beaafcac0f28eb4460102a52adbb53878c7af841
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
21 //! their individual docs for more. All three take a
22 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
23 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
24 //! The call site should, thus, look something like this:
25 //! ```
26 //! use tokio::sync::mpsc;
27 //! use tokio::net::TcpStream;
28 //! use bitcoin::secp256k1::key::PublicKey;
29 //! use lightning::util::events::EventsProvider;
30 //! use std::net::SocketAddr;
31 //! use std::sync::Arc;
32 //!
33 //! // Define concrete types for our high-level objects:
34 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
35 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
36 //! type Logger = dyn lightning::util::logger::Logger;
37 //! type ChainAccess = dyn lightning::chain::Access;
38 //! type ChainFilter = dyn lightning::chain::Filter;
39 //! type ChainMonitor = lightning::ln::channelmonitor::ChainMonitor<lightning::chain::keysinterface::InMemoryChannelKeys, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>>;
40 //! type ChannelManager = lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>;
41 //! type PeerManager = lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>;
42 //!
43 //! // Connect to node with pubkey their_node_id at addr:
44 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
45 //!     let (sender, mut receiver) = mpsc::channel(2);
46 //!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
47 //!     loop {
48 //!         receiver.recv().await;
49 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
50 //!             // Handle the event!
51 //!         }
52 //!         for _event in chain_monitor.get_and_clear_pending_events().drain(..) {
53 //!             // Handle the event!
54 //!         }
55 //!     }
56 //! }
57 //!
58 //! // Begin reading from a newly accepted socket and talk to the peer:
59 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
60 //!     let (sender, mut receiver) = mpsc::channel(2);
61 //!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
62 //!     loop {
63 //!         receiver.recv().await;
64 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
65 //!             // Handle the event!
66 //!         }
67 //!         for _event in chain_monitor.get_and_clear_pending_events().drain(..) {
68 //!             // Handle the event!
69 //!         }
70 //!     }
71 //! }
72 //! ```
73
74 use bitcoin::secp256k1::key::PublicKey;
75
76 use tokio::net::TcpStream;
77 use tokio::{io, time};
78 use tokio::sync::mpsc;
79 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
80
81 use lightning::ln::peer_handler;
82 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
83 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
84 use lightning::util::logger::Logger;
85
86 use std::{task, thread};
87 use std::net::SocketAddr;
88 use std::sync::{Arc, Mutex, MutexGuard};
89 use std::sync::atomic::{AtomicU64, Ordering};
90 use std::time::Duration;
91 use std::hash::Hash;
92
93 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
94
95 /// Connection contains all our internal state for a connection - we hold a reference to the
96 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
97 /// read future (which is returned by schedule_read).
98 struct Connection {
99         writer: Option<io::WriteHalf<TcpStream>>,
100         event_notify: mpsc::Sender<()>,
101         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
102         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
103         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
104         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
105         // the schedule_read stack.
106         //
107         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
108         // runtime with functions templated by the Arc<PeerManager> type, calling
109         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
110         // more unsafe voodo than I really feel like writing.
111         write_avail: mpsc::Sender<()>,
112         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
113         // so by setting read_paused. At that point, the read task will stop reading bytes from the
114         // socket. To wake it up (without otherwise changing its state, we can push a value into this
115         // Sender.
116         read_waker: mpsc::Sender<()>,
117         // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
118         // are sure we won't call any more read/write PeerManager functions with the same connection.
119         // This is set to true if we're in such a condition (with disconnect checked before with the
120         // top-level mutex held) and false when we can return.
121         block_disconnect_socket: bool,
122         read_paused: bool,
123         rl_requested_disconnect: bool,
124         id: u64,
125 }
126 impl Connection {
127         fn event_trigger(us: &mut MutexGuard<Self>) {
128                 match us.event_notify.try_send(()) {
129                         Ok(_) => {},
130                         Err(mpsc::error::TrySendError::Full(_)) => {
131                                 // Ignore full errors as we just need the user to poll after this point, so if they
132                                 // haven't received the last send yet, it doesn't matter.
