_mangled_container_path<W: std::io::Write>(&self, w: &mut W, args: Vec<&syn::Type>, generics: Option<&GenericTypes>, ident: &str, is_ref: bool, is_mut: bool, ptr_for_ref: bool) -> bool {
2653                 if !self.is_transparent_container(ident, is_ref, args.iter().map(|a| *a), generics) {
2654                         write!(w, "{}::", Self::generated_container_path()).unwrap();
2655                 }
2656                 self.write_c_mangled_container_path_intern(w, args, generics, ident, is_ref, is_mut, ptr_for_ref, false)
2657         }
2658         pub fn get_c_mangled_container_type(&self, args: Vec<&syn::Type>, generics: Option<&GenericTypes>, template_name: &str) -> Option<String> {
2659                 let mut out = Vec::new();
2660                 if !self.write_c_mangled_container_path(&mut out, args, generics, template_name, false, false, false) {
2661                         return None;
2662                 }
2663                 Some(String::from_utf8(out).unwrap())
2664         }
2665
2666         // **********************************
2667         // *** C Type Equivalent Printing ***
2668         // **********************************
2669
2670         fn write_c_path_intern<W: std::io::Write>(&self, w: &mut W, path: &syn::Path, generics: Option<&GenericTypes>, is_ref: bool, is_mut: bool, ptr_for_ref: bool, with_ref_lifetime: bool) -> bool {
2671                 let full_path = match self.maybe_resolve_path(&path, generics) {
2672                         Some(path) => path, None => return false };
2673                 if let Some(c_type) = self.c_type_from_path(&full_path, is_ref, ptr_for_ref) {
2674                         write!(w, "{}", c_type).unwrap();
2675                         true
2676                 } else if self.crate_types.traits.get(&full_path).is_some() {
2677                         if is_ref && ptr_for_ref {
2678                                 write!(w, "*{} crate::{}", if is_mut { "mut" } else { "const" }, full_path).unwrap();
2679                         } else if is_ref {
2680                                 if with_ref_lifetime { unimplemented!(); }
2681                                 write!(w, "&{}crate::{}", if is_mut { "mut " } else { "" }, full_path).unwrap();
2682                         } else {
2683                                 write!(w, "crate::{}", full_path).unwrap();
2684                         }
2685                         true
2686                 } else if self.crate_types.opaques.get(&full_path).is_some() || self.crate_types.mirrored_enums.get(&full_path).is_some() {
2687                         if is_ref && ptr_for_ref {
2688                                 // ptr_for_ref implies we're returning the object, which we can't really do for
2689                                 // opaque or mirrored types without box'ing them, which is quite a waste, so return
2690                                 // the actual object itself (for opaque types we'll set the pointer to the actual
2691                                 // type and note that its a reference).
2692                                 write!(w, "crate::{}", full_path).unwrap();
2693                         } else if is_ref && with_ref_lifetime {
2694                                 assert!(!is_mut);
2695                                 // If we're concretizing something with a lifetime parameter, we have to pick a
2696                                 // lifetime, of which the only real available choice is `static`, obviously.
