PeerManager Logger Arc --> Deref
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 //! A socket handling library for those running in Tokio environments who wish to use
2 //! rust-lightning with native TcpStreams.
3 //!
4 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
5 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
6 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
7 //!
8 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
9 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
10 //!
11 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
12 //! their individual docs for more. All three take a
13 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
14 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
15 //! The call site should, thus, look something like this:
16 //! ```
17 //! use tokio::sync::mpsc;
18 //! use tokio::net::TcpStream;
19 //! use bitcoin::secp256k1::key::PublicKey;
20 //! use lightning::util::events::EventsProvider;
21 //! use std::net::SocketAddr;
22 //! use std::sync::Arc;
23 //!
24 //! // Define concrete types for our high-level objects:
25 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
26 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
27 //! type Logger = dyn lightning::util::logger::Logger;
28 //! type ChainWatchInterface = dyn lightning::chain::chaininterface::ChainWatchInterface;
29 //! type ChannelMonitor = lightning::ln::channelmonitor::SimpleManyChannelMonitor<lightning::chain::transaction::OutPoint, lightning::chain::keysinterface::InMemoryChannelKeys, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<ChainWatchInterface>>;
30 //! type ChannelManager = lightning::ln::channelmanager::SimpleArcChannelManager<ChannelMonitor, TxBroadcaster, FeeEstimator, Logger>;
31 //! type PeerManager = lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChannelMonitor, TxBroadcaster, FeeEstimator, Logger>;
32 //!
33 //! // Connect to node with pubkey their_node_id at addr:
34 //! async fn connect_to_node(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
35 //!     let (sender, mut receiver) = mpsc::channel(2);
36 //!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
37 //!     loop {
38 //!         receiver.recv().await;
39 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
40 //!             // Handle the event!
41 //!         }
42 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
43 //!             // Handle the event!
44 //!         }
45 //!     }
46 //! }
47 //!
48 //! // Begin reading from a newly accepted socket and talk to the peer:
49 //! async fn accept_socket(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
50 //!     let (sender, mut receiver) = mpsc::channel(2);
51 //!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
52 //!     loop {
53 //!         receiver.recv().await;
54 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
55 //!             // Handle the event!
56 //!         }
57 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
58 //!             // Handle the event!
59 //!         }
60 //!     }
61 //! }
62 //! ```
63
64 use bitcoin::secp256k1::key::PublicKey;
65
66 use tokio::net::TcpStream;
67 use tokio::{io, time};
68 use tokio::sync::mpsc;
69 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
70
71 use lightning::ln::peer_handler;
72 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
73 use lightning::ln::msgs::ChannelMessageHandler;
74 use lightning::util::logger::Logger;
75
76 use std::{task, thread};
77 use std::net::SocketAddr;
78 use std::sync::{Arc, Mutex, MutexGuard};
79 use std::sync::atomic::{AtomicU64, Ordering};
80 use std::time::Duration;
81 use std::hash::Hash;
82
83 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
84
85 /// Connection contains all our internal state for a connection - we hold a reference to the
86 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
87 /// read future (which is returned by schedule_read).
88 struct Connection {
89         writer: Option<io::WriteHalf<TcpStream>>,
90         event_notify: mpsc::Sender<()>,
91         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
92         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
93         // between being woken up with write-ready and calling PeerManager::write_buffer_spce_avail.
94         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
95         // the schedule_read stack.
96         //
97         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
98         // runtime with functions templated by the Arc<PeerManager> type, calling
99         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
100         // more unsafe voodo than I really feel like writing.
101         write_avail: mpsc::Sender<()>,
102         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
103         // so by setting read_paused. At that point, the read task will stop reading bytes from the
104         // socket. To wake it up (without otherwise changing its state, we can push a value into this
105         // Sender.
106         read_waker: mpsc::Sender<()>,
107         // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
108         // are sure we won't call any more read/write PeerManager functions with the same connection.
109         // This is set to true if we're in such a condition (with disconnect checked before with the
110         // top-level mutex held) and false when we can return.
