d102778a460f20d202fe772920d1c0ee3418e40b
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
22 //!
23 //! # Example
24 //! ```
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::key::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
30 //!
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
36 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
37 //! type DataPersister = dyn lightning::chain::channelmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
38 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
39 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
40 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
41 //!
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //!     lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
45 //!     loop {
46 //!             channel_manager.await_persistable_update();
47 //!             channel_manager.process_pending_events(&|event| {
48 //!                     // Handle the event!
49 //!             });
50 //!             chain_monitor.process_pending_events(&|event| {
51 //!                     // Handle the event!
52 //!             });
53 //!     }
54 //! }
55 //!
56 //! // Begin reading from a newly accepted socket and talk to the peer:
57 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
58 //!     lightning_net_tokio::setup_inbound(peer_manager, socket);
59 //!     loop {
60 //!             channel_manager.await_persistable_update();
61 //!             channel_manager.process_pending_events(&|event| {
62 //!                     // Handle the event!
63 //!             });
64 //!             chain_monitor.process_pending_events(&|event| {
65 //!                     // Handle the event!
66 //!             });
67 //!     }
68 //! }
69 //! ```
70
71 #![deny(broken_intra_doc_links)]
72 #![deny(missing_docs)]
73
74 use bitcoin::secp256k1::key::PublicKey;
75
76 use tokio::net::TcpStream;
77 use tokio::{io, time};
78 use tokio::sync::mpsc;
79 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
80
81 use lightning::ln::peer_handler;
82 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
83 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
84 use lightning::util::logger::Logger;
85
86 use std::{task, thread};
87 use std::net::SocketAddr;
88 use std::net::TcpStream as StdTcpStream;
89 use std::sync::{Arc, Mutex};
90 use std::sync::atomic::{AtomicU64, Ordering};
91 use std::time::Duration;
92 use std::hash::Hash;
93
94 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
95
96 /// Connection contains all our internal state for a connection - we hold a reference to the
97 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
98 /// read future (which is returned by schedule_read).
99 struct Connection {
100         writer: Option<io::WriteHalf<TcpStream>>,
101         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
102         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
103         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
104         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
105         // the schedule_read stack.
106         //
107         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
108         // runtime with functions templated by the Arc<PeerManager> type, calling
109         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
110         // more unsafe voodo than I really feel like writing.
111         write_avail: mpsc::Sender<()>,
112         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
113         // so by setting read_paused. At that point, the read task will stop reading bytes from the
114         // socket. To wake it up (without otherwise changing its state, we can push a value into this
115         // Sender.
116         read_waker: mpsc::Sender<()>,
117         // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
118         // are sure we won't call any more read/write PeerManager functions with the same connection.
119         // This is set to true if we're in such a condition (with disconnect checked before with the
120         // top-level mutex held) and false when we can return.
121         block_disconnect_socket: bool,
122         read_paused: bool,
123         rl_requested_disconnect: bool,
124         id: u64,
125 }
126 impl Connection {
127         async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
128                         CMH: ChannelMessageHandler + 'static,
129                         RMH: RoutingMessageHandler + 'static,
130                         L: Logger + 'static + ?Sized {
131                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
132                 let mut buf = [0; 8192];
133
134                 let mut our_descriptor = SocketDescriptor::new(us.clone());
135                 // An enum describing why we did/are disconnecting:
136                 enum Disconnect {
137                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
138                         // SocketDescriptor::disconnect_socket.
139                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
140                         // already knows we're disconnected.
141                         CloseConnection,
142                         // The connection was disconnected for some other reason, ie because the socket was
143                         // closed.
144                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
145                         // Rust-Lightning that the socket is gone.
146                         PeerDisconnected
147                 }
148                 let disconnect_type = loop {
149                         macro_rules! shutdown_socket {
150                                 ($err: expr, $need_disconnect: expr) => { {
151                                         println!("Disconnecting peer due to {}!", $err);
152                                         break $need_disconnect;
153                                 } }
154                         }
155
156                         macro_rules! prepare_read_write_call {
157                                 () => { {
158                                         let mut us_lock = us.lock().unwrap();
159                                         if us_lock.rl_requested_disconnect {
160                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
161                                         }
162                                         us_lock.block_disconnect_socket = true;
163                                 } }
164                         }
165
166                         let read_paused = us.lock().unwrap().read_paused;
167                         tokio::select! {
168                                 v = write_avail_receiver.recv() => {
169                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
170                                         prepare_read_write_call!();
171                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
172                                                 shutdown_socket!(e, Disconnect::CloseConnection);
173                                         }
174                                         us.lock().unwrap().block_disconnect_socket = false;
175                                 },
176                                 _ = read_wake_receiver.recv() => {},
177                                 read = reader.read(&mut buf), if !read_paused => match read {
178                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
179                                         Ok(len) => {
180                                                 prepare_read_write_call!();
181                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
182                                                 let mut us_lock = us.lock().unwrap();
183                                                 match read_res {
184                                                         Ok(pause_read) => {
185                                                                 if pause_read {
186                                                                         us_lock.read_paused = true;
187                                                                 }
188                                                         },
189                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
190                                                 }
191                                                 us_lock.block_disconnect_socket = false;
192                                         },
193                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
194                                 },
195                         }
196                         peer_manager.process_events();
197                 };
198                 let writer_option = us.lock().unwrap().writer.take();
199                 if let Some(mut writer) = writer_option {
200                         // If the socket is already closed, shutdown() will fail, so just ignore it.
