Add unknown message handler to peer manager
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
22 //!
23 //! # Example
24 //! ```
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::key::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
30 //!
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
36 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
37 //! type DataPersister = dyn lightning::chain::channelmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
38 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
39 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
40 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger, Arc<lightning::ln::peer_handler::IgnoringUnknownMessageHandler>>>;
41 //!
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //!     lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
45 //!     loop {
46 //!             channel_manager.await_persistable_update();
47 //!             channel_manager.process_pending_events(&|event| {
48 //!                     // Handle the event!
49 //!             });
50 //!             chain_monitor.process_pending_events(&|event| {
51 //!                     // Handle the event!
52 //!             });
53 //!     }
54 //! }
55 //!
56 //! // Begin reading from a newly accepted socket and talk to the peer:
57 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
58 //!     lightning_net_tokio::setup_inbound(peer_manager, socket);
59 //!     loop {
60 //!             channel_manager.await_persistable_update();
61 //!             channel_manager.process_pending_events(&|event| {
62 //!                     // Handle the event!
63 //!             });
64 //!             chain_monitor.process_pending_events(&|event| {
65 //!                     // Handle the event!
66 //!             });
67 //!     }
68 //! }
69 //! ```
70
71 #![deny(broken_intra_doc_links)]
72 #![deny(missing_docs)]
73
74 use bitcoin::secp256k1::key::PublicKey;
75
76 use tokio::net::TcpStream;
77 use tokio::{io, time};
78 use tokio::sync::mpsc;
79 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
80
81 use lightning::ln::peer_handler;
82 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
83 use lightning::ln::peer_handler::UnknownMessageHandler;
84 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
85 use lightning::util::logger::Logger;
86
87 use std::task;
88 use std::net::SocketAddr;
89 use std::net::TcpStream as StdTcpStream;
90 use std::sync::{Arc, Mutex};
91 use std::sync::atomic::{AtomicU64, Ordering};
92 use std::time::Duration;
93 use std::hash::Hash;
94
95 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
96
97 /// Connection contains all our internal state for a connection - we hold a reference to the
98 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
99 /// read future (which is returned by schedule_read).
100 struct Connection {
101         writer: Option<io::WriteHalf<TcpStream>>,
102         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
103         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
104         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
105         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
106         // the schedule_read stack.
107         //
108         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
109         // runtime with functions templated by the Arc<PeerManager> type, calling
110         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
111         // more unsafe voodo than I really feel like writing.
112         write_avail: mpsc::Sender<()>,
113         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
114         // so by setting read_paused. At that point, the read task will stop reading bytes from the
115         // socket. To wake it up (without otherwise changing its state, we can push a value into this
116         // Sender.
117         read_waker: mpsc::Sender<()>,
118         read_paused: bool,
119         rl_requested_disconnect: bool,
120         id: u64,
121 }
122 impl Connection {
123         async fn schedule_read<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
124                         CMH: ChannelMessageHandler + 'static,
125                         RMH: RoutingMessageHandler + 'static,
126                         L: Logger + 'static + ?Sized,
127                         UMH: UnknownMessageHandler + 'static {
128                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
129                 let mut buf = [0; 8192];
130
131                 let mut our_descriptor = SocketDescriptor::new(us.clone());
132                 // An enum describing why we did/are disconnecting:
133                 enum Disconnect {
134                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
135                         // SocketDescriptor::disconnect_socket.
136                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
137                         // already knows we're disconnected.
138                         CloseConnection,
139                         // The connection was disconnected for some other reason, ie because the socket was
140                         // closed.
141                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
142                         // Rust-Lightning that the socket is gone.
143                         PeerDisconnected
144                 }
145                 let disconnect_type = loop {
146                         macro_rules! shutdown_socket {
147                                 ($err: expr, $need_disconnect: expr) => { {
148                                         println!("Disconnecting peer due to {}!", $err);
149                                         break $need_disconnect;
150                                 } }
151                         }
152
153                         let read_paused = {
154                                 let us_lock = us.lock().unwrap();
155                                 if us_lock.rl_requested_disconnect {
156                                         shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
157                                 }
158                                 us_lock.read_paused
159                         };
160                         tokio::select! {
161                                 v = write_avail_receiver.recv() => {
162                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
163                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
164                                                 shutdown_socket!(e, Disconnect::CloseConnection);
165                                         }
166                                 },
167                                 _ = read_wake_receiver.recv() => {},
168                                 read = reader.read(&mut buf), if !read_paused => match read {
169                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
170                                         Ok(len) => {
171                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
172                                                 let mut us_lock = us.lock().unwrap();
173                                                 match read_res {
174                                                         Ok(pause_read) => {
175                                                                 if pause_read {
176                                                                         us_lock.read_paused = true;
177                                                                 }
178                                                         },
179                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
180                                                 }
181                                         },
182                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
183                                 },
184                         }
185                         peer_manager.process_events();
186                 };
187                 let writer_option = us.lock().unwrap().writer.take();
188                 if let Some(mut writer) = writer_option {
189                         // If the socket is already closed, shutdown() will fail, so just ignore it.
