Fix unused warning for un-accessed enum variant field in net-tokio
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native [`TcpStream`]s.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! [`TcpStream`] and a reference to a [`PeerManager`] and the rest is handled".
15 //!
16 //! The [`PeerManager`], due to the fire-and-forget nature of this logic, must be a reference,
17 //! (e.g. an [`Arc`]) and must use the [`SocketDescriptor`] provided here as the [`PeerManager`]'s
18 //! `SocketDescriptor` implementation.
19 //!
20 //! Three methods are exposed to register a new connection for handling in [`tokio::spawn`] calls;
21 //! see their individual docs for details.
22 //!
23 //! [`PeerManager`]: lightning::ln::peer_handler::PeerManager
24
25 #![deny(rustdoc::broken_intra_doc_links)]
26 #![deny(rustdoc::private_intra_doc_links)]
27
28 #![deny(missing_docs)]
29 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
30
31 use bitcoin::secp256k1::PublicKey;
32
33 use tokio::net::TcpStream;
34 use tokio::time;
35 use tokio::sync::mpsc;
36
37 use lightning::ln::peer_handler;
38 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
39 use lightning::ln::peer_handler::APeerManager;
40 use lightning::ln::msgs::SocketAddress;
41
42 use std::ops::Deref;
43 use std::task::{self, Poll};
44 use std::future::Future;
45 use std::net::SocketAddr;
46 use std::net::TcpStream as StdTcpStream;
47 use std::sync::{Arc, Mutex};
48 use std::sync::atomic::{AtomicU64, Ordering};
49 use std::time::Duration;
50 use std::pin::Pin;
51 use std::hash::Hash;
52
53 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
54
55 // We only need to select over multiple futures in one place, and taking on the full `tokio/macros`
56 // dependency tree in order to do so (which has broken our MSRV before) is excessive. Instead, we
57 // define a trivial two- and three- select macro with the specific types we need and just use that.
58
59 pub(crate) enum SelectorOutput {
60         A(Option<()>), B(Option<()>), C(tokio::io::Result<()>),
61 }
62
63 pub(crate) struct TwoSelector<
64         A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin
65 > {
66         pub a: A,
67         pub b: B,
68 }
69
70 impl<
71         A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin
72 > Future for TwoSelector<A, B> {
73         type Output = SelectorOutput;
74         fn poll(mut self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll<SelectorOutput> {
75                 match Pin::new(&mut self.a).poll(ctx) {
76                         Poll::Ready(res) => { return Poll::Ready(SelectorOutput::A(res)); },
77                         Poll::Pending => {},
78                 }
79                 match Pin::new(&mut self.b).poll(ctx) {
80                         Poll::Ready(res) => { return Poll::Ready(SelectorOutput::B(res)); },
81                         Poll::Pending => {},
82                 }
83                 Poll::Pending
84         }
85 }
86
87 pub(crate) struct ThreeSelector<
88         A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin, C: Future<Output=tokio::io::Result<()>> + Unpin
89 > {
90         pub a: A,
91         pub b: B,
92         pub c: C,
93 }
94
95 impl<
96         A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin, C: Future<Output=tokio::io::Result<()>> + Unpin
97 > Future for ThreeSelector<A, B, C> {
98         type Output = SelectorOutput;
99         fn poll(mut self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll<SelectorOutput> {
100                 match Pin::new(&mut self.a).poll(ctx) {
101                         Poll::Ready(res) => { return Poll::Ready(SelectorOutput::A(res)); },
102                         Poll::Pending => {},
103                 }
104                 match Pin::new(&mut self.b).poll(ctx) {
105                         Poll::Ready(res) => { return Poll::Ready(SelectorOutput::B(res)); },
106                         Poll::Pending => {},
107                 }
108                 match Pin::new(&mut self.c).poll(ctx) {
109                         Poll::Ready(res) => { return Poll::Ready(SelectorOutput::C(res)); },
110                         Poll::Pending => {},
111                 }
112                 Poll::Pending
113         }
114 }
115
116 /// Connection contains all our internal state for a connection - we hold a reference to the
117 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
118 /// read future (which is returned by schedule_read).