201                         let _ = writer.shutdown().await;
202                 }
203                 if let Disconnect::PeerDisconnected = disconnect_type {
204                         peer_manager.socket_disconnected(&our_descriptor);
205                         peer_manager.process_events();
206                 }
207         }
208
209         fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
210                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
211                 // PeerManager, we will eventually get notified that there is room in the socket to write
212                 // new bytes, which will generate an event. That event will be popped off the queue before
213                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
214                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
215                 let (write_avail, write_receiver) = mpsc::channel(1);
216                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
217                 // we shove a value into the channel which comes after we've reset the read_paused bool to
218                 // false.
219                 let (read_waker, read_receiver) = mpsc::channel(1);
220                 stream.set_nonblocking(true).unwrap();
221                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
222
223                 (reader, write_receiver, read_receiver,
224                 Arc::new(Mutex::new(Self {
225                         writer: Some(writer), write_avail, read_waker, read_paused: false,
226                         block_disconnect_socket: false, rl_requested_disconnect: false,
227                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
228                 })))
229         }
230 }
231
232 /// Process incoming messages and feed outgoing messages on the provided socket generated by
233 /// accepting an incoming connection.
234 ///
235 /// The returned future will complete when the peer is disconnected and associated handling
236 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
237 /// not need to poll the provided future in order to make progress.
238 pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
239                 CMH: ChannelMessageHandler + 'static + Send + Sync,
240                 RMH: RoutingMessageHandler + 'static + Send + Sync,
241                 L: Logger + 'static + ?Sized + Send + Sync {
242         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
243         #[cfg(debug_assertions)]
244         let last_us = Arc::clone(&us);
245
246         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
247                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
248         } else {
249                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
250                 // requirements.
251                 None
252         };
253
254         async move {
255                 if let Some(handle) = handle_opt {
256                         if let Err(e) = handle.await {
257                                 assert!(e.is_cancelled());
258                         } else {
259                                 // This is certainly not guaranteed to always be true - the read loop may exit
260                                 // while there are still pending write wakers that need to be woken up after the
261                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
262                                 // keep too many wakers around, this makes sense. The race should be rare (we do
263                                 // some work after shutdown()) and an error would be a major memory leak.
264                                 #[cfg(debug_assertions)]
265                                 assert!(Arc::try_unwrap(last_us).is_ok());
266                         }
267                 }
268         }
269 }
270
271 /// Process incoming messages and feed outgoing messages on the provided socket generated by
272 /// making an outbound connection which is expected to be accepted by a peer with the given
273 /// public key. The relevant processing is set to run free (via tokio::spawn).
274 ///
275 /// The returned future will complete when the peer is disconnected and associated handling
276 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
277 /// not need to poll the provided future in order to make progress.
278 pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
279                 CMH: ChannelMessageHandler + 'static + Send + Sync,
280                 RMH: RoutingMessageHandler + 'static + Send + Sync,
281                 L: Logger + 'static + ?Sized + Send + Sync {
282         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
283         #[cfg(debug_assertions)]
284         let last_us = Arc::clone(&us);
285
286         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
287                 Some(tokio::spawn(async move {
288                         // We should essentially always have enough room in a TCP socket buffer to send the
289                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
290                         // fail writes and wake us back up later to write. Thus, we handle a single
291                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
292                         // and use a relatively tight timeout.
293                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
294                                 loop {
295                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
296                                                 v if v == initial_send.len() => break Ok(()),
297                                                 0 => {
298                                                         write_receiver.recv().await;
299                                                         // In theory we could check for if we've been instructed to disconnect
300                                                         // the peer here, but its OK to just skip it - we'll check for it in
301                                                         // schedule_read prior to any relevant calls into RL.
302                                                 },
303                                                 _ => {
304                                                         eprintln!("Failed to write first full message to socket!");
305                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
306                                                         break Err(());
307                                                 }
308                                         }
309                                 }
310                         }).await {
311                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
312                         }
313                 }))
314         } else {
315                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
316                 // requirements.