190                         let _ = writer.shutdown().await;
191                 }
192                 if let Disconnect::PeerDisconnected = disconnect_type {
193                         peer_manager.socket_disconnected(&our_descriptor);
194                         peer_manager.process_events();
195                 }
196         }
197
198         fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
199                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
200                 // PeerManager, we will eventually get notified that there is room in the socket to write
201                 // new bytes, which will generate an event. That event will be popped off the queue before
202                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
203                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
204                 let (write_avail, write_receiver) = mpsc::channel(1);
205                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
206                 // we shove a value into the channel which comes after we've reset the read_paused bool to
207                 // false.
208                 let (read_waker, read_receiver) = mpsc::channel(1);
209                 stream.set_nonblocking(true).unwrap();
210                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
211
212                 (reader, write_receiver, read_receiver,
213                 Arc::new(Mutex::new(Self {
214                         writer: Some(writer), write_avail, read_waker, read_paused: false,
215                         rl_requested_disconnect: false,
216                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
217                 })))
218         }
219 }
220
221 /// Process incoming messages and feed outgoing messages on the provided socket generated by
222 /// accepting an incoming connection.
223 ///
224 /// The returned future will complete when the peer is disconnected and associated handling
225 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
226 /// not need to poll the provided future in order to make progress.
227 pub fn setup_inbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
228                 CMH: ChannelMessageHandler + 'static + Send + Sync,
229                 RMH: RoutingMessageHandler + 'static + Send + Sync,
230                 L: Logger + 'static + ?Sized + Send + Sync,
231                 UMH: UnknownMessageHandler + 'static + Send + Sync {
232         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
233         #[cfg(debug_assertions)]
234         let last_us = Arc::clone(&us);
235
236         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
237                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
238         } else {
239                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
240                 // requirements.
241                 None
242         };
243
244         async move {
245                 if let Some(handle) = handle_opt {
246                         if let Err(e) = handle.await {
247                                 assert!(e.is_cancelled());
248                         } else {
249                                 // This is certainly not guaranteed to always be true - the read loop may exit
250                                 // while there are still pending write wakers that need to be woken up after the
251                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
252                                 // keep too many wakers around, this makes sense. The race should be rare (we do
253                                 // some work after shutdown()) and an error would be a major memory leak.
254                                 #[cfg(debug_assertions)]
255                                 assert!(Arc::try_unwrap(last_us).is_ok());
256                         }
257                 }
258         }
259 }
260
261 /// Process incoming messages and feed outgoing messages on the provided socket generated by
262 /// making an outbound connection which is expected to be accepted by a peer with the given
263 /// public key. The relevant processing is set to run free (via tokio::spawn).
264 ///
265 /// The returned future will complete when the peer is disconnected and associated handling
266 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
267 /// not need to poll the provided future in order to make progress.
268 pub fn setup_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
269                 CMH: ChannelMessageHandler + 'static + Send + Sync,
270                 RMH: RoutingMessageHandler + 'static + Send + Sync,
271                 L: Logger + 'static + ?Sized + Send + Sync,
272                 UMH: UnknownMessageHandler + 'static + Send + Sync {
273         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
274         #[cfg(debug_assertions)]
275         let last_us = Arc::clone(&us);
276
277         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
278                 Some(tokio::spawn(async move {
279                         // We should essentially always have enough room in a TCP socket buffer to send the
280                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
281                         // fail writes and wake us back up later to write. Thus, we handle a single
282                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
283                         // and use a relatively tight timeout.
284                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
285                                 loop {
286                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
287                                                 v if v == initial_send.len() => break Ok(()),
288                                                 0 => {
289                                                         write_receiver.recv().await;
290                                                         // In theory we could check for if we've been instructed to disconnect
291                                                         // the peer here, but its OK to just skip it - we'll check for it in
292                                                         // schedule_read prior to any relevant calls into RL.
293                                                 },
294                                                 _ => {
295                                                         eprintln!("Failed to write first full message to socket!");
296                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
297                                                         break Err(());
298                                                 }
299                                         }
300                                 }
301                         }).await {
302                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
303                         }
304                 }))
305         } else {
306                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
307                 // requirements.
