5f5fece0d2ed34e447e2905f9f3bd6d3f42ce102
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
22 //!
23 //! # Example
24 //! ```
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::key::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
30 //!
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
36 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
37 //! type DataPersister = dyn lightning::chain::channelmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
38 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
39 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
40 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
41 //!
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //!     lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
45 //!     loop {
46 //!             channel_manager.await_persistable_update();
47 //!             channel_manager.process_pending_events(&|event| {
48 //!                     // Handle the event!
49 //!             });
50 //!             chain_monitor.process_pending_events(&|event| {
51 //!                     // Handle the event!
52 //!             });
53 //!     }
54 //! }
55 //!
56 //! // Begin reading from a newly accepted socket and talk to the peer:
57 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
58 //!     lightning_net_tokio::setup_inbound(peer_manager, socket);
59 //!     loop {
60 //!             channel_manager.await_persistable_update();
61 //!             channel_manager.process_pending_events(&|event| {
62 //!                     // Handle the event!
63 //!             });
64 //!             chain_monitor.process_pending_events(&|event| {
65 //!                     // Handle the event!
66 //!             });
67 //!     }
68 //! }
69 //! ```
70
71 #![deny(broken_intra_doc_links)]
72 #![deny(missing_docs)]
73
74 use bitcoin::secp256k1::key::PublicKey;
75
76 use tokio::net::TcpStream;
77 use tokio::{io, time};
78 use tokio::sync::mpsc;
79 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
80
81 use lightning::ln::peer_handler;
82 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
83 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
84 use lightning::util::logger::Logger;
85
86 use std::task;
87 use std::net::SocketAddr;
88 use std::net::TcpStream as StdTcpStream;
89 use std::sync::{Arc, Mutex};
90 use std::sync::atomic::{AtomicU64, Ordering};
91 use std::time::Duration;
92 use std::hash::Hash;
93
94 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
95
96 /// Connection contains all our internal state for a connection - we hold a reference to the
97 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
98 /// read future (which is returned by schedule_read).
99 struct Connection {
100         writer: Option<io::WriteHalf<TcpStream>>,
101         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
102         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
103         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
104         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
105         // the schedule_read stack.
106         //
107         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
108         // runtime with functions templated by the Arc<PeerManager> type, calling
109         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
110         // more unsafe voodo than I really feel like writing.
111         write_avail: mpsc::Sender<()>,
112         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
113         // so by setting read_paused. At that point, the read task will stop reading bytes from the
114         // socket. To wake it up (without otherwise changing its state, we can push a value into this
115         // Sender.
116         read_waker: mpsc::Sender<()>,
117         read_paused: bool,
118         rl_requested_disconnect: bool,
119         id: u64,
120 }
121 impl Connection {
122         async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
123                         CMH: ChannelMessageHandler + 'static,
124                         RMH: RoutingMessageHandler + 'static,
125                         L: Logger + 'static + ?Sized {
126                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
127                 let mut buf = [0; 8192];
128
129                 let mut our_descriptor = SocketDescriptor::new(us.clone());
130                 // An enum describing why we did/are disconnecting:
131                 enum Disconnect {
132                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
133                         // SocketDescriptor::disconnect_socket.
134                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
135                         // already knows we're disconnected.
136                         CloseConnection,
137                         // The connection was disconnected for some other reason, ie because the socket was
138                         // closed.
139                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
140                         // Rust-Lightning that the socket is gone.
141                         PeerDisconnected
142                 }
143                 let disconnect_type = loop {
144                         macro_rules! shutdown_socket {
145                                 ($err: expr, $need_disconnect: expr) => { {
146                                         println!("Disconnecting peer due to {}!", $err);
147                                         break $need_disconnect;
148                                 } }
149                         }
150
151                         let read_paused = {
152                                 let us_lock = us.lock().unwrap();
153                                 if us_lock.rl_requested_disconnect {
154                                         shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
155                                 }
156                                 us_lock.read_paused
157                         };
158                         tokio::select! {
159                                 v = write_avail_receiver.recv() => {
160                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
161                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
162                                                 shutdown_socket!(e, Disconnect::CloseConnection);
163                                         }
164                                 },
165                                 _ = read_wake_receiver.recv() => {},
166                                 read = reader.read(&mut buf), if !read_paused => match read {
167                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
168                                         Ok(len) => {
169                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
170                                                 let mut us_lock = us.lock().unwrap();
171                                                 match read_res {
172                                                         Ok(pause_read) => {
173                                                                 if pause_read {
174                                                                         us_lock.read_paused = true;
175                                                                 }
176                                                         },
177                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
178                                                 }
179                                         },
180                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
181                                 },
182                         }
183                         peer_manager.process_events();
184                 };
185                 let writer_option = us.lock().unwrap().writer.take();
186                 if let Some(mut writer) = writer_option {
187                         // If the socket is already closed, shutdown() will fail, so just ignore it.
