Stop printing to stderr in lightning-net-tokio for disconnections
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
22 //!
23 //! # Example
24 //! ```
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::key::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
30 //!
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
36 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
37 //! type DataPersister = dyn lightning::chain::channelmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
38 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
39 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
40 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
41 //!
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //!     lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
45 //!     loop {
46 //!             channel_manager.await_persistable_update();
47 //!             channel_manager.process_pending_events(&|event| {
48 //!                     // Handle the event!
49 //!             });
50 //!             chain_monitor.process_pending_events(&|event| {
51 //!                     // Handle the event!
52 //!             });
53 //!     }
54 //! }
55 //!
56 //! // Begin reading from a newly accepted socket and talk to the peer:
57 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
58 //!     lightning_net_tokio::setup_inbound(peer_manager, socket);
59 //!     loop {
60 //!             channel_manager.await_persistable_update();
61 //!             channel_manager.process_pending_events(&|event| {
62 //!                     // Handle the event!
63 //!             });
64 //!             chain_monitor.process_pending_events(&|event| {
65 //!                     // Handle the event!
66 //!             });
67 //!     }
68 //! }
69 //! ```
70
71 #![deny(broken_intra_doc_links)]
72 #![deny(missing_docs)]
73
74 use bitcoin::secp256k1::key::PublicKey;
75
76 use tokio::net::TcpStream;
77 use tokio::{io, time};
78 use tokio::sync::mpsc;
79 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
80
81 use lightning::ln::peer_handler;
82 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
83 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
84 use lightning::util::logger::Logger;
85
86 use std::task;
87 use std::net::SocketAddr;
88 use std::net::TcpStream as StdTcpStream;
89 use std::sync::{Arc, Mutex};
90 use std::sync::atomic::{AtomicU64, Ordering};
91 use std::time::Duration;
92 use std::hash::Hash;
93
94 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
95
96 /// Connection contains all our internal state for a connection - we hold a reference to the
97 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
98 /// read future (which is returned by schedule_read).
99 struct Connection {
100         writer: Option<io::WriteHalf<TcpStream>>,
101         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
102         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
103         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
104         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
105         // the schedule_read stack.
106         //
107         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
108         // runtime with functions templated by the Arc<PeerManager> type, calling
109         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
110         // more unsafe voodo than I really feel like writing.
111         write_avail: mpsc::Sender<()>,
112         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
113         // so by setting read_paused. At that point, the read task will stop reading bytes from the
114         // socket. To wake it up (without otherwise changing its state, we can push a value into this
115         // Sender.
116         read_waker: mpsc::Sender<()>,
117         read_paused: bool,
118         rl_requested_disconnect: bool,
119         id: u64,
120 }
121 impl Connection {
122         async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
123                         CMH: ChannelMessageHandler + 'static,
124                         RMH: RoutingMessageHandler + 'static,
125                         L: Logger + 'static + ?Sized {
126                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
127                 let mut buf = [0; 8192];
128
129                 let mut our_descriptor = SocketDescriptor::new(us.clone());
130                 // An enum describing why we did/are disconnecting:
131                 enum Disconnect {
132                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
133                         // SocketDescriptor::disconnect_socket.
134                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
135                         // already knows we're disconnected.
136                         CloseConnection,
137                         // The connection was disconnected for some other reason, ie because the socket was
138                         // closed.
139                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
140                         // Rust-Lightning that the socket is gone.
141                         PeerDisconnected
142                 }
143                 let disconnect_type = loop {
144                         let read_paused = {
145                                 let us_lock = us.lock().unwrap();
146                                 if us_lock.rl_requested_disconnect {
147                                         break Disconnect::CloseConnection;
148                                 }
149                                 us_lock.read_paused
150                         };
151                         tokio::select! {
152                                 v = write_avail_receiver.recv() => {
153                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
154                                         if let Err(_) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
155                                                 break Disconnect::CloseConnection;
156                                         }
157                                 },
158                                 _ = read_wake_receiver.recv() => {},
159                                 read = reader.read(&mut buf), if !read_paused => match read {
160                                         Ok(0) => break Disconnect::PeerDisconnected,
161                                         Ok(len) => {
162                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
163                                                 let mut us_lock = us.lock().unwrap();
164                                                 match read_res {
165                                                         Ok(pause_read) => {
166                                                                 if pause_read {
167                                                                         us_lock.read_paused = true;
168                                                                 }
169                                                         },
170                                                         Err(_) => break Disconnect::CloseConnection,
171                                                 }
172                                         },
173                                         Err(_) => break Disconnect::PeerDisconnected,
174                                 },
175                         }
176                         peer_manager.process_events();
177                 };
178                 let writer_option = us.lock().unwrap().writer.take();
179                 if let Some(mut writer) = writer_option {
180                         // If the socket is already closed, shutdown() will fail, so just ignore it.
