ChannelManager+Router++ Logger Arc --> Deref
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 //! A socket handling library for those running in Tokio environments who wish to use
2 //! rust-lightning with native TcpStreams.
3 //!
4 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
5 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
6 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
7 //!
8 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
9 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
10 //!
11 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
12 //! their individual docs for more. All three take a
13 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
14 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
15 //! The call site should, thus, look something like this:
16 //! ```
17 //! use tokio::sync::mpsc;
18 //! use tokio::net::TcpStream;
19 //! use bitcoin::secp256k1::key::PublicKey;
20 //! use lightning::util::events::EventsProvider;
21 //! use std::net::SocketAddr;
22 //! use std::sync::Arc;
23 //!
24 //! // Define concrete types for our high-level objects:
25 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
26 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
27 //! type Logger = dyn lightning::util::logger::Logger;
28 //! type ChainWatchInterface = dyn lightning::chain::chaininterface::ChainWatchInterface;
29 //! type ChannelMonitor = lightning::ln::channelmonitor::SimpleManyChannelMonitor<lightning::chain::transaction::OutPoint, lightning::chain::keysinterface::InMemoryChannelKeys, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<ChainWatchInterface>>;
30 //! type ChannelManager = lightning::ln::channelmanager::SimpleArcChannelManager<ChannelMonitor, TxBroadcaster, FeeEstimator, Logger>;
31 //! type PeerManager = lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChannelMonitor, TxBroadcaster, FeeEstimator, Logger>;
32 //!
33 //! // Connect to node with pubkey their_node_id at addr:
34 //! async fn connect_to_node(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
35 //!     let (sender, mut receiver) = mpsc::channel(2);
36 //!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
37 //!     loop {
38 //!         receiver.recv().await;
39 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
40 //!             // Handle the event!
41 //!         }
42 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
43 //!             // Handle the event!
44 //!         }
45 //!     }
46 //! }
47 //!
48 //! // Begin reading from a newly accepted socket and talk to the peer:
49 //! async fn accept_socket(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
50 //!     let (sender, mut receiver) = mpsc::channel(2);
51 //!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
52 //!     loop {
53 //!         receiver.recv().await;
54 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
55 //!             // Handle the event!
56 //!         }
57 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
58 //!             // Handle the event!
59 //!         }
60 //!     }
61 //! }
62 //! ```
63
64 use bitcoin::secp256k1::key::PublicKey;
65
66 use tokio::net::TcpStream;
67 use tokio::{io, time};
68 use tokio::sync::mpsc;
69 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
70
71 use lightning::ln::peer_handler;
72 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
73 use lightning::ln::msgs::ChannelMessageHandler;
74
75 use std::{task, thread};
76 use std::net::SocketAddr;
77 use std::sync::{Arc, Mutex, MutexGuard};
78 use std::sync::atomic::{AtomicU64, Ordering};
79 use std::time::Duration;
80 use std::hash::Hash;
81
82 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
83
84 /// Connection contains all our internal state for a connection - we hold a reference to the
85 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
86 /// read future (which is returned by schedule_read).
87 struct Connection {
88         writer: Option<io::WriteHalf<TcpStream>>,
89         event_notify: mpsc::Sender<()>,
90         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
91         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
92         // between being woken up with write-ready and calling PeerManager::write_buffer_spce_avail.
93         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
94         // the schedule_read stack.
95         //
96         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
97         // runtime with functions templated by the Arc<PeerManager> type, calling
98         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
99         // more unsafe voodo than I really feel like writing.
100         write_avail: mpsc::Sender<()>,
101         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
102         // so by setting read_paused. At that point, the read task will stop reading bytes from the
103         // socket. To wake it up (without otherwise changing its state, we can push a value into this
104         // Sender.
105         read_waker: mpsc::Sender<()>,
106         // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
107         // are sure we won't call any more read/write PeerManager functions with the same connection.
108         // This is set to true if we're in such a condition (with disconnect checked before with the
109         // top-level mutex held) and false when we can return.
