e635d93d383162560ad28060de65dd5a361dd902
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 //! A socket handling library for those running in Tokio environments who wish to use
2 //! rust-lightning with native TcpStreams.
3 //!
4 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
5 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
6 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
7 //!
8 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
9 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
10 //!
11 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
12 //! their individual docs for more. All three take a
13 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
14 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
15 //! The call site should, thus, look something like this:
16 //! ```
17 //! use tokio::sync::mpsc;
18 //! use tokio::net::TcpStream;
19 //! use secp256k1::key::PublicKey;
20 //! use lightning::util::events::EventsProvider;
21 //! use std::net::SocketAddr;
22 //! use std::sync::Arc;
23 //!
24 //! // Define concrete types for our high-level objects:
25 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
26 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
27 //! type ChannelMonitor = lightning::ln::channelmonitor::SimpleManyChannelMonitor<lightning::chain::transaction::OutPoint, lightning::chain::keysinterface::InMemoryChannelKeys, Arc<TxBroadcaster>, Arc<FeeEstimator>>;
28 //! type ChannelManager = lightning::ln::channelmanager::SimpleArcChannelManager<ChannelMonitor, TxBroadcaster, FeeEstimator>;
29 //! type PeerManager = lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChannelMonitor, TxBroadcaster, FeeEstimator>;
30 //!
31 //! // Connect to node with pubkey their_node_id at addr:
32 //! async fn connect_to_node(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
33 //!     let (sender, mut receiver) = mpsc::channel(2);
34 //!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
35 //!     loop {
36 //!         receiver.recv().await;
37 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
38 //!             // Handle the event!
39 //!         }
40 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
41 //!             // Handle the event!
42 //!         }
43 //!     }
44 //! }
45 //!
46 //! // Begin reading from a newly accepted socket and talk to the peer:
47 //! async fn accept_socket(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
48 //!     let (sender, mut receiver) = mpsc::channel(2);
49 //!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
50 //!     loop {
51 //!         receiver.recv().await;
52 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
53 //!             // Handle the event!
54 //!         }
55 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
56 //!             // Handle the event!
57 //!         }
58 //!     }
59 //! }
60 //! ```
61
62 use secp256k1::key::PublicKey;
63
64 use tokio::net::TcpStream;
65 use tokio::{io, time};
66 use tokio::sync::mpsc;
67 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
68
69 use lightning::ln::peer_handler;
70 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
71 use lightning::ln::msgs::ChannelMessageHandler;
72
73 use std::{task, thread};
74 use std::net::SocketAddr;
75 use std::sync::{Arc, Mutex, MutexGuard};
76 use std::sync::atomic::{AtomicU64, Ordering};
77 use std::time::Duration;
78 use std::hash::Hash;
79
80 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
81
82 /// Connection contains all our internal state for a connection - we hold a reference to the
83 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
84 /// read future (which is returned by schedule_read).
85 struct Connection {
86         writer: Option<io::WriteHalf<TcpStream>>,
87         event_notify: mpsc::Sender<()>,
88         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
89         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
90         // between being woken up with write-ready and calling PeerManager::write_buffer_spce_avail.
91         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
92         // the schedule_read stack.
93         //
94         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
95         // runtime with functions templated by the Arc<PeerManager> type, calling
96         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
97         // more unsafe voodo than I really feel like writing.
98         write_avail: mpsc::Sender<()>,
99         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
100         // so by setting read_paused. At that point, the read task will stop reading bytes from the
101         // socket. To wake it up (without otherwise changing its state, we can push a value into this
102         // Sender.
103         read_waker: mpsc::Sender<()>,
104         // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
105         // are sure we won't call any more read/write PeerManager functions with the same connection.
106         // This is set to true if we're in such a condition (with disconnect checked before with the
107         // top-level mutex held) and false when we can return.
108         block_disconnect_socket: bool,
109         read_paused: bool,
110         rl_requested_disconnect: bool,
111         id: u64,
112 }
113 impl Connection {
114         fn event_trigger(us: &mut MutexGuard<Self>) {
115                 match us.event_notify.try_send(()) {
116                         Ok(_) => {},
117                         Err(mpsc::error::TrySendError::Full(_)) => {
118                                 // Ignore full errors as we just need the user to poll after this point, so if they
119                                 // haven't received the last send yet, it doesn't matter.
120                         },
121                         _ => panic!()
122                 }
123         }
124         async fn schedule_read<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) {
125                 let peer_manager_ref = peer_manager.clone();
126                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
127                 let mut buf = [0; 8192];
128
129                 let mut our_descriptor = SocketDescriptor::new(us.clone());
130                 // An enum describing why we did/are disconnecting:
131                 enum Disconnect {
132                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
133                         // SocketDescriptor::disconnect_socket.
134                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
135                         // already knows we're disconnected.
