SimpleArcPeerManager type: remove outer Arc for flexibility
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
21 //! their individual docs for more. All three take a
22 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
23 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
24 //! The call site should, thus, look something like this:
25 //! ```
26 //! use tokio::sync::mpsc;
27 //! use std::net::TcpStream;
28 //! use bitcoin::secp256k1::key::PublicKey;
29 //! use lightning::util::events::EventsProvider;
30 //! use std::net::SocketAddr;
31 //! use std::sync::Arc;
32 //!
33 //! // Define concrete types for our high-level objects:
34 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
35 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
36 //! type Logger = dyn lightning::util::logger::Logger;
37 //! type ChainAccess = dyn lightning::chain::Access;
38 //! type ChainFilter = dyn lightning::chain::Filter;
39 //! type DataPersister = dyn lightning::chain::channelmonitor::Persist<lightning::chain::keysinterface::InMemorySigner>;
40 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
41 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
42 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
43 //!
44 //! // Connect to node with pubkey their_node_id at addr:
45 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
46 //!     let (sender, mut receiver) = mpsc::channel(2);
47 //!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
48 //!     loop {
49 //!         receiver.recv().await;
50 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
51 //!             // Handle the event!
52 //!         }
53 //!         for _event in chain_monitor.get_and_clear_pending_events().drain(..) {
54 //!             // Handle the event!
55 //!         }
56 //!     }
57 //! }
58 //!
59 //! // Begin reading from a newly accepted socket and talk to the peer:
60 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
61 //!     let (sender, mut receiver) = mpsc::channel(2);
62 //!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
63 //!     loop {
64 //!         receiver.recv().await;
65 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
66 //!             // Handle the event!
67 //!         }
68 //!         for _event in chain_monitor.get_and_clear_pending_events().drain(..) {
69 //!             // Handle the event!
70 //!         }
71 //!     }
72 //! }
73 //! ```
74
75 use bitcoin::secp256k1::key::PublicKey;
76
77 use tokio::net::TcpStream;
78 use tokio::{io, time};
79 use tokio::sync::mpsc;
80 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
81
82 use lightning::ln::peer_handler;
83 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
84 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
85 use lightning::util::logger::Logger;
86
87 use std::{task, thread};
88 use std::net::SocketAddr;
89 use std::net::TcpStream as StdTcpStream;
90 use std::sync::{Arc, Mutex, MutexGuard};
91 use std::sync::atomic::{AtomicU64, Ordering};
92 use std::time::Duration;
93 use std::hash::Hash;
94
95 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
96
97 /// Connection contains all our internal state for a connection - we hold a reference to the
98 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
99 /// read future (which is returned by schedule_read).
100 struct Connection {
101         writer: Option<io::WriteHalf<TcpStream>>,
102         event_notify: mpsc::Sender<()>,
103         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
104         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
105         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
106         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
107         // the schedule_read stack.
108         //
109         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
110         // runtime with functions templated by the Arc<PeerManager> type, calling
111         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
112         // more unsafe voodo than I really feel like writing.
113         write_avail: mpsc::Sender<()>,
114         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
115         // so by setting read_paused. At that point, the read task will stop reading bytes from the
116         // socket. To wake it up (without otherwise changing its state, we can push a value into this
117         // Sender.
118         read_waker: mpsc::Sender<()>,
119         // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
120         // are sure we won't call any more read/write PeerManager functions with the same connection.
121         // This is set to true if we're in such a condition (with disconnect checked before with the
122         // top-level mutex held) and false when we can return.
123         block_disconnect_socket: bool,
124         read_paused: bool,
125         rl_requested_disconnect: bool,
126         id: u64,
127 }
128 impl Connection {
129         fn event_trigger(us: &mut MutexGuard<Self>) {
130                 match us.event_notify.try_send(()) {
131                         Ok(_) => {},
132                         Err(mpsc::error::TrySendError::Full(_)) => {
133                                 // Ignore full errors as we just need the user to poll after this point, so if they
134                                 // haven't received the last send yet, it doesn't matter.
