[net-tokio] Explicitly yield after processing messages from a peer
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
22 //!
23 //! # Example
24 //! ```
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::key::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
30 //!
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
36 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
37 //! type DataPersister = dyn lightning::chain::chainmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
38 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
39 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
40 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
41 //!
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //!     lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
45 //!     loop {
46 //!             let event_handler = |event: &Event| {
47 //!                     // Handle the event!
48 //!             };
49 //!             channel_manager.await_persistable_update();
50 //!             channel_manager.process_pending_events(&event_handler);
51 //!             chain_monitor.process_pending_events(&event_handler);
52 //!     }
53 //! }
54 //!
55 //! // Begin reading from a newly accepted socket and talk to the peer:
56 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
57 //!     lightning_net_tokio::setup_inbound(peer_manager, socket);
58 //!     loop {
59 //!             let event_handler = |event: &Event| {
60 //!                     // Handle the event!
61 //!             };
62 //!             channel_manager.await_persistable_update();
63 //!             channel_manager.process_pending_events(&event_handler);
64 //!             chain_monitor.process_pending_events(&event_handler);
65 //!     }
66 //! }
67 //! ```
68
69 #![deny(broken_intra_doc_links)]
70 #![deny(missing_docs)]
71
72 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
73
74 use bitcoin::secp256k1::key::PublicKey;
75
76 use tokio::net::TcpStream;
77 use tokio::{io, time};
78 use tokio::sync::mpsc;
79 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
80
81 use lightning::ln::peer_handler;
82 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
83 use lightning::ln::peer_handler::CustomMessageHandler;
84 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, NetAddress};
85 use lightning::util::logger::Logger;
86
87 use std::task;
88 use std::net::IpAddr;
89 use std::net::SocketAddr;
90 use std::net::TcpStream as StdTcpStream;
91 use std::sync::{Arc, Mutex};
92 use std::sync::atomic::{AtomicU64, Ordering};
93 use std::time::Duration;
94 use std::hash::Hash;
95
96 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
97
98 /// Connection contains all our internal state for a connection - we hold a reference to the
99 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
100 /// read future (which is returned by schedule_read).
101 struct Connection {
102         writer: Option<io::WriteHalf<TcpStream>>,
103         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
104         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
105         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
106         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
107         // the schedule_read stack.
108         //
109         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
110         // runtime with functions templated by the Arc<PeerManager> type, calling
111         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
112         // more unsafe voodo than I really feel like writing.
113         write_avail: mpsc::Sender<()>,
114         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
115         // so by setting read_paused. At that point, the read task will stop reading bytes from the
116         // socket. To wake it up (without otherwise changing its state, we can push a value into this
117         // Sender.
118         read_waker: mpsc::Sender<()>,
119         read_paused: bool,
120         rl_requested_disconnect: bool,
121         id: u64,
122 }
123 impl Connection {
124         async fn poll_event_process<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, mut event_receiver: mpsc::Receiver<()>) where
125                         CMH: ChannelMessageHandler + 'static + Send + Sync,
126                         RMH: RoutingMessageHandler + 'static + Send + Sync,
127                         L: Logger + 'static + ?Sized + Send + Sync,
128                         UMH: CustomMessageHandler + 'static + Send + Sync {
129                 loop {
130                         if event_receiver.recv().await.is_none() {
131                                 return;
132                         }
133                         peer_manager.process_events();
134                 }
135         }
136
137         async fn schedule_read<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
138                         CMH: ChannelMessageHandler + 'static + Send + Sync,
139                         RMH: RoutingMessageHandler + 'static + Send + Sync,
140                         L: Logger + 'static + ?Sized + Send + Sync,
141                         UMH: CustomMessageHandler + 'static + Send + Sync {
142                 // Create a waker to wake up poll_event_process, above
143                 let (event_waker, event_receiver) = mpsc::channel(1);
144                 tokio::spawn(Self::poll_event_process(Arc::clone(&peer_manager), event_receiver));
145
146                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
147                 let mut buf = [0; 8192];
148
149                 let mut our_descriptor = SocketDescriptor::new(us.clone());
150                 // An enum describing why we did/are disconnecting:
151                 enum Disconnect {
152                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
153                         // SocketDescriptor::disconnect_socket.