111         block_disconnect_socket: bool,
112         read_paused: bool,
113         rl_requested_disconnect: bool,
114         id: u64,
115 }
116 impl Connection {
117         fn event_trigger(us: &mut MutexGuard<Self>) {
118                 match us.event_notify.try_send(()) {
119                         Ok(_) => {},
120                         Err(mpsc::error::TrySendError::Full(_)) => {
121                                 // Ignore full errors as we just need the user to poll after this point, so if they
122                                 // haven't received the last send yet, it doesn't matter.
123                         },
124                         _ => panic!()
125                 }
126         }
127         async fn schedule_read<CMH: ChannelMessageHandler + 'static, L: Logger + 'static + ?Sized>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) {
128                 let peer_manager_ref = peer_manager.clone();
129                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
130                 let mut buf = [0; 8192];
131
132                 let mut our_descriptor = SocketDescriptor::new(us.clone());
133                 // An enum describing why we did/are disconnecting:
134                 enum Disconnect {
135                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
136                         // SocketDescriptor::disconnect_socket.
137                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
138                         // already knows we're disconnected.
139                         CloseConnection,
140                         // The connection was disconnected for some other reason, ie because the socket was
141                         // closed.
142                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
143                         // Rust-Lightning that the socket is gone.
144                         PeerDisconnected
145                 };
146                 let disconnect_type = loop {
147                         macro_rules! shutdown_socket {
148                                 ($err: expr, $need_disconnect: expr) => { {
149                                         println!("Disconnecting peer due to {}!", $err);
150                                         break $need_disconnect;
151                                 } }
152                         }
153
154                         macro_rules! prepare_read_write_call {
155                                 () => { {
156                                         let mut us_lock = us.lock().unwrap();
157                                         if us_lock.rl_requested_disconnect {
158                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
159                                         }
160                                         us_lock.block_disconnect_socket = true;
161                                 } }
162                         }
163
164                         let read_paused = us.lock().unwrap().read_paused;
165                         tokio::select! {
166                                 v = write_avail_receiver.recv() => {
167                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
168                                         prepare_read_write_call!();
169                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
170                                                 shutdown_socket!(e, Disconnect::CloseConnection);
171                                         }
172                                         us.lock().unwrap().block_disconnect_socket = false;
173                                 },
174                                 _ = read_wake_receiver.recv() => {},
175                                 read = reader.read(&mut buf), if !read_paused => match read {
176                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
177                                         Ok(len) => {
178                                                 prepare_read_write_call!();
179                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
180                                                 let mut us_lock = us.lock().unwrap();
181                                                 match read_res {
182                                                         Ok(pause_read) => {
183                                                                 if pause_read {
184                                                                         us_lock.read_paused = true;
185                                                                 }
186                                                                 Self::event_trigger(&mut us_lock);
187                                                         },
188                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
189                                                 }
190                                                 us_lock.block_disconnect_socket = false;
191                                         },
192                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
193                                 },
194                         }
195                 };
196                 let writer_option = us.lock().unwrap().writer.take();
197                 if let Some(mut writer) = writer_option {
198                         // If the socket is already closed, shutdown() will fail, so just ignore it.
199                         let _ = writer.shutdown().await;
200                 }
201                 if let Disconnect::PeerDisconnected = disconnect_type {
202                         peer_manager_ref.socket_disconnected(&our_descriptor);
203                         Self::event_trigger(&mut us.lock().unwrap());
204                 }
205         }
206
207         fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
208                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
209                 // PeerManager, we will eventually get notified that there is room in the socket to write
210                 // new bytes, which will generate an event. That event will be popped off the queue before
211                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
212                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
213                 let (write_avail, write_receiver) = mpsc::channel(1);
214                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
215                 // we shove a value into the channel which comes after we've reset the read_paused bool to
216                 // false.
217                 let (read_waker, read_receiver) = mpsc::channel(1);
218                 let (reader, writer) = io::split(stream);
219
220                 (reader, write_receiver, read_receiver,
221                 Arc::new(Mutex::new(Self {
222                         writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
223                         block_disconnect_socket: false, rl_requested_disconnect: false,
224                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
225                 })))
226         }
227 }
228
229 /// Process incoming messages and feed outgoing messages on the provided socket generated by
230 /// accepting an incoming connection.