119 struct Connection {
120         writer: Option<Arc<TcpStream>>,
121         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
122         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
123         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
124         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
125         // the schedule_read stack.
126         //
127         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
128         // runtime with functions templated by the Arc<PeerManager> type, calling
129         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
130         // more unsafe voodo than I really feel like writing.
131         write_avail: mpsc::Sender<()>,
132         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
133         // so by setting read_paused. At that point, the read task will stop reading bytes from the
134         // socket. To wake it up (without otherwise changing its state, we can push a value into this
135         // Sender.
136         read_waker: mpsc::Sender<()>,
137         read_paused: bool,
138         rl_requested_disconnect: bool,
139         id: u64,
140 }
141 impl Connection {
142         async fn poll_event_process<PM: Deref + 'static + Send + Sync>(
143                 peer_manager: PM,
144                 mut event_receiver: mpsc::Receiver<()>,
145         ) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
146                 loop {
147                         if event_receiver.recv().await.is_none() {
148                                 return;
149                         }
150                         peer_manager.as_ref().process_events();
151                 }
152         }
153
154         async fn schedule_read<PM: Deref + 'static + Send + Sync + Clone>(
155                 peer_manager: PM,
156                 us: Arc<Mutex<Self>>,
157                 reader: Arc<TcpStream>,
158                 mut read_wake_receiver: mpsc::Receiver<()>,
159                 mut write_avail_receiver: mpsc::Receiver<()>,
160         ) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
161                 // Create a waker to wake up poll_event_process, above
162                 let (event_waker, event_receiver) = mpsc::channel(1);
163                 tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver));
164
165                 // 4KiB is nice and big without handling too many messages all at once, giving other peers
166                 // a chance to do some work.
167                 let mut buf = [0; 4096];
168
169                 let mut our_descriptor = SocketDescriptor::new(us.clone());
170                 // An enum describing why we did/are disconnecting:
171                 enum Disconnect {
172                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
173                         // SocketDescriptor::disconnect_socket.
174                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
175                         // already knows we're disconnected.
176                         CloseConnection,
177                         // The connection was disconnected for some other reason, ie because the socket was
178                         // closed.
179                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
180                         // Rust-Lightning that the socket is gone.
181                         PeerDisconnected
182                 }
183                 let disconnect_type = loop {
184                         let read_paused = {
185                                 let us_lock = us.lock().unwrap();
186                                 if us_lock.rl_requested_disconnect {
187                                         break Disconnect::CloseConnection;
188                                 }
189                                 us_lock.read_paused
190                         };
191                         // TODO: Drop the Box'ing of the futures once Rust has pin-on-stack support.
192                         let select_result = if read_paused {
193                                 TwoSelector {
194                                         a: Box::pin(write_avail_receiver.recv()),
195                                         b: Box::pin(read_wake_receiver.recv()),
196                                 }.await
197                         } else {
198                                 ThreeSelector {
199                                         a: Box::pin(write_avail_receiver.recv()),
200                                         b: Box::pin(read_wake_receiver.recv()),
201                                         c: Box::pin(reader.readable()),
202                                 }.await
203                         };
204                         match select_result {
205                                 SelectorOutput::A(v) => {
206                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
207                                         if peer_manager.as_ref().write_buffer_space_avail(&mut our_descriptor).is_err() {
208                                                 break Disconnect::CloseConnection;
209                                         }
210                                 },
211                                 SelectorOutput::B(some) => {
212                                         // The mpsc Receiver should only return `None` if the write side has been
213                                         // dropped, but that shouldn't be possible since its referenced by the Self in
214                                         // `us`.