2697                                 write!(w, "&'static ").unwrap();
2698                                 self.write_rust_path(w, generics, path);
2699                         } else if is_ref {
2700                                 write!(w, "&{}crate::{}", if is_mut { "mut " } else { "" }, full_path).unwrap();
2701                         } else {
2702                                 write!(w, "crate::{}", full_path).unwrap();
2703                         }
2704                         true
2705                 } else {
2706                         false
2707                 }
2708         }
2709         fn write_c_type_intern<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, is_ref: bool, is_mut: bool, ptr_for_ref: bool, with_ref_lifetime: bool) -> bool {
2710                 match generics.resolve_type(t) {
2711                         syn::Type::Path(p) => {
2712                                 if p.qself.is_some() {
2713                                         return false;
2714                                 }
2715                                 if let Some(full_path) = self.maybe_resolve_path(&p.path, generics) {
2716                                         if self.is_known_container(&full_path, is_ref) || self.is_path_transparent_container(&p.path, generics, is_ref) {
2717                                                 return self.write_c_mangled_container_path(w, Self::path_to_generic_args(&p.path), generics, &full_path, is_ref, is_mut, ptr_for_ref);
2718                                         }
2719                                         if let Some(aliased_type) = self.crate_types.type_aliases.get(&full_path).cloned() {
2720                                                 return self.write_c_type_intern(w, &aliased_type, None, is_ref, is_mut, ptr_for_ref, with_ref_lifetime);
2721                                         }
2722                                 }
2723                                 self.write_c_path_intern(w, &p.path, generics, is_ref, is_mut, ptr_for_ref, with_ref_lifetime)
2724                         },
2725                         syn::Type::Reference(r) => {
2726                                 self.write_c_type_intern(w, &*r.elem, generics, true, r.mutability.is_some(), ptr_for_ref, with_ref_lifetime)
2727                         },
2728                         syn::Type::Array(a) => {
2729                                 if is_ref && is_mut {
2730                                         write!(w, "*mut [").unwrap();
2731                                         if !self.write_c_type_intern(w, &a.elem, generics, false, false, ptr_for_ref, with_ref_lifetime) { return false; }
2732                                 } else if is_ref {
2733                                         write!(w, "*const [").unwrap();
2734                                         if !self.write_c_type_intern(w, &a.elem, generics, false, false, ptr_for_ref, with_ref_lifetime) { return false; }
2735                                 } else {
2736                                         let mut typecheck = Vec::new();
2737                                         if !self.write_c_type_intern(&mut typecheck, &a.elem, generics, false, false, ptr_for_ref, with_ref_lifetime) { return false; }
2738                                         if typecheck[..] != ['u' as u8, '8' as u8] { return false; }
2739                                 }
2740                                 if let syn::Expr::Lit(l) = &a.len {
2741                                         if let syn::Lit::Int(i) = &l.lit {
2742                                                 if !is_ref {
2743                                                         if let Some(ty) = self.c_type_from_path(&format!("[u8; {}]", i.base10_digits()), false, ptr_for_ref) {
2744                                                                 write!(w, "{}", ty).unwrap();
2745                                                                 true
2746                                                         } else { false }
2747                                                 } else {
2748                                                         write!(w, "; {}]", i).unwrap();
2749                                                         true
2750                                                 }
2751                                         } else { false }
2752                                 } else { false }
2753                         }
2754                         syn::Type::Slice(s) => {
2755                                 if !is_ref || is_mut { return false; }
2756                                 if let syn::Type::Path(p) = &*s.elem {
2757                                         let resolved = self.resolve_path(&p.path, generics);
2758                                         if self.is_primitive(&resolved) {
2759                                                 write!(w, "{}::{}slice", Self::container_templ_path(), resolved).unwrap();
2760                                                 true
2761                                         } else {
2762                                                 let mut inner_c_ty = Vec::new();
2763                                                 assert!(self.write_c_path_intern(&mut inner_c_ty, &p.path, generics, true, false, ptr_for_ref, with_ref_lifetime));
2764                                                 if self.is_clonable(&String::from_utf8(inner_c_ty).unwrap()) {
2765                                                         if let Some(id) = p.path.get_ident() {
2766                                                                 let mangled_container = format!("CVec_{}Z", id);
2767                                                                 write!(w, "{}::{}", Self::generated_container_path(), mangled_container).unwrap();