231 ///
232 /// The returned future will complete when the peer is disconnected and associated handling
233 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
234 /// not need to poll the provided future in order to make progress.
235 ///
236 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
237 pub fn setup_inbound<CMH: ChannelMessageHandler + 'static, L: Logger + 'static + ?Sized>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) -> impl std::future::Future<Output=()> {
238         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
239         #[cfg(debug_assertions)]
240         let last_us = Arc::clone(&us);
241
242         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
243                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
244         } else {
245                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
246                 // requirements.
247                 None
248         };
249
250         async move {
251                 if let Some(handle) = handle_opt {
252                         if let Err(e) = handle.await {
253                                 assert!(e.is_cancelled());
254                         } else {
255                                 // This is certainly not guaranteed to always be true - the read loop may exit
256                                 // while there are still pending write wakers that need to be woken up after the
257                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
258                                 // keep too many wakers around, this makes sense. The race should be rare (we do
259                                 // some work after shutdown()) and an error would be a major memory leak.
260                                 #[cfg(debug_assertions)]
261                                 assert!(Arc::try_unwrap(last_us).is_ok());
262                         }
263                 }
264         }
265 }
266
267 /// Process incoming messages and feed outgoing messages on the provided socket generated by
268 /// making an outbound connection which is expected to be accepted by a peer with the given
269 /// public key. The relevant processing is set to run free (via tokio::spawn).
270 ///
271 /// The returned future will complete when the peer is disconnected and associated handling
272 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
273 /// not need to poll the provided future in order to make progress.
274 ///
275 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
276 pub fn setup_outbound<CMH: ChannelMessageHandler + 'static, L: Logger + 'static + ?Sized>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) -> impl std::future::Future<Output=()> {
277         let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
278         #[cfg(debug_assertions)]
279         let last_us = Arc::clone(&us);
280
281         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
282                 Some(tokio::spawn(async move {
283                         // We should essentially always have enough room in a TCP socket buffer to send the
284                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
285                         // fail writes and wake us back up later to write. Thus, we handle a single
286                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
287                         // and use a relatively tight timeout.
288                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
289                                 loop {
290                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
291                                                 v if v == initial_send.len() => break Ok(()),
292                                                 0 => {
293                                                         write_receiver.recv().await;
294                                                         // In theory we could check for if we've been instructed to disconnect
295                                                         // the peer here, but its OK to just skip it - we'll check for it in
296                                                         // schedule_read prior to any relevant calls into RL.
297                                                 },
298                                                 _ => {
299                                                         eprintln!("Failed to write first full message to socket!");
300                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
301                                                         break Err(());
302                                                 }
303                                         }
304                                 }
305                         }).await {
306                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
307                         }
308                 }))
309         } else {
310                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
311                 // requirements.
312                 None
313         };
314
315         async move {
316                 if let Some(handle) = handle_opt {
317                         if let Err(e) = handle.await {
318                                 assert!(e.is_cancelled());
319                         } else {
320                                 // This is certainly not guaranteed to always be true - the read loop may exit
321                                 // while there are still pending write wakers that need to be woken up after the
322                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
323                                 // keep too many wakers around, this makes sense. The race should be rare (we do
324                                 // some work after shutdown()) and an error would be a major memory leak.
325                                 #[cfg(debug_assertions)]
326                                 assert!(Arc::try_unwrap(last_us).is_ok());
327                         }
328                 }
329         }
330 }
331
332 /// Process incoming messages and feed outgoing messages on a new connection made to the given
333 /// socket address which is expected to be accepted by a peer with the given public key (by
334 /// scheduling futures with tokio::spawn).
335 ///
336 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
337 ///
338 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
339 /// connection setup. That future then returns a future which will complete when the peer is
340 /// disconnected and associated handling futures are freed, though, because all processing in said
341 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
342 /// make progress.