135                         },
136                         _ => panic!()
137                 }
138         }
139         async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
140                         CMH: ChannelMessageHandler + 'static,
141                         RMH: RoutingMessageHandler + 'static,
142                         L: Logger + 'static + ?Sized {
143                 let peer_manager_ref = peer_manager.clone();
144                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
145                 let mut buf = [0; 8192];
146
147                 let mut our_descriptor = SocketDescriptor::new(us.clone());
148                 // An enum describing why we did/are disconnecting:
149                 enum Disconnect {
150                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
151                         // SocketDescriptor::disconnect_socket.
152                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
153                         // already knows we're disconnected.
154                         CloseConnection,
155                         // The connection was disconnected for some other reason, ie because the socket was
156                         // closed.
157                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
158                         // Rust-Lightning that the socket is gone.
159                         PeerDisconnected
160                 }
161                 let disconnect_type = loop {
162                         macro_rules! shutdown_socket {
163                                 ($err: expr, $need_disconnect: expr) => { {
164                                         println!("Disconnecting peer due to {}!", $err);
165                                         break $need_disconnect;
166                                 } }
167                         }
168
169                         macro_rules! prepare_read_write_call {
170                                 () => { {
171                                         let mut us_lock = us.lock().unwrap();
172                                         if us_lock.rl_requested_disconnect {
173                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
174                                         }
175                                         us_lock.block_disconnect_socket = true;
176                                 } }
177                         }
178
179                         let read_paused = us.lock().unwrap().read_paused;
180                         tokio::select! {
181                                 v = write_avail_receiver.recv() => {
182                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
183                                         prepare_read_write_call!();
184                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
185                                                 shutdown_socket!(e, Disconnect::CloseConnection);
186                                         }
187                                         us.lock().unwrap().block_disconnect_socket = false;
188                                 },
189                                 _ = read_wake_receiver.recv() => {},
190                                 read = reader.read(&mut buf), if !read_paused => match read {
191                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
192                                         Ok(len) => {
193                                                 prepare_read_write_call!();
194                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
195                                                 let mut us_lock = us.lock().unwrap();
196                                                 match read_res {
197                                                         Ok(pause_read) => {
198                                                                 if pause_read {
199                                                                         us_lock.read_paused = true;
200                                                                 }
201                                                                 Self::event_trigger(&mut us_lock);
202                                                         },
203                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
204                                                 }
205                                                 us_lock.block_disconnect_socket = false;
206                                         },
207                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
208                                 },
209                         }
210                 };
211                 let writer_option = us.lock().unwrap().writer.take();
212                 if let Some(mut writer) = writer_option {
213                         // If the socket is already closed, shutdown() will fail, so just ignore it.
214                         let _ = writer.shutdown().await;
215                 }
216                 if let Disconnect::PeerDisconnected = disconnect_type {
217                         peer_manager_ref.socket_disconnected(&our_descriptor);
218                         Self::event_trigger(&mut us.lock().unwrap());
219                 }
220         }
221
222         fn new(event_notify: mpsc::Sender<()>, stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
223                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
224                 // PeerManager, we will eventually get notified that there is room in the socket to write
225                 // new bytes, which will generate an event. That event will be popped off the queue before
226                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
227                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
228                 let (write_avail, write_receiver) = mpsc::channel(1);
229                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
230                 // we shove a value into the channel which comes after we've reset the read_paused bool to
231                 // false.
232                 let (read_waker, read_receiver) = mpsc::channel(1);
233                 stream.set_nonblocking(true).unwrap();
234                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
235
236                 (reader, write_receiver, read_receiver,
237                 Arc::new(Mutex::new(Self {
238                         writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
239                         block_disconnect_socket: false, rl_requested_disconnect: false,
240                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
241                 })))
242         }
243 }
244
245 /// Process incoming messages and feed outgoing messages on the provided socket generated by
246 /// accepting an incoming connection.
247 ///
248 /// The returned future will complete when the peer is disconnected and associated handling
249 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
250 /// not need to poll the provided future in order to make progress.
