08aa12571985a985f896929e2034a248ff77ca1a
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 //! A socket handling library for those running in Tokio environments who wish to use
2 //! rust-lightning with native TcpStreams.
3 //!
4 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
5 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
6 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
7 //!
8 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
9 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
10 //!
11 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
12 //! their individual docs for more. All three take a
13 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
14 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
15 //! The call site should, thus, look something like this:
16 //! ```
17 //! use tokio::sync::mpsc;
18 //! use tokio::net::TcpStream;
19 //! use secp256k1::key::PublicKey;
20 //! use lightning::util::events::EventsProvider;
21 //! use std::net::SocketAddr;
22 //! use std::sync::Arc;
23 //!
24 //! // Define concrete types for our high-level objects:
25 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
26 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
27 //! type ChannelMonitor = lightning::ln::channelmonitor::SimpleManyChannelMonitor<lightning::chain::transaction::OutPoint, lightning::chain::keysinterface::InMemoryChannelKeys, Arc<TxBroadcaster>, Arc<FeeEstimator>>;
28 //! type ChannelManager = lightning::ln::channelmanager::SimpleArcChannelManager<ChannelMonitor, TxBroadcaster, FeeEstimator>;
29 //! type PeerManager = lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChannelMonitor, TxBroadcaster, FeeEstimator>;
30 //!
31 //! // Connect to node with pubkey their_node_id at addr:
32 //! async fn connect_to_node(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
33 //!     let (sender, mut receiver) = mpsc::channel(2);
34 //!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
35 //!     loop {
36 //!         receiver.recv().await;
37 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
38 //!             // Handle the event!
39 //!         }
40 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
41 //!             // Handle the event!
42 //!         }
43 //!     }
44 //! }
45 //!
46 //! // Begin reading from a newly accepted socket and talk to the peer:
47 //! async fn accept_socket(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
48 //!     let (sender, mut receiver) = mpsc::channel(2);
49 //!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
50 //!     loop {
51 //!         receiver.recv().await;
52 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
53 //!             // Handle the event!
54 //!         }
55 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
56 //!             // Handle the event!
57 //!         }
58 //!     }
59 //! }
60 //! ```
61
62 use secp256k1::key::PublicKey;
63
64 use tokio::net::TcpStream;
65 use tokio::{io, time};
66 use tokio::sync::mpsc;
67 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
68
69 use lightning::ln::peer_handler;
70 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
71 use lightning::ln::msgs::ChannelMessageHandler;
72
73 use std::task;
74 use std::net::SocketAddr;
75 use std::sync::{Arc, Mutex, MutexGuard};
76 use std::sync::atomic::{AtomicU64, Ordering};
77 use std::time::Duration;
78 use std::hash::Hash;
79
80 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
81
82 /// Connection contains all our internal state for a connection - we hold a reference to the
83 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
84 /// read future (which is returned by schedule_read).
85 struct Connection {
86         writer: Option<io::WriteHalf<TcpStream>>,
87         event_notify: mpsc::Sender<()>,
88         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
89         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
90         // between being woken up with write-ready and calling PeerManager::write_buffer_spce_avail.
91         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
92         // the schedule_read stack.
93         //
94         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
95         // runtime with functions templated by the Arc<PeerManager> type, calling
96         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
97         // more unsafe voodo than I really feel like writing.
98         write_avail: mpsc::Sender<()>,
99         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
100         // so by setting read_paused. At that point, the read task will stop reading bytes from the
101         // socket. To wake it up (without otherwise changing its state, we can push a value into this
102         // Sender.
103         read_waker: mpsc::Sender<()>,
104         read_paused: bool,
105         rl_requested_disconnect: bool,
106         id: u64,
107 }
108 impl Connection {
109         fn event_trigger(us: &mut MutexGuard<Self>) {
110                 match us.event_notify.try_send(()) {
111                         Ok(_) => {},
112                         Err(mpsc::error::TrySendError::Full(_)) => {
113                                 // Ignore full errors as we just need the user to poll after this point, so if they
114                                 // haven't received the last send yet, it doesn't matter.
115                         },
116                         _ => panic!()
117                 }
118         }
119         async fn schedule_read<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) {
120                 let peer_manager_ref = peer_manager.clone();
121                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
122                 let mut buf = [0; 8192];
123
124                 let mut our_descriptor = SocketDescriptor::new(us.clone());
125                 // An enum describing why we did/are disconnecting:
126                 enum Disconnect {
127                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
128                         // SocketDescriptor::disconnect_socket.
129                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
130                         // already knows we're disconnected.
131                         CloseConnection,
132                         // The connection was disconnected for some other reason, ie because the socket was
133                         // closed.