215                                         debug_assert!(some.is_some());
216                                 },
217                                 SelectorOutput::C(res) => {
218                                         if res.is_err() { break Disconnect::PeerDisconnected; }
219                                         match reader.try_read(&mut buf) {
220                                                 Ok(0) => break Disconnect::PeerDisconnected,
221                                                 Ok(len) => {
222                                                         let read_res = peer_manager.as_ref().read_event(&mut our_descriptor, &buf[0..len]);
223                                                         let mut us_lock = us.lock().unwrap();
224                                                         match read_res {
225                                                                 Ok(pause_read) => {
226                                                                         if pause_read {
227                                                                                 us_lock.read_paused = true;
228                                                                         }
229                                                                 },
230                                                                 Err(_) => break Disconnect::CloseConnection,
231                                                         }
232                                                 },
233                                                 Err(e) if e.kind() == std::io::ErrorKind::WouldBlock => {
234                                                         // readable() is allowed to spuriously wake, so we have to handle
235                                                         // WouldBlock here.
236                                                 },
237                                                 Err(_) => break Disconnect::PeerDisconnected,
238                                         }
239                                 },
240                         }
241                         let _ = event_waker.try_send(());
242
243                         // At this point we've processed a message or two, and reset the ping timer for this
244                         // peer, at least in the "are we still receiving messages" context, if we don't give up
245                         // our timeslice to another task we may just spin on this peer, starving other peers
246                         // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
247                         // here.
248                         let _ = tokio::task::yield_now().await;
249                 };
250                 us.lock().unwrap().writer.take();
251                 if let Disconnect::PeerDisconnected = disconnect_type {
252                         peer_manager.as_ref().socket_disconnected(&our_descriptor);
253                         peer_manager.as_ref().process_events();
254                 }
255         }
256
257         fn new(stream: StdTcpStream) -> (Arc<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
258                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
259                 // PeerManager, we will eventually get notified that there is room in the socket to write
260                 // new bytes, which will generate an event. That event will be popped off the queue before
261                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
262                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
263                 let (write_avail, write_receiver) = mpsc::channel(1);
264                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
265                 // we shove a value into the channel which comes after we've reset the read_paused bool to
266                 // false.
267                 let (read_waker, read_receiver) = mpsc::channel(1);
268                 stream.set_nonblocking(true).unwrap();
269                 let tokio_stream = Arc::new(TcpStream::from_std(stream).unwrap());
270
271                 (Arc::clone(&tokio_stream), write_receiver, read_receiver,
272                 Arc::new(Mutex::new(Self {
273                         writer: Some(tokio_stream), write_avail, read_waker, read_paused: false,
274                         rl_requested_disconnect: false,
275                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
276                 })))
277         }
278 }
279
280 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<SocketAddress> {
281         match stream.peer_addr() {
282                 Ok(SocketAddr::V4(sockaddr)) => Some(SocketAddress::TcpIpV4 {
283                         addr: sockaddr.ip().octets(),
284                         port: sockaddr.port(),
285                 }),
286                 Ok(SocketAddr::V6(sockaddr)) => Some(SocketAddress::TcpIpV6 {
287                         addr: sockaddr.ip().octets(),
288                         port: sockaddr.port(),
289                 }),
290                 Err(_) => None,
291         }
292 }
293
294 /// Process incoming messages and feed outgoing messages on the provided socket generated by
295 /// accepting an incoming connection.
296 ///
297 /// The returned future will complete when the peer is disconnected and associated handling
298 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
299 /// not need to poll the provided future in order to make progress.
300 pub fn setup_inbound<PM: Deref + 'static + Send + Sync + Clone>(
301         peer_manager: PM,
302         stream: StdTcpStream,
303 ) -> impl std::future::Future<Output=()>
304 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
305         let remote_addr = get_addr_from_stream(&stream);
306         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
307         #[cfg(test)]
308         let last_us = Arc::clone(&us);
309
310         let handle_opt = if peer_manager.as_ref().new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr).is_ok() {
311                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
312         } else {
313                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
314                 // requirements.
315                 None
316         };
317
318         async move {
319                 if let Some(handle) = handle_opt {
320                         if let Err(e) = handle.await {
321                                 assert!(e.is_cancelled());
322                         } else {
323                                 // This is certainly not guaranteed to always be true - the read loop may exit
324                                 // while there are still pending write wakers that need to be woken up after the
325                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
326                                 // keep too many wakers around, this makes sense. The race should be rare (we do
327                                 // some work after shutdown()) and an error would be a major memory leak.