343 ///
344 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
345 pub async fn connect_outbound<CMH: ChannelMessageHandler + 'static, L: Logger + 'static + ?Sized>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> {
346         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), TcpStream::connect(&addr)).await {
347                 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
348         } else { None }
349 }
350
351 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
352         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
353
354 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
355         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
356 }
357 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
358 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
359 // sending thread may have already gone away due to a socket close, in which case there's nothing
360 // to wake up anyway.
361 fn wake_socket_waker(orig_ptr: *const ()) {
362         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
363         let _ = sender.try_send(());
364         drop_socket_waker(orig_ptr);
365 }
366 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
367         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
368         let mut sender = unsafe { (*sender_ptr).clone() };
369         let _ = sender.try_send(());
370 }
371 fn drop_socket_waker(orig_ptr: *const ()) {
372         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
373         // _orig_box is now dropped
374 }
375 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
376         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
377         let new_ptr = new_box as *const mpsc::Sender<()>;
378         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
379 }
380
381 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
382 /// type in the template of PeerHandler.
383 pub struct SocketDescriptor {
384         conn: Arc<Mutex<Connection>>,
385         id: u64,
386 }
387 impl SocketDescriptor {
388         fn new(conn: Arc<Mutex<Connection>>) -> Self {
389                 let id = conn.lock().unwrap().id;
390                 Self { conn, id }
391         }
392 }
393 impl peer_handler::SocketDescriptor for SocketDescriptor {
394         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
395                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
396                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
397                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
398                 // processing future which will call write_buffer_space_avail and we'll end up back here.
399                 let mut us = self.conn.lock().unwrap();
400                 if us.writer.is_none() {
401                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
402                         return 0;
403                 }
404
405                 if resume_read && us.read_paused {
406                         // The schedule_read future may go to lock up but end up getting woken up by there
407                         // being more room in the write buffer, dropping the other end of this Sender
408                         // before we get here, so we ignore any failures to wake it up.
409                         us.read_paused = false;
410                         let _ = us.read_waker.try_send(());
411                 }
412                 if data.is_empty() { return 0; }
413                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
414                 let mut ctx = task::Context::from_waker(&waker);
415                 let mut written_len = 0;
416                 loop {
417                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
418                                 task::Poll::Ready(Ok(res)) => {
419                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
420                                         // know how to handle it if it does (cause it should be a Poll::Pending
421                                         // instead):
422                                         assert_ne!(res, 0);
423                                         written_len += res;
424                                         if written_len == data.len() { return written_len; }
425                                 },
426                                 task::Poll::Ready(Err(e)) => {
427                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
428                                         // know how to handle it if it does (cause it should be a Poll::Pending
429                                         // instead):
430                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
431                                         // Probably we've already been closed, just return what we have and let the
432                                         // read thread handle closing logic.
433                                         return written_len;
434                                 },
435                                 task::Poll::Pending => {
436                                         // We're queued up for a write event now, but we need to make sure we also
437                                         // pause read given we're now waiting on the remote end to ACK (and in
438                                         // accordance with the send_data() docs).