308                 None
309         };
310
311         async move {
312                 if let Some(handle) = handle_opt {
313                         if let Err(e) = handle.await {
314                                 assert!(e.is_cancelled());
315                         } else {
316                                 // This is certainly not guaranteed to always be true - the read loop may exit
317                                 // while there are still pending write wakers that need to be woken up after the
318                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
319                                 // keep too many wakers around, this makes sense. The race should be rare (we do
320                                 // some work after shutdown()) and an error would be a major memory leak.
321                                 #[cfg(debug_assertions)]
322                                 assert!(Arc::try_unwrap(last_us).is_ok());
323                         }
324                 }
325         }
326 }
327
328 /// Process incoming messages and feed outgoing messages on a new connection made to the given
329 /// socket address which is expected to be accepted by a peer with the given public key (by
330 /// scheduling futures with tokio::spawn).
331 ///
332 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
333 ///
334 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
335 /// connection setup. That future then returns a future which will complete when the peer is
336 /// disconnected and associated handling futures are freed, though, because all processing in said
337 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
338 /// make progress.
339 pub async fn connect_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>, Arc<UMH>>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
340                 CMH: ChannelMessageHandler + 'static + Send + Sync,
341                 RMH: RoutingMessageHandler + 'static + Send + Sync,
342                 L: Logger + 'static + ?Sized + Send + Sync,
343                 UMH: UnknownMessageHandler + 'static + Send + Sync {
344         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
345                 Some(setup_outbound(peer_manager, their_node_id, stream))
346         } else { None }
347 }
348
349 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
350         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
351
352 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
353         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
354 }
355 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
356 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
357 // sending thread may have already gone away due to a socket close, in which case there's nothing
358 // to wake up anyway.
359 fn wake_socket_waker(orig_ptr: *const ()) {
360         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
361         let _ = sender.try_send(());
362         drop_socket_waker(orig_ptr);
363 }
364 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
365         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
366         let sender = unsafe { (*sender_ptr).clone() };
367         let _ = sender.try_send(());
368 }
369 fn drop_socket_waker(orig_ptr: *const ()) {
370         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
371         // _orig_box is now dropped
372 }
373 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
374         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
375         let new_ptr = new_box as *const mpsc::Sender<()>;
376         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
377 }
378
379 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
380 /// type in the template of PeerHandler.
381 pub struct SocketDescriptor {
382         conn: Arc<Mutex<Connection>>,
383         id: u64,
384 }
385 impl SocketDescriptor {
386         fn new(conn: Arc<Mutex<Connection>>) -> Self {
387                 let id = conn.lock().unwrap().id;
388                 Self { conn, id }
389         }
390 }
391 impl peer_handler::SocketDescriptor for SocketDescriptor {
392         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
393                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
394                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
395                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
396                 // processing future which will call write_buffer_space_avail and we'll end up back here.
397                 let mut us = self.conn.lock().unwrap();
398                 if us.writer.is_none() {
399                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
400                         return 0;
401                 }
402
403                 if resume_read && us.read_paused {
404                         // The schedule_read future may go to lock up but end up getting woken up by there
405                         // being more room in the write buffer, dropping the other end of this Sender
406                         // before we get here, so we ignore any failures to wake it up.
407                         us.read_paused = false;
408                         let _ = us.read_waker.try_send(());
409                 }
410                 if data.is_empty() { return 0; }
411                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
412                 let mut ctx = task::Context::from_waker(&waker);
413                 let mut written_len = 0;
414                 loop {
415                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
416                                 task::Poll::Ready(Ok(res)) => {
417                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
418                                         // know how to handle it if it does (cause it should be a Poll::Pending
419                                         // instead):
420                                         assert_ne!(res, 0);
421                                         written_len += res;
422                                         if written_len == data.len() { return written_len; }
423                                 },
424                                 task::Poll::Ready(Err(e)) => {
425                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
426                                         // know how to handle it if it does (cause it should be a Poll::Pending
427                                         // instead):
428                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
429                                         // Probably we've already been closed, just return what we have and let the
430                                         // read thread handle closing logic.
431                                         return written_len;
432                                 },
433                                 task::Poll::Pending => {
434                                         // We're queued up for a write event now, but we need to make sure we also
435                                         // pause read given we're now waiting on the remote end to ACK (and in
436                                         // accordance with the send_data() docs).