328                                 #[cfg(test)]
329                                 debug_assert!(Arc::try_unwrap(last_us).is_ok());
330                         }
331                 }
332         }
333 }
334
335 /// Process incoming messages and feed outgoing messages on the provided socket generated by
336 /// making an outbound connection which is expected to be accepted by a peer with the given
337 /// public key. The relevant processing is set to run free (via tokio::spawn).
338 ///
339 /// The returned future will complete when the peer is disconnected and associated handling
340 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
341 /// not need to poll the provided future in order to make progress.
342 pub fn setup_outbound<PM: Deref + 'static + Send + Sync + Clone>(
343         peer_manager: PM,
344         their_node_id: PublicKey,
345         stream: StdTcpStream,
346 ) -> impl std::future::Future<Output=()>
347 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
348         let remote_addr = get_addr_from_stream(&stream);
349         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
350         #[cfg(test)]
351         let last_us = Arc::clone(&us);
352         let handle_opt = if let Ok(initial_send) = peer_manager.as_ref().new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
353                 Some(tokio::spawn(async move {
354                         // We should essentially always have enough room in a TCP socket buffer to send the
355                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
356                         // fail writes and wake us back up later to write. Thus, we handle a single
357                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
358                         // and use a relatively tight timeout.
359                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
360                                 loop {
361                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
362                                                 v if v == initial_send.len() => break Ok(()),
363                                                 0 => {
364                                                         write_receiver.recv().await;
365                                                         // In theory we could check for if we've been instructed to disconnect
366                                                         // the peer here, but its OK to just skip it - we'll check for it in
367                                                         // schedule_read prior to any relevant calls into RL.
368                                                 },
369                                                 _ => {
370                                                         eprintln!("Failed to write first full message to socket!");
371                                                         peer_manager.as_ref().socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
372                                                         break Err(());
373                                                 }
374                                         }
375                                 }
376                         }).await {
377                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
378                         }
379                 }))
380         } else {
381                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
382                 // requirements.
383                 None
384         };
385
386         async move {
387                 if let Some(handle) = handle_opt {
388                         if let Err(e) = handle.await {
389                                 assert!(e.is_cancelled());
390                         } else {
391                                 // This is certainly not guaranteed to always be true - the read loop may exit
392                                 // while there are still pending write wakers that need to be woken up after the
393                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
394                                 // keep too many wakers around, this makes sense. The race should be rare (we do
395                                 // some work after shutdown()) and an error would be a major memory leak.
396                                 #[cfg(test)]
397                                 debug_assert!(Arc::try_unwrap(last_us).is_ok());
398                         }
399                 }
400         }
401 }
402
403 /// Process incoming messages and feed outgoing messages on a new connection made to the given
404 /// socket address which is expected to be accepted by a peer with the given public key (by
405 /// scheduling futures with tokio::spawn).
406 ///
407 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
408 ///
409 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
410 /// connection setup. That future then returns a future which will complete when the peer is
411 /// disconnected and associated handling futures are freed, though, because all processing in said
412 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
413 /// make progress.
414 pub async fn connect_outbound<PM: Deref + 'static + Send + Sync + Clone>(
415         peer_manager: PM,
416         their_node_id: PublicKey,
417         addr: SocketAddr,
418 ) -> Option<impl std::future::Future<Output=()>>
419 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
420         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
421                 Some(setup_outbound(peer_manager, their_node_id, stream))
422         } else { None }
423 }
424
425 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
426         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
427
428 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
429         let new_waker = unsafe { Arc::from_raw(orig_ptr as *const mpsc::Sender<()>) };
430         let res = write_avail_to_waker(&new_waker);
431         // Don't decrement the refcount when dropping new_waker by turning it back `into_raw`.
432         let _ = Arc::into_raw(new_waker);
433         res
434 }
435 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
436 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
437 // sending thread may have already gone away due to a socket close, in which case there's nothing
438 // to wake up anyway.