181                         let _ = writer.shutdown().await;
182                 }
183                 if let Disconnect::PeerDisconnected = disconnect_type {
184                         peer_manager.socket_disconnected(&our_descriptor);
185                         peer_manager.process_events();
186                 }
187         }
188
189         fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
190                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
191                 // PeerManager, we will eventually get notified that there is room in the socket to write
192                 // new bytes, which will generate an event. That event will be popped off the queue before
193                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
194                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
195                 let (write_avail, write_receiver) = mpsc::channel(1);
196                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
197                 // we shove a value into the channel which comes after we've reset the read_paused bool to
198                 // false.
199                 let (read_waker, read_receiver) = mpsc::channel(1);
200                 stream.set_nonblocking(true).unwrap();
201                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
202
203                 (reader, write_receiver, read_receiver,
204                 Arc::new(Mutex::new(Self {
205                         writer: Some(writer), write_avail, read_waker, read_paused: false,
206                         rl_requested_disconnect: false,
207                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
208                 })))
209         }
210 }
211
212 /// Process incoming messages and feed outgoing messages on the provided socket generated by
213 /// accepting an incoming connection.
214 ///
215 /// The returned future will complete when the peer is disconnected and associated handling
216 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
217 /// not need to poll the provided future in order to make progress.
218 pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
219                 CMH: ChannelMessageHandler + 'static + Send + Sync,
220                 RMH: RoutingMessageHandler + 'static + Send + Sync,
221                 L: Logger + 'static + ?Sized + Send + Sync {
222         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
223         #[cfg(debug_assertions)]
224         let last_us = Arc::clone(&us);
225
226         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
227                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
228         } else {
229                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
230                 // requirements.
231                 None
232         };
233
234         async move {
235                 if let Some(handle) = handle_opt {
236                         if let Err(e) = handle.await {
237                                 assert!(e.is_cancelled());
238                         } else {
239                                 // This is certainly not guaranteed to always be true - the read loop may exit
240                                 // while there are still pending write wakers that need to be woken up after the
241                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
242                                 // keep too many wakers around, this makes sense. The race should be rare (we do
243                                 // some work after shutdown()) and an error would be a major memory leak.
244                                 #[cfg(debug_assertions)]
245                                 assert!(Arc::try_unwrap(last_us).is_ok());
246                         }
247                 }
248         }
249 }
250
251 /// Process incoming messages and feed outgoing messages on the provided socket generated by
252 /// making an outbound connection which is expected to be accepted by a peer with the given
253 /// public key. The relevant processing is set to run free (via tokio::spawn).
254 ///
255 /// The returned future will complete when the peer is disconnected and associated handling
256 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
257 /// not need to poll the provided future in order to make progress.
258 pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
259                 CMH: ChannelMessageHandler + 'static + Send + Sync,
260                 RMH: RoutingMessageHandler + 'static + Send + Sync,
261                 L: Logger + 'static + ?Sized + Send + Sync {
262         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
263         #[cfg(debug_assertions)]
264         let last_us = Arc::clone(&us);
265
266         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
267                 Some(tokio::spawn(async move {
268                         // We should essentially always have enough room in a TCP socket buffer to send the
269                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
270                         // fail writes and wake us back up later to write. Thus, we handle a single
271                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
272                         // and use a relatively tight timeout.
273                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
274                                 loop {
275                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
276                                                 v if v == initial_send.len() => break Ok(()),
277                                                 0 => {
278                                                         write_receiver.recv().await;
279                                                         // In theory we could check for if we've been instructed to disconnect
280                                                         // the peer here, but its OK to just skip it - we'll check for it in
281                                                         // schedule_read prior to any relevant calls into RL.
282                                                 },
283                                                 _ => {
284                                                         eprintln!("Failed to write first full message to socket!");
285                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
286                                                         break Err(());
287                                                 }
288                                         }
289                                 }
290                         }).await {
291                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
292                         }
293                 }))
294         } else {
295                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
296                 // requirements.