110         block_disconnect_socket: bool,
111         read_paused: bool,
112         rl_requested_disconnect: bool,
113         id: u64,
114 }
115 impl Connection {
116         fn event_trigger(us: &mut MutexGuard<Self>) {
117                 match us.event_notify.try_send(()) {
118                         Ok(_) => {},
119                         Err(mpsc::error::TrySendError::Full(_)) => {
120                                 // Ignore full errors as we just need the user to poll after this point, so if they
121                                 // haven't received the last send yet, it doesn't matter.
122                         },
123                         _ => panic!()
124                 }
125         }
126         async fn schedule_read<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) {
127                 let peer_manager_ref = peer_manager.clone();
128                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
129                 let mut buf = [0; 8192];
130
131                 let mut our_descriptor = SocketDescriptor::new(us.clone());
132                 // An enum describing why we did/are disconnecting:
133                 enum Disconnect {
134                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
135                         // SocketDescriptor::disconnect_socket.
136                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
137                         // already knows we're disconnected.
138                         CloseConnection,
139                         // The connection was disconnected for some other reason, ie because the socket was
140                         // closed.
141                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
142                         // Rust-Lightning that the socket is gone.
143                         PeerDisconnected
144                 };
145                 let disconnect_type = loop {
146                         macro_rules! shutdown_socket {
147                                 ($err: expr, $need_disconnect: expr) => { {
148                                         println!("Disconnecting peer due to {}!", $err);
149                                         break $need_disconnect;
150                                 } }
151                         }
152
153                         macro_rules! prepare_read_write_call {
154                                 () => { {
155                                         let mut us_lock = us.lock().unwrap();
156                                         if us_lock.rl_requested_disconnect {
157                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
158                                         }
159                                         us_lock.block_disconnect_socket = true;
160                                 } }
161                         }
162
163                         let read_paused = us.lock().unwrap().read_paused;
164                         tokio::select! {
165                                 v = write_avail_receiver.recv() => {
166                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
167                                         prepare_read_write_call!();
168                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
169                                                 shutdown_socket!(e, Disconnect::CloseConnection);
170                                         }
171                                         us.lock().unwrap().block_disconnect_socket = false;
172                                 },
173                                 _ = read_wake_receiver.recv() => {},
174                                 read = reader.read(&mut buf), if !read_paused => match read {
175                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
176                                         Ok(len) => {
177                                                 prepare_read_write_call!();
178                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
179                                                 let mut us_lock = us.lock().unwrap();
180                                                 match read_res {
181                                                         Ok(pause_read) => {
182                                                                 if pause_read {
183                                                                         us_lock.read_paused = true;
184                                                                 }
185                                                                 Self::event_trigger(&mut us_lock);
186                                                         },
187                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
188                                                 }
189                                                 us_lock.block_disconnect_socket = false;
190                                         },
191                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
192                                 },
193                         }
194                 };
195                 let writer_option = us.lock().unwrap().writer.take();
196                 if let Some(mut writer) = writer_option {
197                         // If the socket is already closed, shutdown() will fail, so just ignore it.
198                         let _ = writer.shutdown().await;
199                 }
200                 if let Disconnect::PeerDisconnected = disconnect_type {
201                         peer_manager_ref.socket_disconnected(&our_descriptor);
202                         Self::event_trigger(&mut us.lock().unwrap());
203                 }
204         }
205
206         fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
207                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
208                 // PeerManager, we will eventually get notified that there is room in the socket to write
209                 // new bytes, which will generate an event. That event will be popped off the queue before
210                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
211                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
212                 let (write_avail, write_receiver) = mpsc::channel(1);
213                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
214                 // we shove a value into the channel which comes after we've reset the read_paused bool to
215                 // false.
216                 let (read_waker, read_receiver) = mpsc::channel(1);
217                 let (reader, writer) = io::split(stream);
218
219                 (reader, write_receiver, read_receiver,
220                 Arc::new(Mutex::new(Self {
221                         writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
222                         block_disconnect_socket: false, rl_requested_disconnect: false,
223                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
224                 })))
225         }
226 }
227
228 /// Process incoming messages and feed outgoing messages on the provided socket generated by
229 /// accepting an incoming connection.