136                         CloseConnection,
137                         // The connection was disconnected for some other reason, ie because the socket was
138                         // closed.
139                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
140                         // Rust-Lightning that the socket is gone.
141                         PeerDisconnected
142                 };
143                 let disconnect_type = loop {
144                         macro_rules! shutdown_socket {
145                                 ($err: expr, $need_disconnect: expr) => { {
146                                         println!("Disconnecting peer due to {}!", $err);
147                                         break $need_disconnect;
148                                 } }
149                         }
150
151                         macro_rules! prepare_read_write_call {
152                                 () => { {
153                                         let mut us_lock = us.lock().unwrap();
154                                         if us_lock.rl_requested_disconnect {
155                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
156                                         }
157                                         us_lock.block_disconnect_socket = true;
158                                 } }
159                         }
160
161                         let read_paused = us.lock().unwrap().read_paused;
162                         tokio::select! {
163                                 v = write_avail_receiver.recv() => {
164                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
165                                         prepare_read_write_call!();
166                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
167                                                 shutdown_socket!(e, Disconnect::CloseConnection);
168                                         }
169                                         us.lock().unwrap().block_disconnect_socket = false;
170                                 },
171                                 _ = read_wake_receiver.recv() => {},
172                                 read = reader.read(&mut buf), if !read_paused => match read {
173                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
174                                         Ok(len) => {
175                                                 prepare_read_write_call!();
176                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
177                                                 let mut us_lock = us.lock().unwrap();
178                                                 match read_res {
179                                                         Ok(pause_read) => {
180                                                                 if pause_read {
181                                                                         us_lock.read_paused = true;
182                                                                 }
183                                                                 Self::event_trigger(&mut us_lock);
184                                                         },
185                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
186                                                 }
187                                                 us_lock.block_disconnect_socket = false;
188                                         },
189                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
190                                 },
191                         }
192                 };
193                 let writer_option = us.lock().unwrap().writer.take();
194                 if let Some(mut writer) = writer_option {
195                         // If the socket is already closed, shutdown() will fail, so just ignore it.
196                         let _ = writer.shutdown().await;
197                 }
198                 if let Disconnect::PeerDisconnected = disconnect_type {
199                         peer_manager_ref.socket_disconnected(&our_descriptor);
200                         Self::event_trigger(&mut us.lock().unwrap());
201                 }
202         }
203
204         fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
205                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
206                 // PeerManager, we will eventually get notified that there is room in the socket to write
207                 // new bytes, which will generate an event. That event will be popped off the queue before
208                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
209                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
210                 let (write_avail, write_receiver) = mpsc::channel(1);
211                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
212                 // we shove a value into the channel which comes after we've reset the read_paused bool to
213                 // false.
214                 let (read_waker, read_receiver) = mpsc::channel(1);
215                 let (reader, writer) = io::split(stream);
216
217                 (reader, write_receiver, read_receiver,
218                 Arc::new(Mutex::new(Self {
219                         writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
220                         block_disconnect_socket: false, rl_requested_disconnect: false,
221                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
222                 })))
223         }
224 }
225
226 /// Process incoming messages and feed outgoing messages on the provided socket generated by
227 /// accepting an incoming connection.
228 ///
229 /// The returned future will complete when the peer is disconnected and associated handling
230 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
231 /// not need to poll the provided future in order to make progress.
232 ///
233 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
234 pub fn setup_inbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) -> impl std::future::Future<Output=()> {
235         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
236         #[cfg(debug_assertions)]
237         let last_us = Arc::clone(&us);
238
239         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
240                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
241         } else {
242                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
243                 // requirements.
244                 None
245         };
246
247         async move {
248                 if let Some(handle) = handle_opt {
249                         if let Err(e) = handle.await {
250                                 assert!(e.is_cancelled());
251                         } else {
252                                 // This is certainly not guaranteed to always be true - the read loop may exit
253                                 // while there are still pending write wakers that need to be woken up after the
254                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
255                                 // keep too many wakers around, this makes sense. The race should be rare (we do
256                                 // some work after shutdown()) and an error would be a major memory leak.
257                                 #[cfg(debug_assertions)]
258                                 assert!(Arc::try_unwrap(last_us).is_ok());
259                         }
260                 }
261         }
262 }
263
264 /// Process incoming messages and feed outgoing messages on the provided socket generated by
265 /// making an outbound connection which is expected to be accepted by a peer with the given
266 /// public key. The relevant processing is set to run free (via tokio::spawn).
267 ///
268 /// The returned future will complete when the peer is disconnected and associated handling
269 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
270 /// not need to poll the provided future in order to make progress.
