Add utility in `ChannelMonitor` to reload `chain::Filter` data
[rust-lightning] / lightning / src / chain / channelmonitor.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
11 //! here.
12 //!
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
16 //!
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
22 //!
23 //! [`chain::Watch`]: ../trait.Watch.html
24
25 use bitcoin::blockdata::block::{Block, BlockHeader};
26 use bitcoin::blockdata::transaction::{TxOut,Transaction};
27 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
28 use bitcoin::blockdata::script::{Script, Builder};
29 use bitcoin::blockdata::opcodes;
30
31 use bitcoin::hashes::Hash;
32 use bitcoin::hashes::sha256::Hash as Sha256;
33 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
34
35 use bitcoin::secp256k1::{Secp256k1,Signature};
36 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
37 use bitcoin::secp256k1;
38
39 use ln::msgs::DecodeError;
40 use ln::chan_utils;
41 use ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCType, ChannelTransactionParameters, HolderCommitmentTransaction};
42 use ln::channelmanager::{HTLCSource, PaymentPreimage, PaymentHash};
43 use ln::onchaintx::{OnchainTxHandler, InputDescriptors};
44 use chain;
45 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
46 use chain::transaction::{OutPoint, TransactionData};
47 use chain::keysinterface::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, Sign, KeysInterface};
48 use chain::Filter;
49 use util::logger::Logger;
50 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writer, Writeable, U48};
51 use util::byte_utils;
52 use util::events::Event;
53
54 use std::collections::{HashMap, HashSet, hash_map};
55 use std::{cmp, mem};
56 use std::io::Error;
57 use std::ops::Deref;
58 use std::sync::Mutex;
59
60 /// An update generated by the underlying Channel itself which contains some new information the
61 /// ChannelMonitor should be made aware of.
62 #[cfg_attr(any(test, feature = "fuzztarget", feature = "_test_utils"), derive(PartialEq))]
63 #[derive(Clone)]
64 #[must_use]
65 pub struct ChannelMonitorUpdate {
66         pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
67         /// The sequence number of this update. Updates *must* be replayed in-order according to this
68         /// sequence number (and updates may panic if they are not). The update_id values are strictly
69         /// increasing and increase by one for each new update, with one exception specified below.
70         ///
71         /// This sequence number is also used to track up to which points updates which returned
72         /// ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given
73         /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
74         ///
75         /// The only instance where update_id values are not strictly increasing is the case where we
76         /// allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
77         /// its docs for more details.
78         ///
79         /// [`CLOSED_CHANNEL_UPDATE_ID`]: constant.CLOSED_CHANNEL_UPDATE_ID.html
80         pub update_id: u64,
81 }
82
83 /// If:
84 ///    (1) a channel has been force closed and
85 ///    (2) we receive a preimage from a forward link that allows us to spend an HTLC output on
86 ///        this channel's (the backward link's) broadcasted commitment transaction
87 /// then we allow the `ChannelManager` to send a `ChannelMonitorUpdate` with this update ID,
88 /// with the update providing said payment preimage. No other update types are allowed after
89 /// force-close.
90 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = std::u64::MAX;
91
92 impl Writeable for ChannelMonitorUpdate {
93         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
94                 self.update_id.write(w)?;
95                 (self.updates.len() as u64).write(w)?;
96                 for update_step in self.updates.iter() {
97                         update_step.write(w)?;
98                 }
99                 Ok(())
100         }
101 }
102 impl Readable for ChannelMonitorUpdate {
103         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
104                 let update_id: u64 = Readable::read(r)?;
105                 let len: u64 = Readable::read(r)?;
106                 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::std::mem::size_of::<ChannelMonitorUpdateStep>()));
107                 for _ in 0..len {
108                         updates.push(Readable::read(r)?);
109                 }
110                 Ok(Self { update_id, updates })
111         }
112 }
113
114 /// An error enum representing a failure to persist a channel monitor update.
115 #[derive(Clone, Debug)]
116 pub enum ChannelMonitorUpdateErr {
117         /// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of
118         /// our state failed, but is expected to succeed at some point in the future).
119         ///
120         /// Such a failure will "freeze" a channel, preventing us from revoking old states or
121         /// submitting new commitment transactions to the counterparty. Once the update(s) which failed
122         /// have been successfully applied, ChannelManager::channel_monitor_updated can be used to
123         /// restore the channel to an operational state.