230 ///
231 /// The returned future will complete when the peer is disconnected and associated handling
232 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
233 /// not need to poll the provided future in order to make progress.
234 ///
235 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
236 pub fn setup_inbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) -> impl std::future::Future<Output=()> {
237         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
238         #[cfg(debug_assertions)]
239         let last_us = Arc::clone(&us);
240
241         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
242                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
243         } else {
244                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
245                 // requirements.
246                 None
247         };
248
249         async move {
250                 if let Some(handle) = handle_opt {
251                         if let Err(e) = handle.await {
252                                 assert!(e.is_cancelled());
253                         } else {
254                                 // This is certainly not guaranteed to always be true - the read loop may exit
255                                 // while there are still pending write wakers that need to be woken up after the
256                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
257                                 // keep too many wakers around, this makes sense. The race should be rare (we do
258                                 // some work after shutdown()) and an error would be a major memory leak.
259                                 #[cfg(debug_assertions)]
260                                 assert!(Arc::try_unwrap(last_us).is_ok());
261                         }
262                 }
263         }
264 }
265
266 /// Process incoming messages and feed outgoing messages on the provided socket generated by
267 /// making an outbound connection which is expected to be accepted by a peer with the given
268 /// public key. The relevant processing is set to run free (via tokio::spawn).
269 ///
270 /// The returned future will complete when the peer is disconnected and associated handling
271 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
272 /// not need to poll the provided future in order to make progress.
273 ///
274 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
275 pub fn setup_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) -> impl std::future::Future<Output=()> {
276         let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
277         #[cfg(debug_assertions)]
278         let last_us = Arc::clone(&us);
279
280         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
281                 Some(tokio::spawn(async move {
282                         // We should essentially always have enough room in a TCP socket buffer to send the
283                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
284                         // fail writes and wake us back up later to write. Thus, we handle a single
285                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
286                         // and use a relatively tight timeout.
287                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
288                                 loop {
289                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
290                                                 v if v == initial_send.len() => break Ok(()),
291                                                 0 => {
292                                                         write_receiver.recv().await;
293                                                         // In theory we could check for if we've been instructed to disconnect
294                                                         // the peer here, but its OK to just skip it - we'll check for it in
295                                                         // schedule_read prior to any relevant calls into RL.
296                                                 },
297                                                 _ => {
298                                                         eprintln!("Failed to write first full message to socket!");
299                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
300                                                         break Err(());
301                                                 }
302                                         }
303                                 }
304                         }).await {
305                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
306                         }
307                 }))
308         } else {
309                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
310                 // requirements.
311                 None
312         };
313
314         async move {
315                 if let Some(handle) = handle_opt {
316                         if let Err(e) = handle.await {
317                                 assert!(e.is_cancelled());
318                         } else {
319                                 // This is certainly not guaranteed to always be true - the read loop may exit
320                                 // while there are still pending write wakers that need to be woken up after the
321                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
322                                 // keep too many wakers around, this makes sense. The race should be rare (we do
323                                 // some work after shutdown()) and an error would be a major memory leak.
324                                 #[cfg(debug_assertions)]
325                                 assert!(Arc::try_unwrap(last_us).is_ok());
326                         }
327                 }
328         }
329 }
330
331 /// Process incoming messages and feed outgoing messages on a new connection made to the given
332 /// socket address which is expected to be accepted by a peer with the given public key (by
333 /// scheduling futures with tokio::spawn).
334 ///
335 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
336 ///
337 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
338 /// connection setup. That future then returns a future which will complete when the peer is
339 /// disconnected and associated handling futures are freed, though, because all processing in said
340 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
341 /// make progress.