251 ///
252 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
253 pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
254                 CMH: ChannelMessageHandler + 'static,
255                 RMH: RoutingMessageHandler + 'static,
256                 L: Logger + 'static + ?Sized {
257         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
258         #[cfg(debug_assertions)]
259         let last_us = Arc::clone(&us);
260
261         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
262                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
263         } else {
264                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
265                 // requirements.
266                 None
267         };
268
269         async move {
270                 if let Some(handle) = handle_opt {
271                         if let Err(e) = handle.await {
272                                 assert!(e.is_cancelled());
273                         } else {
274                                 // This is certainly not guaranteed to always be true - the read loop may exit
275                                 // while there are still pending write wakers that need to be woken up after the
276                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
277                                 // keep too many wakers around, this makes sense. The race should be rare (we do
278                                 // some work after shutdown()) and an error would be a major memory leak.
279                                 #[cfg(debug_assertions)]
280                                 assert!(Arc::try_unwrap(last_us).is_ok());
281                         }
282                 }
283         }
284 }
285
286 /// Process incoming messages and feed outgoing messages on the provided socket generated by
287 /// making an outbound connection which is expected to be accepted by a peer with the given
288 /// public key. The relevant processing is set to run free (via tokio::spawn).
289 ///
290 /// The returned future will complete when the peer is disconnected and associated handling
291 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
292 /// not need to poll the provided future in order to make progress.
293 ///
294 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
295 pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
296                 CMH: ChannelMessageHandler + 'static,
297                 RMH: RoutingMessageHandler + 'static,
298                 L: Logger + 'static + ?Sized {
299         let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
300         #[cfg(debug_assertions)]
301         let last_us = Arc::clone(&us);
302
303         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
304                 Some(tokio::spawn(async move {
305                         // We should essentially always have enough room in a TCP socket buffer to send the
306                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
307                         // fail writes and wake us back up later to write. Thus, we handle a single
308                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
309                         // and use a relatively tight timeout.
310                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
311                                 loop {
312                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
313                                                 v if v == initial_send.len() => break Ok(()),
314                                                 0 => {
315                                                         write_receiver.recv().await;
316                                                         // In theory we could check for if we've been instructed to disconnect
317                                                         // the peer here, but its OK to just skip it - we'll check for it in
318                                                         // schedule_read prior to any relevant calls into RL.
319                                                 },
320                                                 _ => {
321                                                         eprintln!("Failed to write first full message to socket!");
322                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
323                                                         break Err(());
324                                                 }
325                                         }
326                                 }
327                         }).await {
328                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
329                         }
330                 }))
331         } else {
332                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
333                 // requirements.
334                 None
335         };
336
337         async move {
338                 if let Some(handle) = handle_opt {
339                         if let Err(e) = handle.await {
340                                 assert!(e.is_cancelled());
341                         } else {
342                                 // This is certainly not guaranteed to always be true - the read loop may exit
343                                 // while there are still pending write wakers that need to be woken up after the
344                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
345                                 // keep too many wakers around, this makes sense. The race should be rare (we do
346                                 // some work after shutdown()) and an error would be a major memory leak.
347                                 #[cfg(debug_assertions)]
348                                 assert!(Arc::try_unwrap(last_us).is_ok());
349                         }
350                 }
351         }
352 }
353
354 /// Process incoming messages and feed outgoing messages on a new connection made to the given
355 /// socket address which is expected to be accepted by a peer with the given public key (by
356 /// scheduling futures with tokio::spawn).
357 ///
358 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
359 ///
360 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
361 /// connection setup. That future then returns a future which will complete when the peer is
362 /// disconnected and associated handling futures are freed, though, because all processing in said
363 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
364 /// make progress.
365 ///
366 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
367 pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
368                 CMH: ChannelMessageHandler + 'static,
369                 RMH: RoutingMessageHandler + 'static,
370                 L: Logger + 'static + ?Sized {
371         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
372                 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
373         } else { None }
374 }
375
376 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
377         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
378
379 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
380         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
381 }
382 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
383 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
384 // sending thread may have already gone away due to a socket close, in which case there's nothing
385 // to wake up anyway.