133                         },
134                         _ => panic!()
135                 }
136         }
137         async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
138                         CMH: ChannelMessageHandler + 'static,
139                         RMH: RoutingMessageHandler + 'static,
140                         L: Logger + 'static + ?Sized {
141                 let peer_manager_ref = peer_manager.clone();
142                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
143                 let mut buf = [0; 8192];
144
145                 let mut our_descriptor = SocketDescriptor::new(us.clone());
146                 // An enum describing why we did/are disconnecting:
147                 enum Disconnect {
148                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
149                         // SocketDescriptor::disconnect_socket.
150                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
151                         // already knows we're disconnected.
152                         CloseConnection,
153                         // The connection was disconnected for some other reason, ie because the socket was
154                         // closed.
155                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
156                         // Rust-Lightning that the socket is gone.
157                         PeerDisconnected
158                 };
159                 let disconnect_type = loop {
160                         macro_rules! shutdown_socket {
161                                 ($err: expr, $need_disconnect: expr) => { {
162                                         println!("Disconnecting peer due to {}!", $err);
163                                         break $need_disconnect;
164                                 } }
165                         }
166
167                         macro_rules! prepare_read_write_call {
168                                 () => { {
169                                         let mut us_lock = us.lock().unwrap();
170                                         if us_lock.rl_requested_disconnect {
171                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
172                                         }
173                                         us_lock.block_disconnect_socket = true;
174                                 } }
175                         }
176
177                         let read_paused = us.lock().unwrap().read_paused;
178                         tokio::select! {
179                                 v = write_avail_receiver.recv() => {
180                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
181                                         prepare_read_write_call!();
182                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
183                                                 shutdown_socket!(e, Disconnect::CloseConnection);
184                                         }
185                                         us.lock().unwrap().block_disconnect_socket = false;
186                                 },
187                                 _ = read_wake_receiver.recv() => {},
188                                 read = reader.read(&mut buf), if !read_paused => match read {
189                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
190                                         Ok(len) => {
191                                                 prepare_read_write_call!();
192                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
193                                                 let mut us_lock = us.lock().unwrap();
194                                                 match read_res {
195                                                         Ok(pause_read) => {
196                                                                 if pause_read {
197                                                                         us_lock.read_paused = true;
198                                                                 }
199                                                                 Self::event_trigger(&mut us_lock);
200                                                         },
201                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
202                                                 }
203                                                 us_lock.block_disconnect_socket = false;
204                                         },
205                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
206                                 },
207                         }
208                 };
209                 let writer_option = us.lock().unwrap().writer.take();
210                 if let Some(mut writer) = writer_option {
211                         // If the socket is already closed, shutdown() will fail, so just ignore it.
212                         let _ = writer.shutdown().await;
213                 }
214                 if let Disconnect::PeerDisconnected = disconnect_type {
215                         peer_manager_ref.socket_disconnected(&our_descriptor);
216                         Self::event_trigger(&mut us.lock().unwrap());
217                 }
218         }
219
220         fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
221                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
222                 // PeerManager, we will eventually get notified that there is room in the socket to write
223                 // new bytes, which will generate an event. That event will be popped off the queue before
224                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
225                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
226                 let (write_avail, write_receiver) = mpsc::channel(1);
227                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
228                 // we shove a value into the channel which comes after we've reset the read_paused bool to
229                 // false.
230                 let (read_waker, read_receiver) = mpsc::channel(1);
231                 let (reader, writer) = io::split(stream);
232
233                 (reader, write_receiver, read_receiver,
234                 Arc::new(Mutex::new(Self {
235                         writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
236                         block_disconnect_socket: false, rl_requested_disconnect: false,
237                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
238                 })))
239         }
240 }
241
242 /// Process incoming messages and feed outgoing messages on the provided socket generated by
243 /// accepting an incoming connection.
244 ///
245 /// The returned future will complete when the peer is disconnected and associated handling
246 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
247 /// not need to poll the provided future in order to make progress.