124         ///
125         /// Note that a given ChannelManager will *never* re-generate a given ChannelMonitorUpdate. If
126         /// you return a TemporaryFailure you must ensure that it is written to disk safely before
127         /// writing out the latest ChannelManager state.
128         ///
129         /// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur
130         /// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting
131         /// to claim it on this channel) and those updates must be applied wherever they can be. At
132         /// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should
133         /// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to
134         /// the channel which would invalidate previous ChannelMonitors are not made when a channel has
135         /// been "frozen".
136         ///
137         /// Note that even if updates made after TemporaryFailure succeed you must still call
138         /// channel_monitor_updated to ensure you have the latest monitor and re-enable normal channel
139         /// operation.
140         ///
141         /// Note that the update being processed here will not be replayed for you when you call
142         /// ChannelManager::channel_monitor_updated, so you must store the update itself along
143         /// with the persisted ChannelMonitor on your own local disk prior to returning a
144         /// TemporaryFailure. You may, of course, employ a journaling approach, storing only the
145         /// ChannelMonitorUpdate on disk without updating the monitor itself, replaying the journal at
146         /// reload-time.
147         ///
148         /// For deployments where a copy of ChannelMonitors and other local state are backed up in a
149         /// remote location (with local copies persisted immediately), it is anticipated that all
150         /// updates will return TemporaryFailure until the remote copies could be updated.
151         TemporaryFailure,
152         /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
153         /// different watchtower and cannot update with all watchtowers that were previously informed
154         /// of this channel).
155         ///
156         /// At reception of this error, ChannelManager will force-close the channel and return at
157         /// least a final ChannelMonitorUpdate::ChannelForceClosed which must be delivered to at
158         /// least one ChannelMonitor copy. Revocation secret MUST NOT be released and offchain channel
159         /// update must be rejected.
160         ///
161         /// This failure may also signal a failure to update the local persisted copy of one of
162         /// the channel monitor instance.
163         ///
164         /// Note that even when you fail a holder commitment transaction update, you must store the
165         /// update to ensure you can claim from it in case of a duplicate copy of this ChannelMonitor
166         /// broadcasts it (e.g distributed channel-monitor deployment)
167         ///
168         /// In case of distributed watchtowers deployment, the new version must be written to disk, as
169         /// state may have been stored but rejected due to a block forcing a commitment broadcast. This
170         /// storage is used to claim outputs of rejected state confirmed onchain by another watchtower,
171         /// lagging behind on block processing.
172         PermanentFailure,
173 }
174
175 /// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is
176 /// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::update_monitor this
177 /// means you tried to update a monitor for a different channel or the ChannelMonitorUpdate was
178 /// corrupted.
179 /// Contains a developer-readable error message.
180 #[derive(Clone, Debug)]
181 pub struct MonitorUpdateError(pub &'static str);
182
183 /// An event to be processed by the ChannelManager.
184 #[derive(Clone, PartialEq)]
185 pub enum MonitorEvent {
186         /// A monitor event containing an HTLCUpdate.
187         HTLCEvent(HTLCUpdate),
188
189         /// A monitor event that the Channel's commitment transaction was broadcasted.
190         CommitmentTxBroadcasted(OutPoint),
191 }
192
193 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
194 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
195 /// preimage claim backward will lead to loss of funds.
196 ///
197 /// [`chain::Watch`]: ../trait.Watch.html
198 #[derive(Clone, PartialEq)]
199 pub struct HTLCUpdate {
200         pub(crate) payment_hash: PaymentHash,
201         pub(crate) payment_preimage: Option<PaymentPreimage>,
202         pub(crate) source: HTLCSource
203 }
204 impl_writeable!(HTLCUpdate, 0, { payment_hash, payment_preimage, source });
205
206 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
207 /// instead claiming it in its own individual transaction.
208 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
209 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
210 /// HTLC-Success transaction.
211 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
212 /// transaction confirmed (and we use it in a few more, equivalent, places).
213 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 6;
214 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
215 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
216 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
217 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
218 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
219 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
220 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
221 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
222 /// accurate block height.
223 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
224 /// with at worst this delay, so we are not only using this value as a mercy for them but also
225 /// us as a safeguard to delay with enough time.
226 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
227 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding inbound
228 /// HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us losing money.
229 /// We use also this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
230 /// It may cause spurrious generation of bumped claim txn but that's allright given the outpoint is already
231 /// solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
232 /// keeping bumping another claim tx to solve the outpoint.