317                 None
318         };
319
320         async move {
321                 if let Some(handle) = handle_opt {
322                         if let Err(e) = handle.await {
323                                 assert!(e.is_cancelled());
324                         } else {
325                                 // This is certainly not guaranteed to always be true - the read loop may exit
326                                 // while there are still pending write wakers that need to be woken up after the
327                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
328                                 // keep too many wakers around, this makes sense. The race should be rare (we do
329                                 // some work after shutdown()) and an error would be a major memory leak.
330                                 #[cfg(debug_assertions)]
331                                 assert!(Arc::try_unwrap(last_us).is_ok());
332                         }
333                 }
334         }
335 }
336
337 /// Process incoming messages and feed outgoing messages on a new connection made to the given
338 /// socket address which is expected to be accepted by a peer with the given public key (by
339 /// scheduling futures with tokio::spawn).
340 ///
341 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
342 ///
343 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
344 /// connection setup. That future then returns a future which will complete when the peer is
345 /// disconnected and associated handling futures are freed, though, because all processing in said
346 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
347 /// make progress.
348 pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
349                 CMH: ChannelMessageHandler + 'static + Send + Sync,
350                 RMH: RoutingMessageHandler + 'static + Send + Sync,
351                 L: Logger + 'static + ?Sized + Send + Sync {
352         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
353                 Some(setup_outbound(peer_manager, their_node_id, stream))
354         } else { None }
355 }
356
357 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
358         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
359
360 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
361         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
362 }
363 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
364 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
365 // sending thread may have already gone away due to a socket close, in which case there's nothing
366 // to wake up anyway.
367 fn wake_socket_waker(orig_ptr: *const ()) {
368         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
369         let _ = sender.try_send(());
370         drop_socket_waker(orig_ptr);
371 }
372 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
373         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
374         let sender = unsafe { (*sender_ptr).clone() };
375         let _ = sender.try_send(());
376 }
377 fn drop_socket_waker(orig_ptr: *const ()) {
378         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
379         // _orig_box is now dropped
380 }
381 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
382         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
383         let new_ptr = new_box as *const mpsc::Sender<()>;
384         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
385 }
386
387 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
388 /// type in the template of PeerHandler.
389 pub struct SocketDescriptor {
390         conn: Arc<Mutex<Connection>>,
391         id: u64,
392 }
393 impl SocketDescriptor {
394         fn new(conn: Arc<Mutex<Connection>>) -> Self {
395                 let id = conn.lock().unwrap().id;
396                 Self { conn, id }
397         }
398 }
399 impl peer_handler::SocketDescriptor for SocketDescriptor {
400         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
401                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
402                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
403                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
404                 // processing future which will call write_buffer_space_avail and we'll end up back here.
405                 let mut us = self.conn.lock().unwrap();
406                 if us.writer.is_none() {
407                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
408                         return 0;
409                 }
410
411                 if resume_read && us.read_paused {
412                         // The schedule_read future may go to lock up but end up getting woken up by there
413                         // being more room in the write buffer, dropping the other end of this Sender
414                         // before we get here, so we ignore any failures to wake it up.
415                         us.read_paused = false;
416                         let _ = us.read_waker.try_send(());
417                 }
418                 if data.is_empty() { return 0; }
419                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
420                 let mut ctx = task::Context::from_waker(&waker);
421                 let mut written_len = 0;
422                 loop {
423                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
424                                 task::Poll::Ready(Ok(res)) => {
425                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
426                                         // know how to handle it if it does (cause it should be a Poll::Pending
427                                         // instead):
428                                         assert_ne!(res, 0);
429                                         written_len += res;
430                                         if written_len == data.len() { return written_len; }
431                                 },
432                                 task::Poll::Ready(Err(e)) => {
433                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
434                                         // know how to handle it if it does (cause it should be a Poll::Pending
435                                         // instead):
436                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
437                                         // Probably we've already been closed, just return what we have and let the
438                                         // read thread handle closing logic.
439                                         return written_len;
440                                 },
441                                 task::Poll::Pending => {
442                                         // We're queued up for a write event now, but we need to make sure we also
443                                         // pause read given we're now waiting on the remote end to ACK (and in
444                                         // accordance with the send_data() docs).