134                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
135                         // Rust-Lightning that the socket is gone.
136                         PeerDisconnected
137                 };
138                 let disconnect_type = loop {
139                         macro_rules! shutdown_socket {
140                                 ($err: expr, $need_disconnect: expr) => { {
141                                         println!("Disconnecting peer due to {}!", $err);
142                                         break $need_disconnect;
143                                 } }
144                         }
145
146                         let read_paused = us.lock().unwrap().read_paused;
147                         tokio::select! {
148                                 v = write_avail_receiver.recv() => {
149                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
150                                         if us.lock().unwrap().rl_requested_disconnect {
151                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
152                                         }
153                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
154                                                 shutdown_socket!(e, Disconnect::CloseConnection);
155                                         }
156                                 },
157                                 _ = read_wake_receiver.recv() => {},
158                                 read = reader.read(&mut buf), if !read_paused => match read {
159                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
160                                         Ok(len) => {
161                                                 if us.lock().unwrap().rl_requested_disconnect {
162                                                         shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
163                                                 }
164                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
165                                                 match read_res {
166                                                         Ok(pause_read) => {
167                                                                 let mut us_lock = us.lock().unwrap();
168                                                                 if pause_read {
169                                                                         us_lock.read_paused = true;
170                                                                 }
171                                                                 Self::event_trigger(&mut us_lock);
172                                                         },
173                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
174                                                 }
175                                         },
176                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
177                                 },
178                         }
179                 };
180                 let writer_option = us.lock().unwrap().writer.take();
181                 if let Some(mut writer) = writer_option {
182                         // If the socket is already closed, shutdown() will fail, so just ignore it.
183                         let _ = writer.shutdown().await;
184                 }
185                 if let Disconnect::PeerDisconnected = disconnect_type {
186                         peer_manager_ref.socket_disconnected(&our_descriptor);
187                         Self::event_trigger(&mut us.lock().unwrap());
188                 }
189         }
190
191         fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
192                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
193                 // PeerManager, we will eventually get notified that there is room in the socket to write
194                 // new bytes, which will generate an event. That event will be popped off the queue before
195                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
196                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
197                 let (write_avail, write_receiver) = mpsc::channel(1);
198                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
199                 // we shove a value into the channel which comes after we've reset the read_paused bool to
200                 // false.
201                 let (read_waker, read_receiver) = mpsc::channel(1);
202                 let (reader, writer) = io::split(stream);
203
204                 (reader, write_receiver, read_receiver,
205                 Arc::new(Mutex::new(Self {
206                         writer: Some(writer), event_notify, write_avail, read_waker,
207                         read_paused: false, rl_requested_disconnect: false,
208                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
209                 })))
210         }
211 }
212
213 /// Process incoming messages and feed outgoing messages on the provided socket generated by
214 /// accepting an incoming connection.
215 ///
216 /// The returned future will complete when the peer is disconnected and associated handling
217 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
218 /// not need to poll the provided future in order to make progress.
219 ///
220 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
221 pub fn setup_inbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) -> impl std::future::Future<Output=()> {
222         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
223         #[cfg(debug_assertions)]
224         let last_us = Arc::clone(&us);
225
226         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
227                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
228         } else {
229                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
230                 // requirements.
231                 None
232         };
233
234         async move {
235                 if let Some(handle) = handle_opt {
236                         if let Err(e) = handle.await {
237                                 assert!(e.is_cancelled());
238                         } else {
239                                 // This is certainly not guaranteed to always be true - the read loop may exit
240                                 // while there are still pending write wakers that need to be woken up after the
241                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
242                                 // keep too many wakers around, this makes sense. The race should be rare (we do
243                                 // some work after shutdown()) and an error would be a major memory leak.
244                                 #[cfg(debug_assertions)]
245                                 assert!(Arc::try_unwrap(last_us).is_ok());
246                         }
247                 }
248         }
249 }
250
251 /// Process incoming messages and feed outgoing messages on the provided socket generated by
252 /// making an outbound connection which is expected to be accepted by a peer with the given
253 /// public key. The relevant processing is set to run free (via tokio::spawn).
254 ///
255 /// The returned future will complete when the peer is disconnected and associated handling
256 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
257 /// not need to poll the provided future in order to make progress.
258 ///
259 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
260 pub fn setup_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) -> impl std::future::Future<Output=()> {
261         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
262         #[cfg(debug_assertions)]
263         let last_us = Arc::clone(&us);
264
265         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
266                 Some(tokio::spawn(async move {
267                         if SocketDescriptor::new(us.clone()).send_data(&initial_send, true) != initial_send.len() {
268                                 // We should essentially always have enough room in a TCP socket buffer to send the
269                                 // initial 10s of bytes, if not, just give up as hopeless.