386 fn wake_socket_waker(orig_ptr: *const ()) {
387         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
388         let _ = sender.try_send(());
389         drop_socket_waker(orig_ptr);
390 }
391 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
392         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
393         let sender = unsafe { (*sender_ptr).clone() };
394         let _ = sender.try_send(());
395 }
396 fn drop_socket_waker(orig_ptr: *const ()) {
397         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
398         // _orig_box is now dropped
399 }
400 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
401         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
402         let new_ptr = new_box as *const mpsc::Sender<()>;
403         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
404 }
405
406 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
407 /// type in the template of PeerHandler.
408 pub struct SocketDescriptor {
409         conn: Arc<Mutex<Connection>>,
410         id: u64,
411 }
412 impl SocketDescriptor {
413         fn new(conn: Arc<Mutex<Connection>>) -> Self {
414                 let id = conn.lock().unwrap().id;
415                 Self { conn, id }
416         }
417 }
418 impl peer_handler::SocketDescriptor for SocketDescriptor {
419         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
420                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
421                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
422                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
423                 // processing future which will call write_buffer_space_avail and we'll end up back here.
424                 let mut us = self.conn.lock().unwrap();
425                 if us.writer.is_none() {
426                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
427                         return 0;
428                 }
429
430                 if resume_read && us.read_paused {
431                         // The schedule_read future may go to lock up but end up getting woken up by there
432                         // being more room in the write buffer, dropping the other end of this Sender
433                         // before we get here, so we ignore any failures to wake it up.
434                         us.read_paused = false;
435                         let _ = us.read_waker.try_send(());
436                 }
437                 if data.is_empty() { return 0; }
438                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
439                 let mut ctx = task::Context::from_waker(&waker);
440                 let mut written_len = 0;
441                 loop {
442                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
443                                 task::Poll::Ready(Ok(res)) => {
444                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
445                                         // know how to handle it if it does (cause it should be a Poll::Pending
446                                         // instead):
447                                         assert_ne!(res, 0);
448                                         written_len += res;
449                                         if written_len == data.len() { return written_len; }
450                                 },
451                                 task::Poll::Ready(Err(e)) => {
452                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
453                                         // know how to handle it if it does (cause it should be a Poll::Pending
454                                         // instead):
455                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
456                                         // Probably we've already been closed, just return what we have and let the
457                                         // read thread handle closing logic.
458                                         return written_len;
459                                 },
460                                 task::Poll::Pending => {
461                                         // We're queued up for a write event now, but we need to make sure we also
462                                         // pause read given we're now waiting on the remote end to ACK (and in
463                                         // accordance with the send_data() docs).
464                                         us.read_paused = true;
465                                         return written_len;
466                                 },
467                         }
468                 }
469         }
470
471         fn disconnect_socket(&mut self) {
472                 {
473                         let mut us = self.conn.lock().unwrap();
474                         us.rl_requested_disconnect = true;
475                         us.read_paused = true;
476                         // Wake up the sending thread, assuming it is still alive
477                         let _ = us.write_avail.try_send(());
478                         // Happy-path return:
479                         if !us.block_disconnect_socket { return; }
480                 }
481                 while self.conn.lock().unwrap().block_disconnect_socket {
482                         thread::yield_now();
483                 }
484         }
485 }
486 impl Clone for SocketDescriptor {
487         fn clone(&self) -> Self {
488                 Self {
489                         conn: Arc::clone(&self.conn),
490                         id: self.id,
491                 }
492         }
493 }
494 impl Eq for SocketDescriptor {}
495 impl PartialEq for SocketDescriptor {
496         fn eq(&self, o: &Self) -> bool {
497                 self.id == o.id
498         }
499 }
500 impl Hash for SocketDescriptor {
501         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
502                 self.id.hash(state);
503         }
504 }
505
506 #[cfg(test)]
507 mod tests {
508         use lightning::ln::features::*;
509         use lightning::ln::msgs::*;
510         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
511         use lightning::util::events::*;
512         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
513
514         use tokio::sync::mpsc;
515
516         use std::mem;
517         use std::sync::atomic::{AtomicBool, Ordering};
518         use std::sync::{Arc, Mutex};
519         use std::time::Duration;
520
521         pub struct TestLogger();
522         impl lightning::util::logger::Logger for TestLogger {
523                 fn log(&self, record: &lightning::util::logger::Record) {
524                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
525                 }
526         }
527
528         struct MsgHandler{
529                 expected_pubkey: PublicKey,
530                 pubkey_connected: mpsc::Sender<()>,
531                 pubkey_disconnected: mpsc::Sender<()>,
532                 disconnected_flag: AtomicBool,
533                 msg_events: Mutex<Vec<MessageSendEvent>>,
534         }
535         impl RoutingMessageHandler for MsgHandler {
536                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
537                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
538                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