233 pub(crate) const ANTI_REORG_DELAY: u32 = 6;
234 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
235 /// refuse to accept a new HTLC.
236 ///
237 /// This is used for a few separate purposes:
238 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
239 ///    waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
240 ///    fail this HTLC,
241 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
242 ///    condition with the above), we will fail this HTLC without telling the user we received it,
243 /// 3) if we are waiting on a connection or a channel state update to send an HTLC to a peer, and
244 ///    that HTLC expires within this many blocks, we will simply fail the HTLC instead.
245 ///
246 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
247 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
248 ///
249 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
250 /// in a race condition between the user connecting a block (which would fail it) and the user
251 /// providing us the preimage (which would claim it).
252 ///
253 /// (3) is about our counterparty - we don't want to relay an HTLC to a counterparty when they may
254 /// end up force-closing the channel on us to claim it.
255 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
256
257 // TODO(devrandom) replace this with HolderCommitmentTransaction
258 #[derive(Clone, PartialEq)]
259 struct HolderSignedTx {
260         /// txid of the transaction in tx, just used to make comparison faster
261         txid: Txid,
262         revocation_key: PublicKey,
263         a_htlc_key: PublicKey,
264         b_htlc_key: PublicKey,
265         delayed_payment_key: PublicKey,
266         per_commitment_point: PublicKey,
267         feerate_per_kw: u32,
268         htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
269 }
270
271 /// We use this to track counterparty commitment transactions and htlcs outputs and
272 /// use it to generate any justice or 2nd-stage preimage/timeout transactions.
273 #[derive(PartialEq)]
274 struct CounterpartyCommitmentTransaction {
275         counterparty_delayed_payment_base_key: PublicKey,
276         counterparty_htlc_base_key: PublicKey,
277         on_counterparty_tx_csv: u16,
278         per_htlc: HashMap<Txid, Vec<HTLCOutputInCommitment>>
279 }
280
281 impl Writeable for CounterpartyCommitmentTransaction {
282         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
283                 self.counterparty_delayed_payment_base_key.write(w)?;
284                 self.counterparty_htlc_base_key.write(w)?;
285                 w.write_all(&byte_utils::be16_to_array(self.on_counterparty_tx_csv))?;
286                 w.write_all(&byte_utils::be64_to_array(self.per_htlc.len() as u64))?;
287                 for (ref txid, ref htlcs) in self.per_htlc.iter() {
288                         w.write_all(&txid[..])?;
289                         w.write_all(&byte_utils::be64_to_array(htlcs.len() as u64))?;
290                         for &ref htlc in htlcs.iter() {
291                                 htlc.write(w)?;
292                         }
293                 }
294                 Ok(())
295         }
296 }
297 impl Readable for CounterpartyCommitmentTransaction {
298         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
299                 let counterparty_commitment_transaction = {
300                         let counterparty_delayed_payment_base_key = Readable::read(r)?;
301                         let counterparty_htlc_base_key = Readable::read(r)?;
302                         let on_counterparty_tx_csv: u16 = Readable::read(r)?;
303                         let per_htlc_len: u64 = Readable::read(r)?;
304                         let mut per_htlc = HashMap::with_capacity(cmp::min(per_htlc_len as usize, MAX_ALLOC_SIZE / 64));
305                         for _  in 0..per_htlc_len {
306                                 let txid: Txid = Readable::read(r)?;
307                                 let htlcs_count: u64 = Readable::read(r)?;
308                                 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
309                                 for _ in 0..htlcs_count {
310                                         let htlc = Readable::read(r)?;
311                                         htlcs.push(htlc);
312                                 }
313                                 if let Some(_) = per_htlc.insert(txid, htlcs) {
314                                         return Err(DecodeError::InvalidValue);
315                                 }
316                         }
317                         CounterpartyCommitmentTransaction {
318                                 counterparty_delayed_payment_base_key,
319                                 counterparty_htlc_base_key,
320                                 on_counterparty_tx_csv,
321                                 per_htlc,
322                         }
323                 };
324                 Ok(counterparty_commitment_transaction)
325         }
326 }
327
328 /// When ChannelMonitor discovers an onchain outpoint being a step of a channel and that it needs
329 /// to generate a tx to push channel state forward, we cache outpoint-solving tx material to build
330 /// a new bumped one in case of lenghty confirmation delay
331 #[derive(Clone, PartialEq)]
332 pub(crate) enum InputMaterial {
333         Revoked {
334                 per_commitment_point: PublicKey,
335                 counterparty_delayed_payment_base_key: PublicKey,
336                 counterparty_htlc_base_key: PublicKey,
337                 per_commitment_key: SecretKey,
338                 input_descriptor: InputDescriptors,
339                 amount: u64,
340                 htlc: Option<HTLCOutputInCommitment>,
341                 on_counterparty_tx_csv: u16,
342         },
343         CounterpartyHTLC {
344                 per_commitment_point: PublicKey,
345                 counterparty_delayed_payment_base_key: PublicKey,
346                 counterparty_htlc_base_key: PublicKey,
347                 preimage: Option<PaymentPreimage>,
348                 htlc: HTLCOutputInCommitment
349         },
350         HolderHTLC {
351                 preimage: Option<PaymentPreimage>,