188                         let _ = writer.shutdown().await;
189                 }
190                 if let Disconnect::PeerDisconnected = disconnect_type {
191                         peer_manager.socket_disconnected(&our_descriptor);
192                         peer_manager.process_events();
193                 }
194         }
195
196         fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
197                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
198                 // PeerManager, we will eventually get notified that there is room in the socket to write
199                 // new bytes, which will generate an event. That event will be popped off the queue before
200                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
201                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
202                 let (write_avail, write_receiver) = mpsc::channel(1);
203                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
204                 // we shove a value into the channel which comes after we've reset the read_paused bool to
205                 // false.
206                 let (read_waker, read_receiver) = mpsc::channel(1);
207                 stream.set_nonblocking(true).unwrap();
208                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
209
210                 (reader, write_receiver, read_receiver,
211                 Arc::new(Mutex::new(Self {
212                         writer: Some(writer), write_avail, read_waker, read_paused: false,
213                         rl_requested_disconnect: false,
214                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
215                 })))
216         }
217 }
218
219 /// Process incoming messages and feed outgoing messages on the provided socket generated by
220 /// accepting an incoming connection.
221 ///
222 /// The returned future will complete when the peer is disconnected and associated handling
223 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
224 /// not need to poll the provided future in order to make progress.
225 pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
226                 CMH: ChannelMessageHandler + 'static + Send + Sync,
227                 RMH: RoutingMessageHandler + 'static + Send + Sync,
228                 L: Logger + 'static + ?Sized + Send + Sync {
229         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
230         #[cfg(debug_assertions)]
231         let last_us = Arc::clone(&us);
232
233         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
234                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
235         } else {
236                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
237                 // requirements.
238                 None
239         };
240
241         async move {
242                 if let Some(handle) = handle_opt {
243                         if let Err(e) = handle.await {
244                                 assert!(e.is_cancelled());
245                         } else {
246                                 // This is certainly not guaranteed to always be true - the read loop may exit
247                                 // while there are still pending write wakers that need to be woken up after the
248                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
249                                 // keep too many wakers around, this makes sense. The race should be rare (we do
250                                 // some work after shutdown()) and an error would be a major memory leak.
251                                 #[cfg(debug_assertions)]
252                                 assert!(Arc::try_unwrap(last_us).is_ok());
253                         }
254                 }
255         }
256 }
257
258 /// Process incoming messages and feed outgoing messages on the provided socket generated by
259 /// making an outbound connection which is expected to be accepted by a peer with the given
260 /// public key. The relevant processing is set to run free (via tokio::spawn).
261 ///
262 /// The returned future will complete when the peer is disconnected and associated handling
263 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
264 /// not need to poll the provided future in order to make progress.
265 pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
266                 CMH: ChannelMessageHandler + 'static + Send + Sync,
267                 RMH: RoutingMessageHandler + 'static + Send + Sync,
268                 L: Logger + 'static + ?Sized + Send + Sync {
269         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
270         #[cfg(debug_assertions)]
271         let last_us = Arc::clone(&us);
272
273         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
274                 Some(tokio::spawn(async move {
275                         // We should essentially always have enough room in a TCP socket buffer to send the
276                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
277                         // fail writes and wake us back up later to write. Thus, we handle a single
278                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
279                         // and use a relatively tight timeout.
280                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
281                                 loop {
282                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
283                                                 v if v == initial_send.len() => break Ok(()),
284                                                 0 => {
285                                                         write_receiver.recv().await;
286                                                         // In theory we could check for if we've been instructed to disconnect
287                                                         // the peer here, but its OK to just skip it - we'll check for it in
288                                                         // schedule_read prior to any relevant calls into RL.
289                                                 },
290                                                 _ => {
291                                                         eprintln!("Failed to write first full message to socket!");
292                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
293                                                         break Err(());
294                                                 }
295                                         }
296                                 }
297                         }).await {
298                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
299                         }
300                 }))
301         } else {
302                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
303                 // requirements.