154                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
155                         // already knows we're disconnected.
156                         CloseConnection,
157                         // The connection was disconnected for some other reason, ie because the socket was
158                         // closed.
159                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
160                         // Rust-Lightning that the socket is gone.
161                         PeerDisconnected
162                 }
163                 let disconnect_type = loop {
164                         let read_paused = {
165                                 let us_lock = us.lock().unwrap();
166                                 if us_lock.rl_requested_disconnect {
167                                         break Disconnect::CloseConnection;
168                                 }
169                                 us_lock.read_paused
170                         };
171                         tokio::select! {
172                                 v = write_avail_receiver.recv() => {
173                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
174                                         if let Err(_) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
175                                                 break Disconnect::CloseConnection;
176                                         }
177                                 },
178                                 _ = read_wake_receiver.recv() => {},
179                                 read = reader.read(&mut buf), if !read_paused => match read {
180                                         Ok(0) => break Disconnect::PeerDisconnected,
181                                         Ok(len) => {
182                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
183                                                 let mut us_lock = us.lock().unwrap();
184                                                 match read_res {
185                                                         Ok(pause_read) => {
186                                                                 if pause_read {
187                                                                         us_lock.read_paused = true;
188                                                                 }
189                                                         },
190                                                         Err(_) => break Disconnect::CloseConnection,
191                                                 }
192                                         },
193                                         Err(_) => break Disconnect::PeerDisconnected,
194                                 },
195                         }
196                         let _ = event_waker.try_send(());
197
198                         // At this point we've processed a message or two, and reset the ping timer for this
199                         // peer, at least in the "are we still receiving messages" context, if we don't give up
200                         // our timeslice to another task we may just spin on this peer, starving other peers
201                         // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
202                         // here.
203                         tokio::task::yield_now().await;
204                 };
205                 let writer_option = us.lock().unwrap().writer.take();
206                 if let Some(mut writer) = writer_option {
207                         // If the socket is already closed, shutdown() will fail, so just ignore it.
208                         let _ = writer.shutdown().await;
209                 }
210                 if let Disconnect::PeerDisconnected = disconnect_type {
211                         peer_manager.socket_disconnected(&our_descriptor);
212                         peer_manager.process_events();
213                 }
214         }
215
216         fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
217                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
218                 // PeerManager, we will eventually get notified that there is room in the socket to write
219                 // new bytes, which will generate an event. That event will be popped off the queue before
220                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
221                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
222                 let (write_avail, write_receiver) = mpsc::channel(1);
223                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
224                 // we shove a value into the channel which comes after we've reset the read_paused bool to
225                 // false.
226                 let (read_waker, read_receiver) = mpsc::channel(1);
227                 stream.set_nonblocking(true).unwrap();
228                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
229
230                 (reader, write_receiver, read_receiver,
231                 Arc::new(Mutex::new(Self {
232                         writer: Some(writer), write_avail, read_waker, read_paused: false,
233                         rl_requested_disconnect: false,
234                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
235                 })))
236         }
237 }
238
239 /// Process incoming messages and feed outgoing messages on the provided socket generated by
240 /// accepting an incoming connection.
241 ///
242 /// The returned future will complete when the peer is disconnected and associated handling
243 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
244 /// not need to poll the provided future in order to make progress.
245 pub fn setup_inbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
246                 CMH: ChannelMessageHandler + 'static + Send + Sync,
247                 RMH: RoutingMessageHandler + 'static + Send + Sync,
248                 L: Logger + 'static + ?Sized + Send + Sync,
249                 UMH: CustomMessageHandler + 'static + Send + Sync {
250         let ip_addr = stream.peer_addr().unwrap();
251         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
252         #[cfg(debug_assertions)]
253         let last_us = Arc::clone(&us);
254
255         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone()), match ip_addr.ip() {
256                 IpAddr::V4(ip) => Some(NetAddress::IPv4 {
257                         addr: ip.octets(),
258                         port: ip_addr.port(),
259                 }),
260                 IpAddr::V6(ip) => Some(NetAddress::IPv6 {
261                         addr: ip.octets(),
262                         port: ip_addr.port(),
263                 }),
264         }) {
265                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
266         } else {
267                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
268                 // requirements.