270                                 eprintln!("Failed to write first full message to socket!");
271                                 peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
272                         } else {
273                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
274                         }
275                 }))
276         } else {
277                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
278                 // requirements.
279                 None
280         };
281
282         async move {
283                 if let Some(handle) = handle_opt {
284                         if let Err(e) = handle.await {
285                                 assert!(e.is_cancelled());
286                         } else {
287                                 // This is certainly not guaranteed to always be true - the read loop may exit
288                                 // while there are still pending write wakers that need to be woken up after the
289                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
290                                 // keep too many wakers around, this makes sense. The race should be rare (we do
291                                 // some work after shutdown()) and an error would be a major memory leak.
292                                 #[cfg(debug_assertions)]
293                                 assert!(Arc::try_unwrap(last_us).is_ok());
294                         }
295                 }
296         }
297 }
298
299 /// Process incoming messages and feed outgoing messages on a new connection made to the given
300 /// socket address which is expected to be accepted by a peer with the given public key (by
301 /// scheduling futures with tokio::spawn).
302 ///
303 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
304 ///
305 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
306 /// connection setup. That future then returns a future which will complete when the peer is
307 /// disconnected and associated handling futures are freed, though, because all processing in said
308 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
309 /// make progress.
310 ///
311 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
312 pub async fn connect_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> {
313         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), TcpStream::connect(&addr)).await {
314                 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
315         } else { None }
316 }
317
318 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
319         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
320
321 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
322         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
323 }
324 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
325 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
326 // sending thread may have already gone away due to a socket close, in which case there's nothing
327 // to wake up anyway.
328 fn wake_socket_waker(orig_ptr: *const ()) {
329         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
330         let _ = sender.try_send(());
331         drop_socket_waker(orig_ptr);
332 }
333 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
334         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
335         let mut sender = unsafe { (*sender_ptr).clone() };
336         let _ = sender.try_send(());
337 }
338 fn drop_socket_waker(orig_ptr: *const ()) {
339         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
340         // _orig_box is now dropped
341 }
342 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
343         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
344         let new_ptr = new_box as *const mpsc::Sender<()>;
345         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
346 }
347
348 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
349 /// type in the template of PeerHandler.
350 pub struct SocketDescriptor {
351         conn: Arc<Mutex<Connection>>,
352         id: u64,
353 }
354 impl SocketDescriptor {
355         fn new(conn: Arc<Mutex<Connection>>) -> Self {
356                 let id = conn.lock().unwrap().id;
357                 Self { conn, id }
358         }
359 }
360 impl peer_handler::SocketDescriptor for SocketDescriptor {
361         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
362                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
363                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
364                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
365                 // processing future which will call write_buffer_space_avail and we'll end up back here.
366                 let mut us = self.conn.lock().unwrap();
367                 if us.writer.is_none() {
368                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
369                         return 0;
370                 }
371
372                 if resume_read && us.read_paused {
373                         // The schedule_read future may go to lock up but end up getting woken up by there
374                         // being more room in the write buffer, dropping the other end of this Sender
375                         // before we get here, so we ignore any failures to wake it up.
376                         us.read_paused = false;
377                         let _ = us.read_waker.try_send(());
378                 }
379                 if data.is_empty() { return 0; }
380                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
381                 let mut ctx = task::Context::from_waker(&waker);
382                 let mut written_len = 0;
383                 loop {
384                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
385                                 task::Poll::Ready(Ok(res)) => {
386                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
387                                         // know how to handle it if it does (cause it should be a Poll::Pending
388                                         // instead):
389                                         assert_ne!(res, 0);
390                                         written_len += res;
391                                         if written_len == data.len() { return written_len; }
392                                 },
393                                 task::Poll::Ready(Err(e)) => {
394                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
395                                         // know how to handle it if it does (cause it should be a Poll::Pending
396                                         // instead):
397                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
398                                         // Probably we've already been closed, just return what we have and let the
399                                         // read thread handle closing logic.
400                                         return written_len;
401                                 },
402                                 task::Poll::Pending => {
403                                         // We're queued up for a write event now, but we need to make sure we also
404                                         // pause read given we're now waiting on the remote end to ACK (and in
405                                         // accordance with the send_data() docs).
406                                         us.read_paused = true;
407                                         return written_len;
408                                 },
409                         }
410                 }
411         }
412
413         fn disconnect_socket(&mut self) {
414                 let mut us = self.conn.lock().unwrap();
415                 us.rl_requested_disconnect = true;
416                 us.read_paused = true;
417                 // Wake up the sending thread, assuming it is still alive
418                 let _ = us.write_avail.try_send(());
419                 // TODO: There's a race where we don't meet the requirements of disconnect_socket if the
420                 // read task is about to call a PeerManager function (eg read_event or write_event).