248 ///
249 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
250 pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) -> impl std::future::Future<Output=()> where
251                 CMH: ChannelMessageHandler + 'static,
252                 RMH: RoutingMessageHandler + 'static,
253                 L: Logger + 'static + ?Sized {
254         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
255         #[cfg(debug_assertions)]
256         let last_us = Arc::clone(&us);
257
258         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
259                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
260         } else {
261                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
262                 // requirements.
263                 None
264         };
265
266         async move {
267                 if let Some(handle) = handle_opt {
268                         if let Err(e) = handle.await {
269                                 assert!(e.is_cancelled());
270                         } else {
271                                 // This is certainly not guaranteed to always be true - the read loop may exit
272                                 // while there are still pending write wakers that need to be woken up after the
273                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
274                                 // keep too many wakers around, this makes sense. The race should be rare (we do
275                                 // some work after shutdown()) and an error would be a major memory leak.
276                                 #[cfg(debug_assertions)]
277                                 assert!(Arc::try_unwrap(last_us).is_ok());
278                         }
279                 }
280         }
281 }
282
283 /// Process incoming messages and feed outgoing messages on the provided socket generated by
284 /// making an outbound connection which is expected to be accepted by a peer with the given
285 /// public key. The relevant processing is set to run free (via tokio::spawn).
286 ///
287 /// The returned future will complete when the peer is disconnected and associated handling
288 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
289 /// not need to poll the provided future in order to make progress.
290 ///
291 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
292 pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) -> impl std::future::Future<Output=()> where
293                 CMH: ChannelMessageHandler + 'static,
294                 RMH: RoutingMessageHandler + 'static,
295                 L: Logger + 'static + ?Sized {
296         let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
297         #[cfg(debug_assertions)]
298         let last_us = Arc::clone(&us);
299
300         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
301                 Some(tokio::spawn(async move {
302                         // We should essentially always have enough room in a TCP socket buffer to send the
303                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
304                         // fail writes and wake us back up later to write. Thus, we handle a single
305                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
306                         // and use a relatively tight timeout.
307                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
308                                 loop {
309                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
310                                                 v if v == initial_send.len() => break Ok(()),
311                                                 0 => {
312                                                         write_receiver.recv().await;
313                                                         // In theory we could check for if we've been instructed to disconnect
314                                                         // the peer here, but its OK to just skip it - we'll check for it in
315                                                         // schedule_read prior to any relevant calls into RL.
316                                                 },
317                                                 _ => {
318                                                         eprintln!("Failed to write first full message to socket!");
319                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
320                                                         break Err(());
321                                                 }
322                                         }
323                                 }
324                         }).await {
325                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
326                         }
327                 }))
328         } else {
329                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
330                 // requirements.
331                 None
332         };
333
334         async move {
335                 if let Some(handle) = handle_opt {
336                         if let Err(e) = handle.await {
337                                 assert!(e.is_cancelled());
338                         } else {
339                                 // This is certainly not guaranteed to always be true - the read loop may exit
340                                 // while there are still pending write wakers that need to be woken up after the
341                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
342                                 // keep too many wakers around, this makes sense. The race should be rare (we do
343                                 // some work after shutdown()) and an error would be a major memory leak.
344                                 #[cfg(debug_assertions)]
345                                 assert!(Arc::try_unwrap(last_us).is_ok());
346                         }
347                 }
348         }
349 }
350
351 /// Process incoming messages and feed outgoing messages on a new connection made to the given
352 /// socket address which is expected to be accepted by a peer with the given public key (by
353 /// scheduling futures with tokio::spawn).
354 ///
355 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
356 ///
357 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
358 /// connection setup. That future then returns a future which will complete when the peer is
359 /// disconnected and associated handling futures are freed, though, because all processing in said
360 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
361 /// make progress.