269                 None
270         };
271
272         async move {
273                 if let Some(handle) = handle_opt {
274                         if let Err(e) = handle.await {
275                                 assert!(e.is_cancelled());
276                         } else {
277                                 // This is certainly not guaranteed to always be true - the read loop may exit
278                                 // while there are still pending write wakers that need to be woken up after the
279                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
280                                 // keep too many wakers around, this makes sense. The race should be rare (we do
281                                 // some work after shutdown()) and an error would be a major memory leak.
282                                 #[cfg(debug_assertions)]
283                                 assert!(Arc::try_unwrap(last_us).is_ok());
284                         }
285                 }
286         }
287 }
288
289 /// Process incoming messages and feed outgoing messages on the provided socket generated by
290 /// making an outbound connection which is expected to be accepted by a peer with the given
291 /// public key. The relevant processing is set to run free (via tokio::spawn).
292 ///
293 /// The returned future will complete when the peer is disconnected and associated handling
294 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
295 /// not need to poll the provided future in order to make progress.
296 pub fn setup_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
297                 CMH: ChannelMessageHandler + 'static + Send + Sync,
298                 RMH: RoutingMessageHandler + 'static + Send + Sync,
299                 L: Logger + 'static + ?Sized + Send + Sync,
300                 UMH: CustomMessageHandler + 'static + Send + Sync {
301         let ip_addr = stream.peer_addr().unwrap();
302         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
303         #[cfg(debug_assertions)]
304         let last_us = Arc::clone(&us);
305         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), match ip_addr.ip() {
306                 IpAddr::V4(ip) => Some(NetAddress::IPv4 {
307                         addr: ip.octets(),
308                         port: ip_addr.port(),
309                 }),
310                 IpAddr::V6(ip) => Some(NetAddress::IPv6 {
311                         addr: ip.octets(),
312                         port: ip_addr.port(),
313                 }),
314         }) {
315                 Some(tokio::spawn(async move {
316                         // We should essentially always have enough room in a TCP socket buffer to send the
317                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
318                         // fail writes and wake us back up later to write. Thus, we handle a single
319                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
320                         // and use a relatively tight timeout.
321                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
322                                 loop {
323                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
324                                                 v if v == initial_send.len() => break Ok(()),
325                                                 0 => {
326                                                         write_receiver.recv().await;
327                                                         // In theory we could check for if we've been instructed to disconnect
328                                                         // the peer here, but its OK to just skip it - we'll check for it in
329                                                         // schedule_read prior to any relevant calls into RL.
330                                                 },
331                                                 _ => {
332                                                         eprintln!("Failed to write first full message to socket!");
333                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
334                                                         break Err(());
335                                                 }
336                                         }
337                                 }
338                         }).await {
339                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
340                         }
341                 }))
342         } else {
343                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
344                 // requirements.
345                 None
346         };
347
348         async move {
349                 if let Some(handle) = handle_opt {
350                         if let Err(e) = handle.await {
351                                 assert!(e.is_cancelled());
352                         } else {
353                                 // This is certainly not guaranteed to always be true - the read loop may exit
354                                 // while there are still pending write wakers that need to be woken up after the
355                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
356                                 // keep too many wakers around, this makes sense. The race should be rare (we do
357                                 // some work after shutdown()) and an error would be a major memory leak.
358                                 #[cfg(debug_assertions)]
359                                 assert!(Arc::try_unwrap(last_us).is_ok());
360                         }
361                 }
362         }
363 }
364
365 /// Process incoming messages and feed outgoing messages on a new connection made to the given
366 /// socket address which is expected to be accepted by a peer with the given public key (by
367 /// scheduling futures with tokio::spawn).
368 ///
369 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
370 ///
371 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
372 /// connection setup. That future then returns a future which will complete when the peer is
373 /// disconnected and associated handling futures are freed, though, because all processing in said
374 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
375 /// make progress.