271 ///
272 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
273 pub fn setup_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) -> impl std::future::Future<Output=()> {
274         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
275         #[cfg(debug_assertions)]
276         let last_us = Arc::clone(&us);
277
278         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
279                 Some(tokio::spawn(async move {
280                         if SocketDescriptor::new(us.clone()).send_data(&initial_send, true) != initial_send.len() {
281                                 // We should essentially always have enough room in a TCP socket buffer to send the
282                                 // initial 10s of bytes, if not, just give up as hopeless.
283                                 eprintln!("Failed to write first full message to socket!");
284                                 peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
285                         } else {
286                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
287                         }
288                 }))
289         } else {
290                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
291                 // requirements.
292                 None
293         };
294
295         async move {
296                 if let Some(handle) = handle_opt {
297                         if let Err(e) = handle.await {
298                                 assert!(e.is_cancelled());
299                         } else {
300                                 // This is certainly not guaranteed to always be true - the read loop may exit
301                                 // while there are still pending write wakers that need to be woken up after the
302                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
303                                 // keep too many wakers around, this makes sense. The race should be rare (we do
304                                 // some work after shutdown()) and an error would be a major memory leak.
305                                 #[cfg(debug_assertions)]
306                                 assert!(Arc::try_unwrap(last_us).is_ok());
307                         }
308                 }
309         }
310 }
311
312 /// Process incoming messages and feed outgoing messages on a new connection made to the given
313 /// socket address which is expected to be accepted by a peer with the given public key (by
314 /// scheduling futures with tokio::spawn).
315 ///
316 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
317 ///
318 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
319 /// connection setup. That future then returns a future which will complete when the peer is
320 /// disconnected and associated handling futures are freed, though, because all processing in said
321 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
322 /// make progress.
323 ///
324 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
325 pub async fn connect_outbound<CMH: ChannelMessageHandler + 'static>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> {
326         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), TcpStream::connect(&addr)).await {
327                 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
328         } else { None }
329 }
330
331 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
332         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
333
334 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
335         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
336 }
337 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
338 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
339 // sending thread may have already gone away due to a socket close, in which case there's nothing
340 // to wake up anyway.
341 fn wake_socket_waker(orig_ptr: *const ()) {
342         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
343         let _ = sender.try_send(());
344         drop_socket_waker(orig_ptr);
345 }
346 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
347         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
348         let mut sender = unsafe { (*sender_ptr).clone() };
349         let _ = sender.try_send(());
350 }
351 fn drop_socket_waker(orig_ptr: *const ()) {
352         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
353         // _orig_box is now dropped
354 }
355 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
356         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
357         let new_ptr = new_box as *const mpsc::Sender<()>;
358         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
359 }
360
361 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
362 /// type in the template of PeerHandler.
363 pub struct SocketDescriptor {
364         conn: Arc<Mutex<Connection>>,
365         id: u64,
366 }
367 impl SocketDescriptor {
368         fn new(conn: Arc<Mutex<Connection>>) -> Self {
369                 let id = conn.lock().unwrap().id;
370                 Self { conn, id }
371         }
372 }
373 impl peer_handler::SocketDescriptor for SocketDescriptor {
374         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
375                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
376                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
377                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
378                 // processing future which will call write_buffer_space_avail and we'll end up back here.
379                 let mut us = self.conn.lock().unwrap();
380                 if us.writer.is_none() {
381                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
382                         return 0;
383                 }
384
385                 if resume_read && us.read_paused {
386                         // The schedule_read future may go to lock up but end up getting woken up by there
387                         // being more room in the write buffer, dropping the other end of this Sender
388                         // before we get here, so we ignore any failures to wake it up.
389                         us.read_paused = false;
390                         let _ = us.read_waker.try_send(());
391                 }
392                 if data.is_empty() { return 0; }
393                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
394                 let mut ctx = task::Context::from_waker(&waker);
395                 let mut written_len = 0;
396                 loop {
397                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
398                                 task::Poll::Ready(Ok(res)) => {
399                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
400                                         // know how to handle it if it does (cause it should be a Poll::Pending
401                                         // instead):
402                                         assert_ne!(res, 0);
403                                         written_len += res;
404                                         if written_len == data.len() { return written_len; }
405                                 },
406                                 task::Poll::Ready(Err(e)) => {
407                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
408                                         // know how to handle it if it does (cause it should be a Poll::Pending
409                                         // instead):
410                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
411                                         // Probably we've already been closed, just return what we have and let the
412                                         // read thread handle closing logic.
413                                         return written_len;
414                                 },
415                                 task::Poll::Pending => {
416                                         // We're queued up for a write event now, but we need to make sure we also
417                                         // pause read given we're now waiting on the remote end to ACK (and in
418                                         // accordance with the send_data() docs).