421                 // Ideally we need to release the us lock and block until we have confirmation from the
422                 // read task that it has broken out of its main loop.
423         }
424 }
425 impl Clone for SocketDescriptor {
426         fn clone(&self) -> Self {
427                 Self {
428                         conn: Arc::clone(&self.conn),
429                         id: self.id,
430                 }
431         }
432 }
433 impl Eq for SocketDescriptor {}
434 impl PartialEq for SocketDescriptor {
435         fn eq(&self, o: &Self) -> bool {
436                 self.id == o.id
437         }
438 }
439 impl Hash for SocketDescriptor {
440         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
441                 self.id.hash(state);
442         }
443 }
444
445 #[cfg(test)]
446 mod tests {
447         use lightning::ln::features::*;
448         use lightning::ln::msgs::*;
449         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
450         use lightning::util::events::*;
451         use secp256k1::{Secp256k1, SecretKey, PublicKey};
452
453         use tokio::sync::mpsc;
454
455         use std::mem;
456         use std::sync::{Arc, Mutex};
457         use std::time::Duration;
458
459         pub struct TestLogger();
460         impl lightning::util::logger::Logger for TestLogger {
461                 fn log(&self, record: &lightning::util::logger::Record) {
462                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
463                 }
464         }
465
466         struct MsgHandler{
467                 expected_pubkey: PublicKey,
468                 pubkey_connected: mpsc::Sender<()>,
469                 pubkey_disconnected: mpsc::Sender<()>,
470                 msg_events: Mutex<Vec<MessageSendEvent>>,
471         }
472         impl RoutingMessageHandler for MsgHandler {
473                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
474                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
475                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
476                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
477                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, ChannelUpdate, ChannelUpdate)> { Vec::new() }
478                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
479                 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { false }
480         }
481         impl ChannelMessageHandler for MsgHandler {
482                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
483                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
484                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
485                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
486                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
487                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
488                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
489                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
490                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
491                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
492                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
493                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
494                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
495                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
496                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
497                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
498                         if *their_node_id == self.expected_pubkey {
499                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
500                         }
501                 }
502                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
503                         if *their_node_id == self.expected_pubkey {
504                                 self.pubkey_connected.clone().try_send(()).unwrap();
505                         }
506                 }
507                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
508                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
509         }
510         impl MessageSendEventsProvider for MsgHandler {
511                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
512                         let mut ret = Vec::new();
513                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
514                         ret
515                 }
516         }
517
518         #[tokio::test(threaded_scheduler)]
519         async fn basic_connection_test() {
520                 let secp_ctx = Secp256k1::new();
521                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
522                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
523                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
524                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
525
526                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
527                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
528                 let a_handler = Arc::new(MsgHandler {
529                         expected_pubkey: b_pub,
530                         pubkey_connected: a_connected_sender,
531                         pubkey_disconnected: a_disconnected_sender,
532                         msg_events: Mutex::new(Vec::new()),
533                 });
534                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
535                         chan_handler: Arc::clone(&a_handler),
536                         route_handler: Arc::clone(&a_handler) as Arc<dyn RoutingMessageHandler>,
537                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
538
539                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
540                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
541                 let b_handler = Arc::new(MsgHandler {
542                         expected_pubkey: a_pub,
543                         pubkey_connected: b_connected_sender,
544                         pubkey_disconnected: b_disconnected_sender,
545                         msg_events: Mutex::new(Vec::new()),
546                 });
547                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
548                         chan_handler: Arc::clone(&b_handler),
549                         route_handler: Arc::clone(&b_handler) as Arc<dyn RoutingMessageHandler>,
550                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
551
552                 // We bind on localhost, hoping the environment is properly configured with a local
553                 // address. This may not always be the case in containers and the like, so if this test is
554                 // failing for you check that you have a loopback interface and it is configured with
555                 // 127.0.0.1.
556                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
557                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
558                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
559                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
560                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
561                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
562                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
563
564                 let (sender, _receiver) = mpsc::channel(2);
565                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, tokio::net::TcpStream::from_std(conn_a).unwrap());
566                 let fut_b = super::setup_inbound(b_manager, sender, tokio::net::TcpStream::from_std(conn_b).unwrap());
567
568                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
569                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
570
571                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
572                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
573                 });
574                 assert!(a_disconnected.try_recv().is_err());
575                 assert!(b_disconnected.try_recv().is_err());
576
577                 a_manager.process_events();
578                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
579                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
580
581                 fut_a.await;
582                 fut_b.await;
583         }
584 }