304                 None
305         };
306
307         async move {
308                 if let Some(handle) = handle_opt {
309                         if let Err(e) = handle.await {
310                                 assert!(e.is_cancelled());
311                         } else {
312                                 // This is certainly not guaranteed to always be true - the read loop may exit
313                                 // while there are still pending write wakers that need to be woken up after the
314                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
315                                 // keep too many wakers around, this makes sense. The race should be rare (we do
316                                 // some work after shutdown()) and an error would be a major memory leak.
317                                 #[cfg(debug_assertions)]
318                                 assert!(Arc::try_unwrap(last_us).is_ok());
319                         }
320                 }
321         }
322 }
323
324 /// Process incoming messages and feed outgoing messages on a new connection made to the given
325 /// socket address which is expected to be accepted by a peer with the given public key (by
326 /// scheduling futures with tokio::spawn).
327 ///
328 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
329 ///
330 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
331 /// connection setup. That future then returns a future which will complete when the peer is
332 /// disconnected and associated handling futures are freed, though, because all processing in said
333 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
334 /// make progress.
335 pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
336                 CMH: ChannelMessageHandler + 'static + Send + Sync,
337                 RMH: RoutingMessageHandler + 'static + Send + Sync,
338                 L: Logger + 'static + ?Sized + Send + Sync {
339         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
340                 Some(setup_outbound(peer_manager, their_node_id, stream))
341         } else { None }
342 }
343
344 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
345         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
346
347 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
348         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
349 }
350 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
351 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
352 // sending thread may have already gone away due to a socket close, in which case there's nothing
353 // to wake up anyway.
354 fn wake_socket_waker(orig_ptr: *const ()) {
355         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
356         let _ = sender.try_send(());
357         drop_socket_waker(orig_ptr);
358 }
359 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
360         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
361         let sender = unsafe { (*sender_ptr).clone() };
362         let _ = sender.try_send(());
363 }
364 fn drop_socket_waker(orig_ptr: *const ()) {
365         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
366         // _orig_box is now dropped
367 }
368 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
369         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
370         let new_ptr = new_box as *const mpsc::Sender<()>;
371         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
372 }
373
374 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
375 /// type in the template of PeerHandler.
376 pub struct SocketDescriptor {
377         conn: Arc<Mutex<Connection>>,
378         id: u64,
379 }
380 impl SocketDescriptor {
381         fn new(conn: Arc<Mutex<Connection>>) -> Self {
382                 let id = conn.lock().unwrap().id;
383                 Self { conn, id }
384         }
385 }
386 impl peer_handler::SocketDescriptor for SocketDescriptor {
387         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
388                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
389                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
390                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
391                 // processing future which will call write_buffer_space_avail and we'll end up back here.
392                 let mut us = self.conn.lock().unwrap();
393                 if us.writer.is_none() {
394                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
395                         return 0;
396                 }
397
398                 if resume_read && us.read_paused {
399                         // The schedule_read future may go to lock up but end up getting woken up by there
400                         // being more room in the write buffer, dropping the other end of this Sender
401                         // before we get here, so we ignore any failures to wake it up.
402                         us.read_paused = false;
403                         let _ = us.read_waker.try_send(());
404                 }
405                 if data.is_empty() { return 0; }
406                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
407                 let mut ctx = task::Context::from_waker(&waker);
408                 let mut written_len = 0;
409                 loop {
410                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
411                                 task::Poll::Ready(Ok(res)) => {
412                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
413                                         // know how to handle it if it does (cause it should be a Poll::Pending
414                                         // instead):
415                                         assert_ne!(res, 0);
416                                         written_len += res;
417                                         if written_len == data.len() { return written_len; }
418                                 },
419                                 task::Poll::Ready(Err(e)) => {
420                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
421                                         // know how to handle it if it does (cause it should be a Poll::Pending
422                                         // instead):
423                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
424                                         // Probably we've already been closed, just return what we have and let the
425                                         // read thread handle closing logic.
426                                         return written_len;
427                                 },
428                                 task::Poll::Pending => {
429                                         // We're queued up for a write event now, but we need to make sure we also
430                                         // pause read given we're now waiting on the remote end to ACK (and in
431                                         // accordance with the send_data() docs).