297                 None
298         };
299
300         async move {
301                 if let Some(handle) = handle_opt {
302                         if let Err(e) = handle.await {
303                                 assert!(e.is_cancelled());
304                         } else {
305                                 // This is certainly not guaranteed to always be true - the read loop may exit
306                                 // while there are still pending write wakers that need to be woken up after the
307                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
308                                 // keep too many wakers around, this makes sense. The race should be rare (we do
309                                 // some work after shutdown()) and an error would be a major memory leak.
310                                 #[cfg(debug_assertions)]
311                                 assert!(Arc::try_unwrap(last_us).is_ok());
312                         }
313                 }
314         }
315 }
316
317 /// Process incoming messages and feed outgoing messages on a new connection made to the given
318 /// socket address which is expected to be accepted by a peer with the given public key (by
319 /// scheduling futures with tokio::spawn).
320 ///
321 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
322 ///
323 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
324 /// connection setup. That future then returns a future which will complete when the peer is
325 /// disconnected and associated handling futures are freed, though, because all processing in said
326 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
327 /// make progress.
328 pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
329                 CMH: ChannelMessageHandler + 'static + Send + Sync,
330                 RMH: RoutingMessageHandler + 'static + Send + Sync,
331                 L: Logger + 'static + ?Sized + Send + Sync {
332         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
333                 Some(setup_outbound(peer_manager, their_node_id, stream))
334         } else { None }
335 }
336
337 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
338         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
339
340 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
341         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
342 }
343 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
344 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
345 // sending thread may have already gone away due to a socket close, in which case there's nothing
346 // to wake up anyway.
347 fn wake_socket_waker(orig_ptr: *const ()) {
348         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
349         let _ = sender.try_send(());
350         drop_socket_waker(orig_ptr);
351 }
352 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
353         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
354         let sender = unsafe { (*sender_ptr).clone() };
355         let _ = sender.try_send(());
356 }
357 fn drop_socket_waker(orig_ptr: *const ()) {
358         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
359         // _orig_box is now dropped
360 }
361 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
362         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
363         let new_ptr = new_box as *const mpsc::Sender<()>;
364         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
365 }
366
367 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
368 /// type in the template of PeerHandler.
369 pub struct SocketDescriptor {
370         conn: Arc<Mutex<Connection>>,
371         id: u64,
372 }
373 impl SocketDescriptor {
374         fn new(conn: Arc<Mutex<Connection>>) -> Self {
375                 let id = conn.lock().unwrap().id;
376                 Self { conn, id }
377         }
378 }
379 impl peer_handler::SocketDescriptor for SocketDescriptor {
380         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
381                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
382                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
383                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
384                 // processing future which will call write_buffer_space_avail and we'll end up back here.
385                 let mut us = self.conn.lock().unwrap();
386                 if us.writer.is_none() {
387                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
388                         return 0;
389                 }
390
391                 if resume_read && us.read_paused {
392                         // The schedule_read future may go to lock up but end up getting woken up by there
393                         // being more room in the write buffer, dropping the other end of this Sender
394                         // before we get here, so we ignore any failures to wake it up.
395                         us.read_paused = false;
396                         let _ = us.read_waker.try_send(());
397                 }
398                 if data.is_empty() { return 0; }
399                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
400                 let mut ctx = task::Context::from_waker(&waker);
401                 let mut written_len = 0;
402                 loop {
403                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
404                                 task::Poll::Ready(Ok(res)) => {
405                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
406                                         // know how to handle it if it does (cause it should be a Poll::Pending
407                                         // instead):
408                                         assert_ne!(res, 0);
409                                         written_len += res;
410                                         if written_len == data.len() { return written_len; }
411                                 },
412                                 task::Poll::Ready(Err(e)) => {
413                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
414                                         // know how to handle it if it does (cause it should be a Poll::Pending
415                                         // instead):
416                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
417                                         // Probably we've already been closed, just return what we have and let the
418                                         // read thread handle closing logic.
419                                         return written_len;
420                                 },
421                                 task::Poll::Pending => {
422                                         // We're queued up for a write event now, but we need to make sure we also
423                                         // pause read given we're now waiting on the remote end to ACK (and in
424                                         // accordance with the send_data() docs).