342 ///
343 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
344 pub async fn connect_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> {
345         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), TcpStream::connect(&addr)).await {
346                 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
347         } else { None }
348 }
349
350 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
351         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
352
353 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
354         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
355 }
356 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
357 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
358 // sending thread may have already gone away due to a socket close, in which case there's nothing
359 // to wake up anyway.
360 fn wake_socket_waker(orig_ptr: *const ()) {
361         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
362         let _ = sender.try_send(());
363         drop_socket_waker(orig_ptr);
364 }
365 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
366         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
367         let mut sender = unsafe { (*sender_ptr).clone() };
368         let _ = sender.try_send(());
369 }
370 fn drop_socket_waker(orig_ptr: *const ()) {
371         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
372         // _orig_box is now dropped
373 }
374 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
375         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
376         let new_ptr = new_box as *const mpsc::Sender<()>;
377         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
378 }
379
380 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
381 /// type in the template of PeerHandler.
382 pub struct SocketDescriptor {
383         conn: Arc<Mutex<Connection>>,
384         id: u64,
385 }
386 impl SocketDescriptor {
387         fn new(conn: Arc<Mutex<Connection>>) -> Self {
388                 let id = conn.lock().unwrap().id;
389                 Self { conn, id }
390         }
391 }
392 impl peer_handler::SocketDescriptor for SocketDescriptor {
393         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
394                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
395                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
396                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
397                 // processing future which will call write_buffer_space_avail and we'll end up back here.
398                 let mut us = self.conn.lock().unwrap();
399                 if us.writer.is_none() {
400                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
401                         return 0;
402                 }
403
404                 if resume_read && us.read_paused {
405                         // The schedule_read future may go to lock up but end up getting woken up by there
406                         // being more room in the write buffer, dropping the other end of this Sender
407                         // before we get here, so we ignore any failures to wake it up.
408                         us.read_paused = false;
409                         let _ = us.read_waker.try_send(());
410                 }
411                 if data.is_empty() { return 0; }
412                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
413                 let mut ctx = task::Context::from_waker(&waker);
414                 let mut written_len = 0;
415                 loop {
416                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
417                                 task::Poll::Ready(Ok(res)) => {
418                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
419                                         // know how to handle it if it does (cause it should be a Poll::Pending
420                                         // instead):
421                                         assert_ne!(res, 0);
422                                         written_len += res;
423                                         if written_len == data.len() { return written_len; }
424                                 },
425                                 task::Poll::Ready(Err(e)) => {
426                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
427                                         // know how to handle it if it does (cause it should be a Poll::Pending
428                                         // instead):
429                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
430                                         // Probably we've already been closed, just return what we have and let the
431                                         // read thread handle closing logic.
432                                         return written_len;
433                                 },
434                                 task::Poll::Pending => {
435                                         // We're queued up for a write event now, but we need to make sure we also
436                                         // pause read given we're now waiting on the remote end to ACK (and in
437                                         // accordance with the send_data() docs).