376 pub async fn connect_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
377                 CMH: ChannelMessageHandler + 'static + Send + Sync,
378                 RMH: RoutingMessageHandler + 'static + Send + Sync,
379                 L: Logger + 'static + ?Sized + Send + Sync,
380                 UMH: CustomMessageHandler + 'static + Send + Sync {
381         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
382                 Some(setup_outbound(peer_manager, their_node_id, stream))
383         } else { None }
384 }
385
386 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
387         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
388
389 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
390         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
391 }
392 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
393 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
394 // sending thread may have already gone away due to a socket close, in which case there's nothing
395 // to wake up anyway.
396 fn wake_socket_waker(orig_ptr: *const ()) {
397         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
398         let _ = sender.try_send(());
399         drop_socket_waker(orig_ptr);
400 }
401 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
402         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
403         let sender = unsafe { (*sender_ptr).clone() };
404         let _ = sender.try_send(());
405 }
406 fn drop_socket_waker(orig_ptr: *const ()) {
407         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
408         // _orig_box is now dropped
409 }
410 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
411         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
412         let new_ptr = new_box as *const mpsc::Sender<()>;
413         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
414 }
415
416 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
417 /// type in the template of PeerHandler.
418 pub struct SocketDescriptor {
419         conn: Arc<Mutex<Connection>>,
420         id: u64,
421 }
422 impl SocketDescriptor {
423         fn new(conn: Arc<Mutex<Connection>>) -> Self {
424                 let id = conn.lock().unwrap().id;
425                 Self { conn, id }
426         }
427 }
428 impl peer_handler::SocketDescriptor for SocketDescriptor {
429         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
430                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
431                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
432                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
433                 // processing future which will call write_buffer_space_avail and we'll end up back here.
434                 let mut us = self.conn.lock().unwrap();
435                 if us.writer.is_none() {
436                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
437                         return 0;
438                 }
439
440                 if resume_read && us.read_paused {
441                         // The schedule_read future may go to lock up but end up getting woken up by there
442                         // being more room in the write buffer, dropping the other end of this Sender
443                         // before we get here, so we ignore any failures to wake it up.
444                         us.read_paused = false;
445                         let _ = us.read_waker.try_send(());
446                 }
447                 if data.is_empty() { return 0; }
448                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
449                 let mut ctx = task::Context::from_waker(&waker);
450                 let mut written_len = 0;
451                 loop {
452                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
453                                 task::Poll::Ready(Ok(res)) => {
454                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
455                                         // know how to handle it if it does (cause it should be a Poll::Pending
456                                         // instead):
457                                         assert_ne!(res, 0);
458                                         written_len += res;
459                                         if written_len == data.len() { return written_len; }
460                                 },
461                                 task::Poll::Ready(Err(e)) => {
462                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
463                                         // know how to handle it if it does (cause it should be a Poll::Pending
464                                         // instead):
465                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
466                                         // Probably we've already been closed, just return what we have and let the
467                                         // read thread handle closing logic.
468                                         return written_len;
469                                 },
470                                 task::Poll::Pending => {
471                                         // We're queued up for a write event now, but we need to make sure we also
472                                         // pause read given we're now waiting on the remote end to ACK (and in
473                                         // accordance with the send_data() docs).
474                                         us.read_paused = true;
475                                         // Further, to avoid any current pending read causing a `read_event` call, wake
476                                         // up the read_waker and restart its loop.