432                                         us.read_paused = true;
433                                         return written_len;
434                                 },
435                         }
436                 }
437         }
438
439         fn disconnect_socket(&mut self) {
440                 let mut us = self.conn.lock().unwrap();
441                 us.rl_requested_disconnect = true;
442                 // Wake up the sending thread, assuming it is still alive
443                 let _ = us.write_avail.try_send(());
444         }
445 }
446 impl Clone for SocketDescriptor {
447         fn clone(&self) -> Self {
448                 Self {
449                         conn: Arc::clone(&self.conn),
450                         id: self.id,
451                 }
452         }
453 }
454 impl Eq for SocketDescriptor {}
455 impl PartialEq for SocketDescriptor {
456         fn eq(&self, o: &Self) -> bool {
457                 self.id == o.id
458         }
459 }
460 impl Hash for SocketDescriptor {
461         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
462                 self.id.hash(state);
463         }
464 }
465
466 #[cfg(test)]
467 mod tests {
468         use lightning::ln::features::*;
469         use lightning::ln::msgs::*;
470         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
471         use lightning::util::events::*;
472         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
473
474         use tokio::sync::mpsc;
475
476         use std::mem;
477         use std::sync::atomic::{AtomicBool, Ordering};
478         use std::sync::{Arc, Mutex};
479         use std::time::Duration;
480
481         pub struct TestLogger();
482         impl lightning::util::logger::Logger for TestLogger {
483                 fn log(&self, record: &lightning::util::logger::Record) {
484                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
485                 }
486         }
487
488         struct MsgHandler{
489                 expected_pubkey: PublicKey,
490                 pubkey_connected: mpsc::Sender<()>,
491                 pubkey_disconnected: mpsc::Sender<()>,
492                 disconnected_flag: AtomicBool,
493                 msg_events: Mutex<Vec<MessageSendEvent>>,
494         }
495         impl RoutingMessageHandler for MsgHandler {
496                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
497                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
498                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
499                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
500                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
501                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
502                 fn sync_routing_table(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
503                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
504                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
505                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
506                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
507         }
508         impl ChannelMessageHandler for MsgHandler {
509                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
510                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
511                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
512                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
513                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
514                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
515                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
516                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
517                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
518                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
519                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
520                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
521                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
522                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
523                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
524                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
525                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
526                         if *their_node_id == self.expected_pubkey {
527                                 self.disconnected_flag.store(true, Ordering::SeqCst);
528                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
529                         }
530                 }
531                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
532                         if *their_node_id == self.expected_pubkey {
533                                 self.pubkey_connected.clone().try_send(()).unwrap();
534                         }
535                 }
536                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
537                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
538         }
539         impl MessageSendEventsProvider for MsgHandler {
540                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
541                         let mut ret = Vec::new();
542                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
543                         ret
544                 }
545         }
546
547         async fn do_basic_connection_test() {
548                 let secp_ctx = Secp256k1::new();
549                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
550                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
551                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
552                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
553
554                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
555                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
556                 let a_handler = Arc::new(MsgHandler {
557                         expected_pubkey: b_pub,
558                         pubkey_connected: a_connected_sender,
559                         pubkey_disconnected: a_disconnected_sender,
560                         disconnected_flag: AtomicBool::new(false),
561                         msg_events: Mutex::new(Vec::new()),
562                 });
563                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
564                         chan_handler: Arc::clone(&a_handler),
565                         route_handler: Arc::clone(&a_handler),
566                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
567
568                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
569                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
570                 let b_handler = Arc::new(MsgHandler {
571                         expected_pubkey: a_pub,
572                         pubkey_connected: b_connected_sender,
573                         pubkey_disconnected: b_disconnected_sender,
574                         disconnected_flag: AtomicBool::new(false),
575                         msg_events: Mutex::new(Vec::new()),
576                 });
577                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
578                         chan_handler: Arc::clone(&b_handler),
579                         route_handler: Arc::clone(&b_handler),
580                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
581
582                 // We bind on localhost, hoping the environment is properly configured with a local
583                 // address. This may not always be the case in containers and the like, so if this test is
584                 // failing for you check that you have a loopback interface and it is configured with
585                 // 127.0.0.1.
586                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
587                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
588                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
589                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
590                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
591                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
592                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
593
594                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
595                 let fut_b = super::setup_inbound(b_manager, conn_b);
596
597                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
598                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
599
600                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
601                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
602                 });
603                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
604                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
605
606                 a_manager.process_events();
607                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
608                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
609                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
610                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
611
612                 fut_a.await;
613                 fut_b.await;
614         }
615
616         #[tokio::test(flavor = "multi_thread")]
617         async fn basic_threaded_connection_test() {
618                 do_basic_connection_test().await;
619         }
620         #[tokio::test]
621         async fn basic_unthreaded_connection_test() {
622                 do_basic_connection_test().await;
623         }
624 }