419                                         us.read_paused = true;
420                                         return written_len;
421                                 },
422                         }
423                 }
424         }
425
426         fn disconnect_socket(&mut self) {
427                 {
428                         let mut us = self.conn.lock().unwrap();
429                         us.rl_requested_disconnect = true;
430                         us.read_paused = true;
431                         // Wake up the sending thread, assuming it is still alive
432                         let _ = us.write_avail.try_send(());
433                         // Happy-path return:
434                         if !us.block_disconnect_socket { return; }
435                 }
436                 while self.conn.lock().unwrap().block_disconnect_socket {
437                         thread::yield_now();
438                 }
439         }
440 }
441 impl Clone for SocketDescriptor {
442         fn clone(&self) -> Self {
443                 Self {
444                         conn: Arc::clone(&self.conn),
445                         id: self.id,
446                 }
447         }
448 }
449 impl Eq for SocketDescriptor {}
450 impl PartialEq for SocketDescriptor {
451         fn eq(&self, o: &Self) -> bool {
452                 self.id == o.id
453         }
454 }
455 impl Hash for SocketDescriptor {
456         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
457                 self.id.hash(state);
458         }
459 }
460
461 #[cfg(test)]
462 mod tests {
463         use lightning::ln::features::*;
464         use lightning::ln::msgs::*;
465         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
466         use lightning::util::events::*;
467         use secp256k1::{Secp256k1, SecretKey, PublicKey};
468
469         use tokio::sync::mpsc;
470
471         use std::mem;
472         use std::sync::{Arc, Mutex};
473         use std::time::Duration;
474
475         pub struct TestLogger();
476         impl lightning::util::logger::Logger for TestLogger {
477                 fn log(&self, record: &lightning::util::logger::Record) {
478                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
479                 }
480         }
481
482         struct MsgHandler{
483                 expected_pubkey: PublicKey,
484                 pubkey_connected: mpsc::Sender<()>,
485                 pubkey_disconnected: mpsc::Sender<()>,
486                 msg_events: Mutex<Vec<MessageSendEvent>>,
487         }
488         impl RoutingMessageHandler for MsgHandler {
489                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
490                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
491                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
492                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
493                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, ChannelUpdate, ChannelUpdate)> { Vec::new() }
494                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
495                 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { false }
496         }
497         impl ChannelMessageHandler for MsgHandler {
498                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
499                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
500                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
501                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
502                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
503                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
504                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
505                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
506                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
507                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
508                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
509                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
510                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
511                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
512                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
513                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
514                         if *their_node_id == self.expected_pubkey {
515                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
516                         }
517                 }
518                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
519                         if *their_node_id == self.expected_pubkey {
520                                 self.pubkey_connected.clone().try_send(()).unwrap();
521                         }
522                 }
523                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
524                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
525         }
526         impl MessageSendEventsProvider for MsgHandler {
527                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
528                         let mut ret = Vec::new();
529                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
530                         ret
531                 }
532         }
533
534         #[tokio::test(threaded_scheduler)]
535         async fn basic_connection_test() {
536                 let secp_ctx = Secp256k1::new();
537                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
538                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
539                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
540                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
541
542                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
543                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
544                 let a_handler = Arc::new(MsgHandler {
545                         expected_pubkey: b_pub,
546                         pubkey_connected: a_connected_sender,
547                         pubkey_disconnected: a_disconnected_sender,
548                         msg_events: Mutex::new(Vec::new()),
549                 });
550                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
551                         chan_handler: Arc::clone(&a_handler),
552                         route_handler: Arc::clone(&a_handler) as Arc<dyn RoutingMessageHandler>,
553                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
554
555                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
556                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
557                 let b_handler = Arc::new(MsgHandler {
558                         expected_pubkey: a_pub,
559                         pubkey_connected: b_connected_sender,
560                         pubkey_disconnected: b_disconnected_sender,
561                         msg_events: Mutex::new(Vec::new()),
562                 });
563                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
564                         chan_handler: Arc::clone(&b_handler),
565                         route_handler: Arc::clone(&b_handler) as Arc<dyn RoutingMessageHandler>,
566                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
567
568                 // We bind on localhost, hoping the environment is properly configured with a local
569                 // address. This may not always be the case in containers and the like, so if this test is
570                 // failing for you check that you have a loopback interface and it is configured with
571                 // 127.0.0.1.
572                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
573                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
574                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
575                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
576                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
577                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
578                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
579
580                 let (sender, _receiver) = mpsc::channel(2);
581                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, tokio::net::TcpStream::from_std(conn_a).unwrap());
582                 let fut_b = super::setup_inbound(b_manager, sender, tokio::net::TcpStream::from_std(conn_b).unwrap());
583
584                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
585                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
586
587                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
588                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
589                 });
590                 assert!(a_disconnected.try_recv().is_err());
591                 assert!(b_disconnected.try_recv().is_err());
592
593                 a_manager.process_events();
594                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
595                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
596
597                 fut_a.await;
598                 fut_b.await;
599         }
600 }