477                                         let _ = us.read_waker.try_send(());
478                                         return written_len;
479                                 },
480                         }
481                 }
482         }
483
484         fn disconnect_socket(&mut self) {
485                 let mut us = self.conn.lock().unwrap();
486                 us.rl_requested_disconnect = true;
487                 // Wake up the sending thread, assuming it is still alive
488                 let _ = us.write_avail.try_send(());
489         }
490 }
491 impl Clone for SocketDescriptor {
492         fn clone(&self) -> Self {
493                 Self {
494                         conn: Arc::clone(&self.conn),
495                         id: self.id,
496                 }
497         }
498 }
499 impl Eq for SocketDescriptor {}
500 impl PartialEq for SocketDescriptor {
501         fn eq(&self, o: &Self) -> bool {
502                 self.id == o.id
503         }
504 }
505 impl Hash for SocketDescriptor {
506         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
507                 self.id.hash(state);
508         }
509 }
510
511 #[cfg(test)]
512 mod tests {
513         use lightning::ln::features::*;
514         use lightning::ln::msgs::*;
515         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
516         use lightning::util::events::*;
517         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
518
519         use tokio::sync::mpsc;
520
521         use std::mem;
522         use std::sync::atomic::{AtomicBool, Ordering};
523         use std::sync::{Arc, Mutex};
524         use std::time::Duration;
525
526         pub struct TestLogger();
527         impl lightning::util::logger::Logger for TestLogger {
528                 fn log(&self, record: &lightning::util::logger::Record) {
529                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
530                 }
531         }
532
533         struct MsgHandler{
534                 expected_pubkey: PublicKey,
535                 pubkey_connected: mpsc::Sender<()>,
536                 pubkey_disconnected: mpsc::Sender<()>,
537                 disconnected_flag: AtomicBool,
538                 msg_events: Mutex<Vec<MessageSendEvent>>,
539         }
540         impl RoutingMessageHandler for MsgHandler {
541                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
542                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
543                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
544                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
545                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
546                 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
547                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
548                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
549                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
550                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
551         }
552         impl ChannelMessageHandler for MsgHandler {
553                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
554                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
555                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
556                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
557                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
558                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
559                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
560                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
561                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
562                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
563                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
564                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
565                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
566                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
567                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
568                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
569                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
570                         if *their_node_id == self.expected_pubkey {
571                                 self.disconnected_flag.store(true, Ordering::SeqCst);
572                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
573                         }
574                 }
575                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
576                         if *their_node_id == self.expected_pubkey {
577                                 self.pubkey_connected.clone().try_send(()).unwrap();
578                         }
579                 }
580                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
581                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
582         }
583         impl MessageSendEventsProvider for MsgHandler {
584                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
585                         let mut ret = Vec::new();
586                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
587                         ret
588                 }
589         }
590
591         async fn do_basic_connection_test() {
592                 let secp_ctx = Secp256k1::new();
593                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
594                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
595                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
596                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
597
598                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
599                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
600                 let a_handler = Arc::new(MsgHandler {
601                         expected_pubkey: b_pub,
602                         pubkey_connected: a_connected_sender,
603                         pubkey_disconnected: a_disconnected_sender,
604                         disconnected_flag: AtomicBool::new(false),
605                         msg_events: Mutex::new(Vec::new()),
606                 });
607                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
608                         chan_handler: Arc::clone(&a_handler),
609                         route_handler: Arc::clone(&a_handler),
610                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
611
612                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
613                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
614                 let b_handler = Arc::new(MsgHandler {
615                         expected_pubkey: a_pub,
616                         pubkey_connected: b_connected_sender,
617                         pubkey_disconnected: b_disconnected_sender,
618                         disconnected_flag: AtomicBool::new(false),
619                         msg_events: Mutex::new(Vec::new()),
620                 });
621                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
622                         chan_handler: Arc::clone(&b_handler),
623                         route_handler: Arc::clone(&b_handler),
624                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
625
626                 // We bind on localhost, hoping the environment is properly configured with a local
627                 // address. This may not always be the case in containers and the like, so if this test is
628                 // failing for you check that you have a loopback interface and it is configured with
629                 // 127.0.0.1.
630                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
631                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
632                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
633                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
634                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
635                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
636                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
637
638                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
639                 let fut_b = super::setup_inbound(b_manager, conn_b);
640
641                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
642                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
643
644                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
645                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
646                 });
647                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
648                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
649
650                 a_manager.process_events();
651                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
652                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
653                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
654                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
655
656                 fut_a.await;
657                 fut_b.await;
658         }
659
660         #[tokio::test(flavor = "multi_thread")]
661         async fn basic_threaded_connection_test() {
662                 do_basic_connection_test().await;
663         }
664         #[tokio::test]
665         async fn basic_unthreaded_connection_test() {
666                 do_basic_connection_test().await;
667         }
668 }