362 ///
363 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
364 pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
365                 CMH: ChannelMessageHandler + 'static,
366                 RMH: RoutingMessageHandler + 'static,
367                 L: Logger + 'static + ?Sized {
368         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), TcpStream::connect(&addr)).await {
369                 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
370         } else { None }
371 }
372
373 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
374         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
375
376 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
377         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
378 }
379 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
380 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
381 // sending thread may have already gone away due to a socket close, in which case there's nothing
382 // to wake up anyway.
383 fn wake_socket_waker(orig_ptr: *const ()) {
384         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
385         let _ = sender.try_send(());
386         drop_socket_waker(orig_ptr);
387 }
388 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
389         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
390         let mut sender = unsafe { (*sender_ptr).clone() };
391         let _ = sender.try_send(());
392 }
393 fn drop_socket_waker(orig_ptr: *const ()) {
394         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
395         // _orig_box is now dropped
396 }
397 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
398         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
399         let new_ptr = new_box as *const mpsc::Sender<()>;
400         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
401 }
402
403 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
404 /// type in the template of PeerHandler.
405 pub struct SocketDescriptor {
406         conn: Arc<Mutex<Connection>>,
407         id: u64,
408 }
409 impl SocketDescriptor {
410         fn new(conn: Arc<Mutex<Connection>>) -> Self {
411                 let id = conn.lock().unwrap().id;
412                 Self { conn, id }
413         }
414 }
415 impl peer_handler::SocketDescriptor for SocketDescriptor {
416         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
417                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
418                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
419                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
420                 // processing future which will call write_buffer_space_avail and we'll end up back here.
421                 let mut us = self.conn.lock().unwrap();
422                 if us.writer.is_none() {
423                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
424                         return 0;
425                 }
426
427                 if resume_read && us.read_paused {
428                         // The schedule_read future may go to lock up but end up getting woken up by there
429                         // being more room in the write buffer, dropping the other end of this Sender
430                         // before we get here, so we ignore any failures to wake it up.
431                         us.read_paused = false;
432                         let _ = us.read_waker.try_send(());
433                 }
434                 if data.is_empty() { return 0; }
435                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
436                 let mut ctx = task::Context::from_waker(&waker);
437                 let mut written_len = 0;
438                 loop {
439                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
440                                 task::Poll::Ready(Ok(res)) => {
441                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
442                                         // know how to handle it if it does (cause it should be a Poll::Pending
443                                         // instead):
444                                         assert_ne!(res, 0);
445                                         written_len += res;
446                                         if written_len == data.len() { return written_len; }
447                                 },
448                                 task::Poll::Ready(Err(e)) => {
449                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
450                                         // know how to handle it if it does (cause it should be a Poll::Pending
451                                         // instead):
452                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
453                                         // Probably we've already been closed, just return what we have and let the
454                                         // read thread handle closing logic.
455                                         return written_len;
456                                 },
457                                 task::Poll::Pending => {
458                                         // We're queued up for a write event now, but we need to make sure we also
459                                         // pause read given we're now waiting on the remote end to ACK (and in
460                                         // accordance with the send_data() docs).