2768                                                                 self.check_create_container(mangled_container, "Vec", vec![&*s.elem], generics, false)
2769                                                         } else { false }
2770                                                 } else { false }
2771                                         }
2772                                 } else if let syn::Type::Reference(r) = &*s.elem {
2773                                         if let syn::Type::Path(p) = &*r.elem {
2774                                                 // Slices with "real types" inside are mapped as the equivalent non-ref Vec
2775                                                 let resolved = self.resolve_path(&p.path, generics);
2776                                                 let mangled_container = if let Some((ident, _)) = self.crate_types.opaques.get(&resolved) {
2777                                                         format!("CVec_{}Z", ident)
2778                                                 } else if let Some(en) = self.crate_types.mirrored_enums.get(&resolved) {
2779                                                         format!("CVec_{}Z", en.ident)
2780                                                 } else if let Some(id) = p.path.get_ident() {
2781                                                         format!("CVec_{}Z", id)
2782                                                 } else { return false; };
2783                                                 write!(w, "{}::{}", Self::generated_container_path(), mangled_container).unwrap();
2784                                                 self.check_create_container(mangled_container, "Vec", vec![&*r.elem], generics, false)
2785                                         } else if let syn::Type::Slice(sl2) = &*r.elem {
2786                                                 if let syn::Type::Reference(r2) = &*sl2.elem {
2787                                                         if let syn::Type::Path(p) = &*r2.elem {
2788                                                                 // Slices with slices with opaque types (with is_owned flags) are mapped as non-ref Vecs
2789                                                                 let resolved = self.resolve_path(&p.path, generics);
2790                                                                 let mangled_container = if let Some((ident, _)) = self.crate_types.opaques.get(&resolved) {
2791                                                                         format!("CVec_CVec_{}ZZ", ident)
2792                                                                 } else { return false; };
2793                                                                 write!(w, "{}::{}", Self::generated_container_path(), mangled_container).unwrap();
2794                                                                 let inner = &r2.elem;
2795                                                                 let vec_ty: syn::Type = syn::parse_quote!(Vec<#inner>);
2796                                                                 self.check_create_container(mangled_container, "Vec", vec![&vec_ty], generics, false)
2797                                                         } else { false }
2798                                                 } else { false }
2799                                         } else { false }
2800                                 } else if let syn::Type::Tuple(_) = &*s.elem {
2801                                         let mut args = syn::punctuated::Punctuated::<_, syn::token::Comma>::new();
2802                                         args.push(syn::GenericArgument::Type((*s.elem).clone()));
2803                                         let mut segments = syn::punctuated::Punctuated::new();
2804                                         segments.push(parse_quote!(Vec<#args>));
2805                                         self.write_c_type_intern(w, &syn::Type::Path(syn::TypePath { qself: None, path: syn::Path { leading_colon: None, segments } }), generics, false, is_mut, ptr_for_ref, with_ref_lifetime)
2806                                 } else { false }
2807                         },
2808                         syn::Type::Tuple(t) => {
2809                                 if t.elems.len() == 0 {
2810                                         true
2811                                 } else {
2812                                         self.write_c_mangled_container_path(w, t.elems.iter().collect(), generics,
2813                                                 &format!("{}Tuple", t.elems.len()), is_ref, is_mut, ptr_for_ref)
2814                                 }
2815                         },
2816                         _ => false,
2817                 }
2818         }
2819         pub fn write_c_type<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) {
2820                 assert!(self.write_c_type_intern(w, t, generics, false, false, ptr_for_ref, false));
2821         }
2822         pub fn write_c_type_in_generic_param<W: std::io::Write>(&self, w: &mut W, t: &syn::Type, generics: Option<&GenericTypes>, ptr_for_ref: bool) {
2823                 assert!(self.write_c_type_intern(w, t, generics, false, false, ptr_for_ref, true));
2824         }
2825         pub fn understood_c_path(&self, p: &syn::Path) -> bool {
2826                 if p.leading_colon.is_some() { return false; }
2827                 self.write_c_path_intern(&mut std::io::sink(), p, None, false, false, false, false)
2828         }
2829         pub fn understood_c_type(&self, t: &syn::Type, generics: Option<&GenericTypes>) -> bool {
2830                 self.write_c_type_intern(&mut std::io::sink(), t, generics, false, false, false, false)
2831         }
2832 }