439                                         us.read_paused = true;
440                                         return written_len;
441                                 },
442                         }
443                 }
444         }
445
446         fn disconnect_socket(&mut self) {
447                 {
448                         let mut us = self.conn.lock().unwrap();
449                         us.rl_requested_disconnect = true;
450                         us.read_paused = true;
451                         // Wake up the sending thread, assuming it is still alive
452                         let _ = us.write_avail.try_send(());
453                         // Happy-path return:
454                         if !us.block_disconnect_socket { return; }
455                 }
456                 while self.conn.lock().unwrap().block_disconnect_socket {
457                         thread::yield_now();
458                 }
459         }
460 }
461 impl Clone for SocketDescriptor {
462         fn clone(&self) -> Self {
463                 Self {
464                         conn: Arc::clone(&self.conn),
465                         id: self.id,
466                 }
467         }
468 }
469 impl Eq for SocketDescriptor {}
470 impl PartialEq for SocketDescriptor {
471         fn eq(&self, o: &Self) -> bool {
472                 self.id == o.id
473         }
474 }
475 impl Hash for SocketDescriptor {
476         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
477                 self.id.hash(state);
478         }
479 }
480
481 #[cfg(test)]
482 mod tests {
483         use lightning::ln::features::*;
484         use lightning::ln::msgs::*;
485         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
486         use lightning::util::events::*;
487         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
488
489         use tokio::sync::mpsc;
490
491         use std::mem;
492         use std::sync::{Arc, Mutex};
493         use std::time::Duration;
494
495         pub struct TestLogger();
496         impl lightning::util::logger::Logger for TestLogger {
497                 fn log(&self, record: &lightning::util::logger::Record) {
498                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
499                 }
500         }
501
502         struct MsgHandler{
503                 expected_pubkey: PublicKey,
504                 pubkey_connected: mpsc::Sender<()>,
505                 pubkey_disconnected: mpsc::Sender<()>,
506                 msg_events: Mutex<Vec<MessageSendEvent>>,
507         }
508         impl RoutingMessageHandler for MsgHandler {
509                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
510                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
511                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
512                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
513                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
514                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
515                 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { false }
516         }
517         impl ChannelMessageHandler for MsgHandler {
518                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
519                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
520                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
521                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
522                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
523                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
524                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
525                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
526                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
527                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
528                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
529                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
530                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
531                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
532                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
533                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
534                         if *their_node_id == self.expected_pubkey {
535                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
536                         }
537                 }
538                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
539                         if *their_node_id == self.expected_pubkey {
540                                 self.pubkey_connected.clone().try_send(()).unwrap();
541                         }
542                 }
543                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
544                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
545         }
546         impl MessageSendEventsProvider for MsgHandler {
547                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
548                         let mut ret = Vec::new();
549                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
550                         ret
551                 }
552         }
553
554         async fn do_basic_connection_test() {
555                 let secp_ctx = Secp256k1::new();
556                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
557                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
558                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
559                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
560
561                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
562                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
563                 let a_handler = Arc::new(MsgHandler {
564                         expected_pubkey: b_pub,
565                         pubkey_connected: a_connected_sender,
566                         pubkey_disconnected: a_disconnected_sender,
567                         msg_events: Mutex::new(Vec::new()),
568                 });
569                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
570                         chan_handler: Arc::clone(&a_handler),
571                         route_handler: Arc::clone(&a_handler) as Arc<dyn RoutingMessageHandler>,
572                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
573
574                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
575                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
576                 let b_handler = Arc::new(MsgHandler {
577                         expected_pubkey: a_pub,
578                         pubkey_connected: b_connected_sender,
579                         pubkey_disconnected: b_disconnected_sender,
580                         msg_events: Mutex::new(Vec::new()),
581                 });
582                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
583                         chan_handler: Arc::clone(&b_handler),
584                         route_handler: Arc::clone(&b_handler) as Arc<dyn RoutingMessageHandler>,
585                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
586
587                 // We bind on localhost, hoping the environment is properly configured with a local
588                 // address. This may not always be the case in containers and the like, so if this test is
589                 // failing for you check that you have a loopback interface and it is configured with
590                 // 127.0.0.1.
591                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
592                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
593                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
594                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
595                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
596                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
597                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
598
599                 let (sender, _receiver) = mpsc::channel(2);
600                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, tokio::net::TcpStream::from_std(conn_a).unwrap());
601                 let fut_b = super::setup_inbound(b_manager, sender, tokio::net::TcpStream::from_std(conn_b).unwrap());
602
603                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
604                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
605
606                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
607                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
608                 });
609                 assert!(a_disconnected.try_recv().is_err());
610                 assert!(b_disconnected.try_recv().is_err());
611
612                 a_manager.process_events();
613                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
614                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
615
616                 fut_a.await;
617                 fut_b.await;
618         }
619
620         #[tokio::test(threaded_scheduler)]
621         async fn basic_threaded_connection_test() {
622                 do_basic_connection_test().await;
623         }
624         #[tokio::test]
625         async fn basic_unthreaded_connection_test() {
626                 do_basic_connection_test().await;
627         }
628 }