438                                         us.read_paused = true;
439                                         return written_len;
440                                 },
441                         }
442                 }
443         }
444
445         fn disconnect_socket(&mut self) {
446                 {
447                         let mut us = self.conn.lock().unwrap();
448                         us.rl_requested_disconnect = true;
449                         us.read_paused = true;
450                         // Wake up the sending thread, assuming it is still alive
451                         let _ = us.write_avail.try_send(());
452                         // Happy-path return:
453                         if !us.block_disconnect_socket { return; }
454                 }
455                 while self.conn.lock().unwrap().block_disconnect_socket {
456                         thread::yield_now();
457                 }
458         }
459 }
460 impl Clone for SocketDescriptor {
461         fn clone(&self) -> Self {
462                 Self {
463                         conn: Arc::clone(&self.conn),
464                         id: self.id,
465                 }
466         }
467 }
468 impl Eq for SocketDescriptor {}
469 impl PartialEq for SocketDescriptor {
470         fn eq(&self, o: &Self) -> bool {
471                 self.id == o.id
472         }
473 }
474 impl Hash for SocketDescriptor {
475         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
476                 self.id.hash(state);
477         }
478 }
479
480 #[cfg(test)]
481 mod tests {
482         use lightning::ln::features::*;
483         use lightning::ln::msgs::*;
484         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
485         use lightning::util::events::*;
486         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
487
488         use tokio::sync::mpsc;
489
490         use std::mem;
491         use std::sync::{Arc, Mutex};
492         use std::time::Duration;
493
494         pub struct TestLogger();
495         impl lightning::util::logger::Logger for TestLogger {
496                 fn log(&self, record: &lightning::util::logger::Record) {
497                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
498                 }
499         }
500
501         struct MsgHandler{
502                 expected_pubkey: PublicKey,
503                 pubkey_connected: mpsc::Sender<()>,
504                 pubkey_disconnected: mpsc::Sender<()>,
505                 msg_events: Mutex<Vec<MessageSendEvent>>,
506         }
507         impl RoutingMessageHandler for MsgHandler {
508                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
509                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
510                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
511                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
512                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
513                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
514                 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { false }
515         }
516         impl ChannelMessageHandler for MsgHandler {
517                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
518                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
519                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
520                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
521                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
522                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
523                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
524                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
525                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
526                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
527                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
528                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
529                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
530                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
531                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
532                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
533                         if *their_node_id == self.expected_pubkey {
534                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
535                         }
536                 }
537                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
538                         if *their_node_id == self.expected_pubkey {
539                                 self.pubkey_connected.clone().try_send(()).unwrap();
540                         }
541                 }
542                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
543                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
544         }
545         impl MessageSendEventsProvider for MsgHandler {
546                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
547                         let mut ret = Vec::new();
548                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
549                         ret
550                 }
551         }
552
553         async fn do_basic_connection_test() {
554                 let secp_ctx = Secp256k1::new();
555                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
556                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
557                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
558                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
559
560                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
561                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
562                 let a_handler = Arc::new(MsgHandler {
563                         expected_pubkey: b_pub,
564                         pubkey_connected: a_connected_sender,
565                         pubkey_disconnected: a_disconnected_sender,
566                         msg_events: Mutex::new(Vec::new()),
567                 });
568                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
569                         chan_handler: Arc::clone(&a_handler),
570                         route_handler: Arc::clone(&a_handler) as Arc<dyn RoutingMessageHandler>,
571                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
572
573                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
574                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
575                 let b_handler = Arc::new(MsgHandler {
576                         expected_pubkey: a_pub,
577                         pubkey_connected: b_connected_sender,
578                         pubkey_disconnected: b_disconnected_sender,
579                         msg_events: Mutex::new(Vec::new()),
580                 });
581                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
582                         chan_handler: Arc::clone(&b_handler),
583                         route_handler: Arc::clone(&b_handler) as Arc<dyn RoutingMessageHandler>,
584                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
585
586                 // We bind on localhost, hoping the environment is properly configured with a local
587                 // address. This may not always be the case in containers and the like, so if this test is
588                 // failing for you check that you have a loopback interface and it is configured with
589                 // 127.0.0.1.
590                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
591                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
592                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
593                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
594                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
595                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
596                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
597
598                 let (sender, _receiver) = mpsc::channel(2);
599                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, tokio::net::TcpStream::from_std(conn_a).unwrap());
600                 let fut_b = super::setup_inbound(b_manager, sender, tokio::net::TcpStream::from_std(conn_b).unwrap());
601
602                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
603                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
604
605                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
606                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
607                 });
608                 assert!(a_disconnected.try_recv().is_err());
609                 assert!(b_disconnected.try_recv().is_err());
610
611                 a_manager.process_events();
612                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
613                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
614
615                 fut_a.await;
616                 fut_b.await;
617         }
618
619         #[tokio::test(threaded_scheduler)]
620         async fn basic_threaded_connection_test() {
621                 do_basic_connection_test().await;
622         }
623         #[tokio::test]
624         async fn basic_unthreaded_connection_test() {
625                 do_basic_connection_test().await;
626         }
627 }