539                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
540                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
541                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
542                 fn sync_routing_table(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
543                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
544                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
545                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
546                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
547         }
548         impl ChannelMessageHandler for MsgHandler {
549                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
550                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
551                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
552                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
553                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
554                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
555                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
556                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
557                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
558                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
559                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
560                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
561                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
562                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
563                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
564                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
565                         if *their_node_id == self.expected_pubkey {
566                                 self.disconnected_flag.store(true, Ordering::SeqCst);
567                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
568                         }
569                 }
570                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
571                         if *their_node_id == self.expected_pubkey {
572                                 self.pubkey_connected.clone().try_send(()).unwrap();
573                         }
574                 }
575                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
576                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
577         }
578         impl MessageSendEventsProvider for MsgHandler {
579                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
580                         let mut ret = Vec::new();
581                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
582                         ret
583                 }
584         }
585
586         async fn do_basic_connection_test() {
587                 let secp_ctx = Secp256k1::new();
588                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
589                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
590                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
591                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
592
593                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
594                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
595                 let a_handler = Arc::new(MsgHandler {
596                         expected_pubkey: b_pub,
597                         pubkey_connected: a_connected_sender,
598                         pubkey_disconnected: a_disconnected_sender,
599                         disconnected_flag: AtomicBool::new(false),
600                         msg_events: Mutex::new(Vec::new()),
601                 });
602                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
603                         chan_handler: Arc::clone(&a_handler),
604                         route_handler: Arc::clone(&a_handler),
605                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
606
607                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
608                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
609                 let b_handler = Arc::new(MsgHandler {
610                         expected_pubkey: a_pub,
611                         pubkey_connected: b_connected_sender,
612                         pubkey_disconnected: b_disconnected_sender,
613                         disconnected_flag: AtomicBool::new(false),
614                         msg_events: Mutex::new(Vec::new()),
615                 });
616                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
617                         chan_handler: Arc::clone(&b_handler),
618                         route_handler: Arc::clone(&b_handler),
619                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
620
621                 // We bind on localhost, hoping the environment is properly configured with a local
622                 // address. This may not always be the case in containers and the like, so if this test is
623                 // failing for you check that you have a loopback interface and it is configured with
624                 // 127.0.0.1.
625                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
626                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
627                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
628                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
629                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
630                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
631                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
632
633                 let (sender, _receiver) = mpsc::channel(2);
634                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, conn_a);
635                 let fut_b = super::setup_inbound(b_manager, sender, conn_b);
636
637                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
638                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
639
640                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
641                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
642                 });
643                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
644                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
645
646                 a_manager.process_events();
647                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
648                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
649                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
650                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
651
652                 fut_a.await;
653                 fut_b.await;
654         }
655
656         #[tokio::test(flavor = "multi_thread")]
657         async fn basic_threaded_connection_test() {
658                 do_basic_connection_test().await;
659         }
660         #[tokio::test]
661         async fn basic_unthreaded_connection_test() {
662                 do_basic_connection_test().await;
663         }
664 }