461                                         us.read_paused = true;
462                                         return written_len;
463                                 },
464                         }
465                 }
466         }
467
468         fn disconnect_socket(&mut self) {
469                 {
470                         let mut us = self.conn.lock().unwrap();
471                         us.rl_requested_disconnect = true;
472                         us.read_paused = true;
473                         // Wake up the sending thread, assuming it is still alive
474                         let _ = us.write_avail.try_send(());
475                         // Happy-path return:
476                         if !us.block_disconnect_socket { return; }
477                 }
478                 while self.conn.lock().unwrap().block_disconnect_socket {
479                         thread::yield_now();
480                 }
481         }
482 }
483 impl Clone for SocketDescriptor {
484         fn clone(&self) -> Self {
485                 Self {
486                         conn: Arc::clone(&self.conn),
487                         id: self.id,
488                 }
489         }
490 }
491 impl Eq for SocketDescriptor {}
492 impl PartialEq for SocketDescriptor {
493         fn eq(&self, o: &Self) -> bool {
494                 self.id == o.id
495         }
496 }
497 impl Hash for SocketDescriptor {
498         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
499                 self.id.hash(state);
500         }
501 }
502
503 #[cfg(test)]
504 mod tests {
505         use lightning::ln::features::*;
506         use lightning::ln::msgs::*;
507         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
508         use lightning::util::events::*;
509         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
510
511         use tokio::sync::mpsc;
512
513         use std::mem;
514         use std::sync::{Arc, Mutex};
515         use std::time::Duration;
516
517         pub struct TestLogger();
518         impl lightning::util::logger::Logger for TestLogger {
519                 fn log(&self, record: &lightning::util::logger::Record) {
520                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
521                 }
522         }
523
524         struct MsgHandler{
525                 expected_pubkey: PublicKey,
526                 pubkey_connected: mpsc::Sender<()>,
527                 pubkey_disconnected: mpsc::Sender<()>,
528                 msg_events: Mutex<Vec<MessageSendEvent>>,
529         }
530         impl RoutingMessageHandler for MsgHandler {
531                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
532                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
533                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
534                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
535                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
536                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
537                 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { false }
538         }
539         impl ChannelMessageHandler for MsgHandler {
540                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
541                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
542                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
543                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
544                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
545                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
546                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
547                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
548                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
549                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
550                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
551                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
552                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
553                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
554                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
555                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
556                         if *their_node_id == self.expected_pubkey {
557                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
558                         }
559                 }
560                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
561                         if *their_node_id == self.expected_pubkey {
562                                 self.pubkey_connected.clone().try_send(()).unwrap();
563                         }
564                 }
565                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
566                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
567         }
568         impl MessageSendEventsProvider for MsgHandler {
569                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
570                         let mut ret = Vec::new();
571                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
572                         ret
573                 }
574         }
575
576         async fn do_basic_connection_test() {
577                 let secp_ctx = Secp256k1::new();
578                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
579                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
580                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
581                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
582
583                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
584                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
585                 let a_handler = Arc::new(MsgHandler {
586                         expected_pubkey: b_pub,
587                         pubkey_connected: a_connected_sender,
588                         pubkey_disconnected: a_disconnected_sender,
589                         msg_events: Mutex::new(Vec::new()),
590                 });
591                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
592                         chan_handler: Arc::clone(&a_handler),
593                         route_handler: Arc::clone(&a_handler),
594                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
595
596                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
597                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
598                 let b_handler = Arc::new(MsgHandler {
599                         expected_pubkey: a_pub,
600                         pubkey_connected: b_connected_sender,
601                         pubkey_disconnected: b_disconnected_sender,
602                         msg_events: Mutex::new(Vec::new()),
603                 });
604                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
605                         chan_handler: Arc::clone(&b_handler),
606                         route_handler: Arc::clone(&b_handler),
607                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
608
609                 // We bind on localhost, hoping the environment is properly configured with a local
610                 // address. This may not always be the case in containers and the like, so if this test is
611                 // failing for you check that you have a loopback interface and it is configured with
612                 // 127.0.0.1.
613                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
614                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
615                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
616                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
617                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
618                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
619                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
620
621                 let (sender, _receiver) = mpsc::channel(2);
622                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, tokio::net::TcpStream::from_std(conn_a).unwrap());
623                 let fut_b = super::setup_inbound(b_manager, sender, tokio::net::TcpStream::from_std(conn_b).unwrap());
624
625                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
626                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
627
628                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
629                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
630                 });
631                 assert!(a_disconnected.try_recv().is_err());
632                 assert!(b_disconnected.try_recv().is_err());
633
634                 a_manager.process_events();
635                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
636                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
637
638                 fut_a.await;
639                 fut_b.await;
640         }
641
642         #[tokio::test(threaded_scheduler)]
643         async fn basic_threaded_connection_test() {
644                 do_basic_connection_test().await;
645         }
646         #[tokio::test]
647         async fn basic_unthreaded_connection_test() {
648                 do_basic_connection_test().await;
649         }
650 }