352                 amount: u64,
353         },
354         Funding {
355                 funding_redeemscript: Script,
356         }
357 }
358
359 impl Writeable for InputMaterial  {
360         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
361                 match self {
362                         &InputMaterial::Revoked { ref per_commitment_point, ref counterparty_delayed_payment_base_key, ref counterparty_htlc_base_key, ref per_commitment_key, ref input_descriptor, ref amount, ref htlc, ref on_counterparty_tx_csv} => {
363                                 writer.write_all(&[0; 1])?;
364                                 per_commitment_point.write(writer)?;
365                                 counterparty_delayed_payment_base_key.write(writer)?;
366                                 counterparty_htlc_base_key.write(writer)?;
367                                 writer.write_all(&per_commitment_key[..])?;
368                                 input_descriptor.write(writer)?;
369                                 writer.write_all(&byte_utils::be64_to_array(*amount))?;
370                                 htlc.write(writer)?;
371                                 on_counterparty_tx_csv.write(writer)?;
372                         },
373                         &InputMaterial::CounterpartyHTLC { ref per_commitment_point, ref counterparty_delayed_payment_base_key, ref counterparty_htlc_base_key, ref preimage, ref htlc} => {
374                                 writer.write_all(&[1; 1])?;
375                                 per_commitment_point.write(writer)?;
376                                 counterparty_delayed_payment_base_key.write(writer)?;
377                                 counterparty_htlc_base_key.write(writer)?;
378                                 preimage.write(writer)?;
379                                 htlc.write(writer)?;
380                         },
381                         &InputMaterial::HolderHTLC { ref preimage, ref amount } => {
382                                 writer.write_all(&[2; 1])?;
383                                 preimage.write(writer)?;
384                                 writer.write_all(&byte_utils::be64_to_array(*amount))?;
385                         },
386                         &InputMaterial::Funding { ref funding_redeemscript } => {
387                                 writer.write_all(&[3; 1])?;
388                                 funding_redeemscript.write(writer)?;
389                         }
390                 }
391                 Ok(())
392         }
393 }
394
395 impl Readable for InputMaterial {
396         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
397                 let input_material = match <u8 as Readable>::read(reader)? {
398                         0 => {
399                                 let per_commitment_point = Readable::read(reader)?;
400                                 let counterparty_delayed_payment_base_key = Readable::read(reader)?;
401                                 let counterparty_htlc_base_key = Readable::read(reader)?;
402                                 let per_commitment_key = Readable::read(reader)?;
403                                 let input_descriptor = Readable::read(reader)?;
404                                 let amount = Readable::read(reader)?;
405                                 let htlc = Readable::read(reader)?;
406                                 let on_counterparty_tx_csv = Readable::read(reader)?;
407                                 InputMaterial::Revoked {
408                                         per_commitment_point,
409                                         counterparty_delayed_payment_base_key,
410                                         counterparty_htlc_base_key,
411                                         per_commitment_key,
412                                         input_descriptor,
413                                         amount,
414                                         htlc,
415                                         on_counterparty_tx_csv
416                                 }
417                         },
418                         1 => {
419                                 let per_commitment_point = Readable::read(reader)?;
420                                 let counterparty_delayed_payment_base_key = Readable::read(reader)?;
421                                 let counterparty_htlc_base_key = Readable::read(reader)?;
422                                 let preimage = Readable::read(reader)?;
423                                 let htlc = Readable::read(reader)?;
424                                 InputMaterial::CounterpartyHTLC {
425                                         per_commitment_point,
426                                         counterparty_delayed_payment_base_key,
427                                         counterparty_htlc_base_key,
428                                         preimage,
429                                         htlc
430                                 }
431                         },
432                         2 => {
433                                 let preimage = Readable::read(reader)?;
434                                 let amount = Readable::read(reader)?;
435                                 InputMaterial::HolderHTLC {
436                                         preimage,
437                                         amount,
438                                 }
439                         },
440                         3 => {
441                                 InputMaterial::Funding {
442                                         funding_redeemscript: Readable::read(reader)?,
443                                 }
444                         }
445                         _ => return Err(DecodeError::InvalidValue),
446                 };
447                 Ok(input_material)
448         }
449 }
450
451 /// ClaimRequest is a descriptor structure to communicate between detection
452 /// and reaction module. They are generated by ChannelMonitor while parsing
453 /// onchain txn leaked from a channel and handed over to OnchainTxHandler which
454 /// is responsible for opportunistic aggregation, selecting and enforcing
455 /// bumping logic, building and signing transactions.