445                                         us.read_paused = true;
446                                         return written_len;
447                                 },
448                         }
449                 }
450         }
451
452         fn disconnect_socket(&mut self) {
453                 {
454                         let mut us = self.conn.lock().unwrap();
455                         us.rl_requested_disconnect = true;
456                         us.read_paused = true;
457                         // Wake up the sending thread, assuming it is still alive
458                         let _ = us.write_avail.try_send(());
459                         // Happy-path return:
460                         if !us.block_disconnect_socket { return; }
461                 }
462                 while self.conn.lock().unwrap().block_disconnect_socket {
463                         thread::yield_now();
464                 }
465         }
466 }
467 impl Clone for SocketDescriptor {
468         fn clone(&self) -> Self {
469                 Self {
470                         conn: Arc::clone(&self.conn),
471                         id: self.id,
472                 }
473         }
474 }
475 impl Eq for SocketDescriptor {}
476 impl PartialEq for SocketDescriptor {
477         fn eq(&self, o: &Self) -> bool {
478                 self.id == o.id
479         }
480 }
481 impl Hash for SocketDescriptor {
482         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
483                 self.id.hash(state);
484         }
485 }
486
487 #[cfg(test)]
488 mod tests {
489         use lightning::ln::features::*;
490         use lightning::ln::msgs::*;
491         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
492         use lightning::util::events::*;
493         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
494
495         use tokio::sync::mpsc;
496
497         use std::mem;
498         use std::sync::atomic::{AtomicBool, Ordering};
499         use std::sync::{Arc, Mutex};
500         use std::time::Duration;
501
502         pub struct TestLogger();
503         impl lightning::util::logger::Logger for TestLogger {
504                 fn log(&self, record: &lightning::util::logger::Record) {
505                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
506                 }
507         }
508
509         struct MsgHandler{
510                 expected_pubkey: PublicKey,
511                 pubkey_connected: mpsc::Sender<()>,
512                 pubkey_disconnected: mpsc::Sender<()>,
513                 disconnected_flag: AtomicBool,
514                 msg_events: Mutex<Vec<MessageSendEvent>>,
515         }
516         impl RoutingMessageHandler for MsgHandler {
517                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
518                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
519                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
520                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
521                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
522                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
523                 fn sync_routing_table(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
524                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
525                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
526                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
527                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
528         }
529         impl ChannelMessageHandler for MsgHandler {
530                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
531                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
532                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
533                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
534                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
535                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
536                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
537                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
538                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
539                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
540                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
541                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
542                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
543                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
544                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
545                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
546                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
547                         if *their_node_id == self.expected_pubkey {
548                                 self.disconnected_flag.store(true, Ordering::SeqCst);
549                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
550                         }
551                 }
552                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
553                         if *their_node_id == self.expected_pubkey {
554                                 self.pubkey_connected.clone().try_send(()).unwrap();
555                         }
556                 }
557                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
558                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
559         }
560         impl MessageSendEventsProvider for MsgHandler {
561                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
562                         let mut ret = Vec::new();
563                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
564                         ret
565                 }
566         }
567
568         async fn do_basic_connection_test() {
569                 let secp_ctx = Secp256k1::new();
570                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
571                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
572                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
573                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
574
575                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
576                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
577                 let a_handler = Arc::new(MsgHandler {
578                         expected_pubkey: b_pub,
579                         pubkey_connected: a_connected_sender,
580                         pubkey_disconnected: a_disconnected_sender,
581                         disconnected_flag: AtomicBool::new(false),
582                         msg_events: Mutex::new(Vec::new()),
583                 });
584                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
585                         chan_handler: Arc::clone(&a_handler),
586                         route_handler: Arc::clone(&a_handler),
587                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
588
589                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
590                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
591                 let b_handler = Arc::new(MsgHandler {
592                         expected_pubkey: a_pub,
593                         pubkey_connected: b_connected_sender,
594                         pubkey_disconnected: b_disconnected_sender,
595                         disconnected_flag: AtomicBool::new(false),
596                         msg_events: Mutex::new(Vec::new()),
597                 });
598                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
599                         chan_handler: Arc::clone(&b_handler),
600                         route_handler: Arc::clone(&b_handler),
601                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
602
603                 // We bind on localhost, hoping the environment is properly configured with a local
604                 // address. This may not always be the case in containers and the like, so if this test is
605                 // failing for you check that you have a loopback interface and it is configured with
606                 // 127.0.0.1.
607                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
608                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
609                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
610                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
611                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
612                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
613                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
614
615                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
616                 let fut_b = super::setup_inbound(b_manager, conn_b);
617
618                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
619                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
620
621                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
622                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
623                 });
624                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
625                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
626
627                 a_manager.process_events();
628                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
629                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
630                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
631                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
632
633                 fut_a.await;
634                 fut_b.await;
635         }
636
637         #[tokio::test(flavor = "multi_thread")]
638         async fn basic_threaded_connection_test() {
639                 do_basic_connection_test().await;
640         }
641         #[tokio::test]
642         async fn basic_unthreaded_connection_test() {
643                 do_basic_connection_test().await;
644         }
645 }