437                                         us.read_paused = true;
438                                         return written_len;
439                                 },
440                         }
441                 }
442         }
443
444         fn disconnect_socket(&mut self) {
445                 let mut us = self.conn.lock().unwrap();
446                 us.rl_requested_disconnect = true;
447                 // Wake up the sending thread, assuming it is still alive
448                 let _ = us.write_avail.try_send(());
449         }
450 }
451 impl Clone for SocketDescriptor {
452         fn clone(&self) -> Self {
453                 Self {
454                         conn: Arc::clone(&self.conn),
455                         id: self.id,
456                 }
457         }
458 }
459 impl Eq for SocketDescriptor {}
460 impl PartialEq for SocketDescriptor {
461         fn eq(&self, o: &Self) -> bool {
462                 self.id == o.id
463         }
464 }
465 impl Hash for SocketDescriptor {
466         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
467                 self.id.hash(state);
468         }
469 }
470
471 #[cfg(test)]
472 mod tests {
473         use lightning::ln::features::*;
474         use lightning::ln::msgs::*;
475         use lightning::ln::peer_handler::{MessageHandler, PeerManager, IgnoringUnknownMessageHandler};
476         use lightning::util::events::*;
477         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
478
479         use tokio::sync::mpsc;
480
481         use std::mem;
482         use std::sync::atomic::{AtomicBool, Ordering};
483         use std::sync::{Arc, Mutex};
484         use std::time::Duration;
485
486         pub struct TestLogger();
487         impl lightning::util::logger::Logger for TestLogger {
488                 fn log(&self, record: &lightning::util::logger::Record) {
489                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
490                 }
491         }
492
493         struct MsgHandler{
494                 expected_pubkey: PublicKey,
495                 pubkey_connected: mpsc::Sender<()>,
496                 pubkey_disconnected: mpsc::Sender<()>,
497                 disconnected_flag: AtomicBool,
498                 msg_events: Mutex<Vec<MessageSendEvent>>,
499         }
500         impl RoutingMessageHandler for MsgHandler {
501                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
502                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
503                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
504                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
505                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
506                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
507                 fn sync_routing_table(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
508                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
509                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
510                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
511                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
512         }
513         impl ChannelMessageHandler for MsgHandler {
514                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
515                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
516                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
517                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
518                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
519                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
520                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
521                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
522                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
523                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
524                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
525                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
526                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
527                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
528                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
529                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
530                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
531                         if *their_node_id == self.expected_pubkey {
532                                 self.disconnected_flag.store(true, Ordering::SeqCst);
533                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
534                         }
535                 }
536                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
537                         if *their_node_id == self.expected_pubkey {
538                                 self.pubkey_connected.clone().try_send(()).unwrap();
539                         }
540                 }
541                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
542                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
543         }
544         impl MessageSendEventsProvider for MsgHandler {
545                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
546                         let mut ret = Vec::new();
547                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
548                         ret
549                 }
550         }
551
552         async fn do_basic_connection_test() {
553                 let secp_ctx = Secp256k1::new();
554                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
555                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
556                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
557                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
558
559                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
560                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
561                 let a_handler = Arc::new(MsgHandler {
562                         expected_pubkey: b_pub,
563                         pubkey_connected: a_connected_sender,
564                         pubkey_disconnected: a_disconnected_sender,
565                         disconnected_flag: AtomicBool::new(false),
566                         msg_events: Mutex::new(Vec::new()),
567                 });
568                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
569                         chan_handler: Arc::clone(&a_handler),
570                         route_handler: Arc::clone(&a_handler),
571                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger()), Arc::new(IgnoringUnknownMessageHandler {})));
572
573                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
574                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
575                 let b_handler = Arc::new(MsgHandler {
576                         expected_pubkey: a_pub,
577                         pubkey_connected: b_connected_sender,
578                         pubkey_disconnected: b_disconnected_sender,
579                         disconnected_flag: AtomicBool::new(false),
580                         msg_events: Mutex::new(Vec::new()),
581                 });
582                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
583                         chan_handler: Arc::clone(&b_handler),
584                         route_handler: Arc::clone(&b_handler),
585                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger()), Arc::new(IgnoringUnknownMessageHandler {})));
586
587                 // We bind on localhost, hoping the environment is properly configured with a local
588                 // address. This may not always be the case in containers and the like, so if this test is
589                 // failing for you check that you have a loopback interface and it is configured with
590                 // 127.0.0.1.
591                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
592                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
593                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
594                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
595                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
596                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
597                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
598
599                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
600                 let fut_b = super::setup_inbound(b_manager, conn_b);
601
602                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
603                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
604
605                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
606                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
607                 });
608                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
609                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
610
611                 a_manager.process_events();
612                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
613                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
614                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
615                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
616
617                 fut_a.await;
618                 fut_b.await;
619         }
620
621         #[tokio::test(flavor = "multi_thread")]
622         async fn basic_threaded_connection_test() {
623                 do_basic_connection_test().await;
624         }
625         #[tokio::test]
626         async fn basic_unthreaded_connection_test() {
627                 do_basic_connection_test().await;
628         }
629 }