425                                         us.read_paused = true;
426                                         return written_len;
427                                 },
428                         }
429                 }
430         }
431
432         fn disconnect_socket(&mut self) {
433                 let mut us = self.conn.lock().unwrap();
434                 us.rl_requested_disconnect = true;
435                 // Wake up the sending thread, assuming it is still alive
436                 let _ = us.write_avail.try_send(());
437         }
438 }
439 impl Clone for SocketDescriptor {
440         fn clone(&self) -> Self {
441                 Self {
442                         conn: Arc::clone(&self.conn),
443                         id: self.id,
444                 }
445         }
446 }
447 impl Eq for SocketDescriptor {}
448 impl PartialEq for SocketDescriptor {
449         fn eq(&self, o: &Self) -> bool {
450                 self.id == o.id
451         }
452 }
453 impl Hash for SocketDescriptor {
454         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
455                 self.id.hash(state);
456         }
457 }
458
459 #[cfg(test)]
460 mod tests {
461         use lightning::ln::features::*;
462         use lightning::ln::msgs::*;
463         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
464         use lightning::util::events::*;
465         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
466
467         use tokio::sync::mpsc;
468
469         use std::mem;
470         use std::sync::atomic::{AtomicBool, Ordering};
471         use std::sync::{Arc, Mutex};
472         use std::time::Duration;
473
474         pub struct TestLogger();
475         impl lightning::util::logger::Logger for TestLogger {
476                 fn log(&self, record: &lightning::util::logger::Record) {
477                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
478                 }
479         }
480
481         struct MsgHandler{
482                 expected_pubkey: PublicKey,
483                 pubkey_connected: mpsc::Sender<()>,
484                 pubkey_disconnected: mpsc::Sender<()>,
485                 disconnected_flag: AtomicBool,
486                 msg_events: Mutex<Vec<MessageSendEvent>>,
487         }
488         impl RoutingMessageHandler for MsgHandler {
489                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
490                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
491                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
492                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
493                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
494                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
495                 fn sync_routing_table(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
496                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
497                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
498                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
499                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
500         }
501         impl ChannelMessageHandler for MsgHandler {
502                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
503                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
504                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
505                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
506                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
507                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
508                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
509                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
510                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
511                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
512                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
513                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
514                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
515                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
516                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
517                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
518                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
519                         if *their_node_id == self.expected_pubkey {
520                                 self.disconnected_flag.store(true, Ordering::SeqCst);
521                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
522                         }
523                 }
524                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
525                         if *their_node_id == self.expected_pubkey {
526                                 self.pubkey_connected.clone().try_send(()).unwrap();
527                         }
528                 }
529                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
530                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
531         }
532         impl MessageSendEventsProvider for MsgHandler {
533                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
534                         let mut ret = Vec::new();
535                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
536                         ret
537                 }
538         }
539
540         async fn do_basic_connection_test() {
541                 let secp_ctx = Secp256k1::new();
542                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
543                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
544                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
545                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
546
547                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
548                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
549                 let a_handler = Arc::new(MsgHandler {
550                         expected_pubkey: b_pub,
551                         pubkey_connected: a_connected_sender,
552                         pubkey_disconnected: a_disconnected_sender,
553                         disconnected_flag: AtomicBool::new(false),
554                         msg_events: Mutex::new(Vec::new()),
555                 });
556                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
557                         chan_handler: Arc::clone(&a_handler),
558                         route_handler: Arc::clone(&a_handler),
559                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
560
561                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
562                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
563                 let b_handler = Arc::new(MsgHandler {
564                         expected_pubkey: a_pub,
565                         pubkey_connected: b_connected_sender,
566                         pubkey_disconnected: b_disconnected_sender,
567                         disconnected_flag: AtomicBool::new(false),
568                         msg_events: Mutex::new(Vec::new()),
569                 });
570                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
571                         chan_handler: Arc::clone(&b_handler),
572                         route_handler: Arc::clone(&b_handler),
573                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
574
575                 // We bind on localhost, hoping the environment is properly configured with a local
576                 // address. This may not always be the case in containers and the like, so if this test is
577                 // failing for you check that you have a loopback interface and it is configured with
578                 // 127.0.0.1.
579                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
580                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
581                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
582                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
583                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
584                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
585                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
586
587                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
588                 let fut_b = super::setup_inbound(b_manager, conn_b);
589
590                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
591                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
592
593                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
594                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
595                 });
596                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
597                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
598
599                 a_manager.process_events();
600                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
601                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
602                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
603                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
604
605                 fut_a.await;
606                 fut_b.await;
607         }
608
609         #[tokio::test(flavor = "multi_thread")]
610         async fn basic_threaded_connection_test() {
611                 do_basic_connection_test().await;
612         }
613         #[tokio::test]
614         async fn basic_unthreaded_connection_test() {
615                 do_basic_connection_test().await;
616         }
617 }