439 fn wake_socket_waker(orig_ptr: *const ()) {
440         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
441         let _ = sender.try_send(());
442         drop_socket_waker(orig_ptr);
443 }
444 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
445         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
446         let sender = unsafe { &*sender_ptr };
447         let _ = sender.try_send(());
448 }
449 fn drop_socket_waker(orig_ptr: *const ()) {
450         let _orig_arc = unsafe { Arc::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
451         // _orig_arc is now dropped
452 }
453 fn write_avail_to_waker(sender: &Arc<mpsc::Sender<()>>) -> task::RawWaker {
454         let new_ptr = Arc::into_raw(Arc::clone(&sender));
455         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
456 }
457
458 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
459 /// type in the template of PeerHandler.
460 pub struct SocketDescriptor {
461         conn: Arc<Mutex<Connection>>,
462         // We store a copy of the mpsc::Sender to wake the read task in an Arc here. While we can
463         // simply clone the sender and store a copy in each waker, that would require allocating for
464         // each waker. Instead, we can simply `Arc::clone`, creating a new reference and store the
465         // pointer in the waker.
466         write_avail_sender: Arc<mpsc::Sender<()>>,
467         id: u64,
468 }
469 impl SocketDescriptor {
470         fn new(conn: Arc<Mutex<Connection>>) -> Self {
471                 let (id, write_avail_sender) = {
472                         let us = conn.lock().unwrap();
473                         (us.id, Arc::new(us.write_avail.clone()))
474                 };
475                 Self { conn, id, write_avail_sender }
476         }
477 }
478 impl peer_handler::SocketDescriptor for SocketDescriptor {
479         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
480                 // To send data, we take a lock on our Connection to access the TcpStream, writing to it if
481                 // there's room in the kernel buffer, or otherwise create a new Waker with a
482                 // SocketDescriptor in it which can wake up the write_avail Sender, waking up the
483                 // processing future which will call write_buffer_space_avail and we'll end up back here.
484                 let mut us = self.conn.lock().unwrap();
485                 if us.writer.is_none() {
486                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
487                         return 0;
488                 }
489
490                 if resume_read && us.read_paused {
491                         // The schedule_read future may go to lock up but end up getting woken up by there
492                         // being more room in the write buffer, dropping the other end of this Sender
493                         // before we get here, so we ignore any failures to wake it up.
494                         us.read_paused = false;
495                         let _ = us.read_waker.try_send(());
496                 }
497                 if data.is_empty() { return 0; }
498                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&self.write_avail_sender)) };
499                 let mut ctx = task::Context::from_waker(&waker);
500                 let mut written_len = 0;
501                 loop {
502                         match us.writer.as_ref().unwrap().poll_write_ready(&mut ctx) {
503                                 task::Poll::Ready(Ok(())) => {
504                                         match us.writer.as_ref().unwrap().try_write(&data[written_len..]) {
505                                                 Ok(res) => {
506                                                         debug_assert_ne!(res, 0);
507                                                         written_len += res;
508                                                         if written_len == data.len() { return written_len; }
509                                                 },
510                                                 Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => {
511                                                         continue;
512                                                 }
513                                                 Err(_) => return written_len,
514                                         }
515                                 },
516                                 task::Poll::Ready(Err(_)) => return written_len,
517                                 task::Poll::Pending => {
518                                         // We're queued up for a write event now, but we need to make sure we also
519                                         // pause read given we're now waiting on the remote end to ACK (and in
520                                         // accordance with the send_data() docs).
521                                         us.read_paused = true;
522                                         // Further, to avoid any current pending read causing a `read_event` call, wake
523                                         // up the read_waker and restart its loop.
524                                         let _ = us.read_waker.try_send(());
525                                         return written_len;
526                                 },
527                         }
528                 }
529         }
530
531         fn disconnect_socket(&mut self) {
532                 let mut us = self.conn.lock().unwrap();
533                 us.rl_requested_disconnect = true;
534                 // Wake up the sending thread, assuming it is still alive
535                 let _ = us.write_avail.try_send(());
536         }
537 }
538 impl Clone for SocketDescriptor {
539         fn clone(&self) -> Self {
540                 Self {
541                         conn: Arc::clone(&self.conn),
542                         id: self.id,
543                         write_avail_sender: Arc::clone(&self.write_avail_sender),
544                 }
545         }
546 }
547 impl Eq for SocketDescriptor {}
548 impl PartialEq for SocketDescriptor {
549         fn eq(&self, o: &Self) -> bool {
550                 self.id == o.id
551         }
552 }
553 impl Hash for SocketDescriptor {
554         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
555                 self.id.hash(state);
556         }
557 }
558
559 #[cfg(test)]
560 mod tests {
561         use lightning::ln::features::*;
562         use lightning::ln::msgs::*;
563         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
564         use lightning::routing::gossip::NodeId;
565         use lightning::events::*;
566         use lightning::util::test_utils::TestNodeSigner;
567         use bitcoin::Network;
568         use bitcoin::blockdata::constants::ChainHash;
569         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
570
571         use tokio::sync::mpsc;
572
573         use std::mem;
574         use std::sync::atomic::{AtomicBool, Ordering};
575         use std::sync::{Arc, Mutex};
576         use std::time::Duration;
577
578         pub struct TestLogger();
579         impl lightning::util::logger::Logger for TestLogger {
580                 fn log(&self, record: lightning::util::logger::Record) {
581                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
582                 }
583         }
584
585         struct MsgHandler{
586                 expected_pubkey: PublicKey,
587                 pubkey_connected: mpsc::Sender<()>,
588                 pubkey_disconnected: mpsc::Sender<()>,
589                 disconnected_flag: AtomicBool,
590                 msg_events: Mutex<Vec<MessageSendEvent>>,
591         }
592         impl RoutingMessageHandler for MsgHandler {
593                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
594                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
595                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
596                 fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
597                 fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> { None }
598                 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
599                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
600                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
601                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
602                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
603                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
604                 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
605                 fn processing_queue_high(&self) -> bool { false }
606         }
607         impl ChannelMessageHandler for MsgHandler {
608                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {}
609                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {}
610                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
611                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
612                 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
613                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
614                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
615                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
616                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
617                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
618                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
619                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
620                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
621                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
622                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
623                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
624                 fn handle_open_channel_v2(&self, _their_node_id: &PublicKey, _msg: &OpenChannelV2) {}
625                 fn handle_accept_channel_v2(&self, _their_node_id: &PublicKey, _msg: &AcceptChannelV2) {}
626                 fn handle_stfu(&self, _their_node_id: &PublicKey, _msg: &Stfu) {}
627                 fn handle_splice(&self, _their_node_id: &PublicKey, _msg: &Splice) {}
628                 fn handle_splice_ack(&self, _their_node_id: &PublicKey, _msg: &SpliceAck) {}
629                 fn handle_splice_locked(&self, _their_node_id: &PublicKey, _msg: &SpliceLocked) {}
630                 fn handle_tx_add_input(&self, _their_node_id: &PublicKey, _msg: &TxAddInput) {}
631                 fn handle_tx_add_output(&self, _their_node_id: &PublicKey, _msg: &TxAddOutput) {}
632                 fn handle_tx_remove_input(&self, _their_node_id: &PublicKey, _msg: &TxRemoveInput) {}
633                 fn handle_tx_remove_output(&self, _their_node_id: &PublicKey, _msg: &TxRemoveOutput) {}
634                 fn handle_tx_complete(&self, _their_node_id: &PublicKey, _msg: &TxComplete) {}
635                 fn handle_tx_signatures(&self, _their_node_id: &PublicKey, _msg: &TxSignatures) {}
636                 fn handle_tx_init_rbf(&self, _their_node_id: &PublicKey, _msg: &TxInitRbf) {}
637                 fn handle_tx_ack_rbf(&self, _their_node_id: &PublicKey, _msg: &TxAckRbf) {}
638                 fn handle_tx_abort(&self, _their_node_id: &PublicKey, _msg: &TxAbort) {}
639                 fn peer_disconnected(&self, their_node_id: &PublicKey) {
640                         if *their_node_id == self.expected_pubkey {
641                                 self.disconnected_flag.store(true, Ordering::SeqCst);
642                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
643                         }
644                 }
645                 fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> {
646                         if *their_node_id == self.expected_pubkey {
647                                 self.pubkey_connected.clone().try_send(()).unwrap();
648                         }
649                         Ok(())
650                 }
651                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
652                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
653                 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
654                 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
655                 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
656                         Some(vec![ChainHash::using_genesis_block(Network::Testnet)])
657                 }
658         }
659         impl MessageSendEventsProvider for MsgHandler {
660                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
661                         let mut ret = Vec::new();
662                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
663                         ret
664                 }
665         }
666
667         fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
668                 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
669                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
670                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
671                         (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
672                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
673                         (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
674                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
675                         (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
676                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
677                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
678                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
679                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
680                 } else { panic!("Failed to bind to v4 localhost on common ports"); }
681         }
682
683         async fn do_basic_connection_test() {
684                 let secp_ctx = Secp256k1::new();
685                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
686                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
687                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
688                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
689
690                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
691                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
692                 let a_handler = Arc::new(MsgHandler {
693                         expected_pubkey: b_pub,
694                         pubkey_connected: a_connected_sender,
695                         pubkey_disconnected: a_disconnected_sender,
696                         disconnected_flag: AtomicBool::new(false),
697                         msg_events: Mutex::new(Vec::new()),
698                 });
699                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
700                         chan_handler: Arc::clone(&a_handler),
701                         route_handler: Arc::clone(&a_handler),
702                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
703                         custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
704                 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
705
706                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
707                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
708                 let b_handler = Arc::new(MsgHandler {
709                         expected_pubkey: a_pub,
710                         pubkey_connected: b_connected_sender,
711                         pubkey_disconnected: b_disconnected_sender,
712                         disconnected_flag: AtomicBool::new(false),
713                         msg_events: Mutex::new(Vec::new()),
714                 });
715                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
716                         chan_handler: Arc::clone(&b_handler),
717                         route_handler: Arc::clone(&b_handler),
718                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
719                         custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
720                 }, 0, &[2; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(b_key))));
721
722                 // We bind on localhost, hoping the environment is properly configured with a local
723                 // address. This may not always be the case in containers and the like, so if this test is
724                 // failing for you check that you have a loopback interface and it is configured with
725                 // 127.0.0.1.
726                 let (conn_a, conn_b) = make_tcp_connection();
727
728                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
729                 let fut_b = super::setup_inbound(b_manager, conn_b);
730
731                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
732                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
733
734                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
735                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
736                 });
737                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
738                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
739
740                 a_manager.process_events();
741                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
742                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
743                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
744                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
745
746                 fut_a.await;
747                 fut_b.await;
748         }
749
750         #[tokio::test(flavor = "multi_thread")]
751         async fn basic_threaded_connection_test() {
752                 do_basic_connection_test().await;
753         }
754
755         #[tokio::test]
756         async fn basic_unthreaded_connection_test() {
757                 do_basic_connection_test().await;
758         }
759
760         async fn race_disconnect_accept() {
761                 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
762                 // This attempts to find other similar races by opening connections and shutting them down
763                 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
764                 let secp_ctx = Secp256k1::new();
765                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
766                 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
767                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
768
769                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
770                         chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
771                         onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
772                         route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
773                         custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
774                 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
775
776                 // Make two connections, one for an inbound and one for an outbound connection
777                 let conn_a = {
778                         let (conn_a, _) = make_tcp_connection();
779                         conn_a
780                 };
781                 let conn_b = {
782                         let (_, conn_b) = make_tcp_connection();
783                         conn_b
784                 };
785
786                 // Call connection setup inside new tokio tasks.
787                 let manager_reference = Arc::clone(&a_manager);
788                 tokio::spawn(async move {
789                         super::setup_inbound(manager_reference, conn_a).await
790                 });
791                 tokio::spawn(async move {
792                         super::setup_outbound(a_manager, b_pub, conn_b).await
793                 });
794         }
795
796         #[tokio::test(flavor = "multi_thread")]
797         async fn threaded_race_disconnect_accept() {
798                 race_disconnect_accept().await;
799         }
800
801         #[tokio::test]
802         async fn unthreaded_race_disconnect_accept() {
803                 race_disconnect_accept().await;
804         }
805 }