456 pub(crate) struct ClaimRequest {
457         // Block height before which claiming is exclusive to one party,
458         // after reaching it, claiming may be contentious.
459         pub(crate) absolute_timelock: u32,
460         // Timeout tx must have nLocktime set which means aggregating multiple
461         // ones must take the higher nLocktime among them to satisfy all of them.
462         // Sadly it has few pitfalls, a) it takes longuer to get fund back b) CLTV_DELTA
463         // of a sooner-HTLC could be swallowed by the highest nLocktime of the HTLC set.
464         // Do simplify we mark them as non-aggregable.
465         pub(crate) aggregable: bool,
466         // Basic bitcoin outpoint (txid, vout)
467         pub(crate) outpoint: BitcoinOutPoint,
468         // Following outpoint type, set of data needed to generate transaction digest
469         // and satisfy witness program.
470         pub(crate) witness_data: InputMaterial
471 }
472
473 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
474 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
475 #[derive(Clone, PartialEq)]
476 enum OnchainEvent {
477         /// HTLC output getting solved by a timeout, at maturation we pass upstream payment source information to solve
478         /// inbound HTLC in backward channel. Note, in case of preimage, we pass info to upstream without delay as we can
479         /// only win from it, so it's never an OnchainEvent
480         HTLCUpdate {
481                 htlc_update: (HTLCSource, PaymentHash),
482         },
483         MaturingOutput {
484                 descriptor: SpendableOutputDescriptor,
485         },
486 }
487
488 const SERIALIZATION_VERSION: u8 = 1;
489 const MIN_SERIALIZATION_VERSION: u8 = 1;
490
491 #[cfg_attr(any(test, feature = "fuzztarget", feature = "_test_utils"), derive(PartialEq))]
492 #[derive(Clone)]
493 pub(crate) enum ChannelMonitorUpdateStep {
494         LatestHolderCommitmentTXInfo {
495                 commitment_tx: HolderCommitmentTransaction,
496                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
497         },
498         LatestCounterpartyCommitmentTXInfo {
499                 commitment_txid: Txid,
500                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
501                 commitment_number: u64,
502                 their_revocation_point: PublicKey,
503         },
504         PaymentPreimage {
505                 payment_preimage: PaymentPreimage,
506         },
507         CommitmentSecret {
508                 idx: u64,
509                 secret: [u8; 32],
510         },
511         /// Used to indicate that the no future updates will occur, and likely that the latest holder
512         /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
513         ChannelForceClosed {
514                 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
515                 /// think we've fallen behind!
516                 should_broadcast: bool,
517         },
518 }
519
520 impl Writeable for ChannelMonitorUpdateStep {
521         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
522                 match self {
523                         &ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { ref commitment_tx, ref htlc_outputs } => {
524                                 0u8.write(w)?;
525                                 commitment_tx.write(w)?;
526                                 (htlc_outputs.len() as u64).write(w)?;
527                                 for &(ref output, ref signature, ref source) in htlc_outputs.iter() {
528                                         output.write(w)?;
529                                         signature.write(w)?;
530                                         source.write(w)?;
531                                 }
532                         }
533                         &ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, ref htlc_outputs, ref commitment_number, ref their_revocation_point } => {
534                                 1u8.write(w)?;
535                                 commitment_txid.write(w)?;
536                                 commitment_number.write(w)?;
537                                 their_revocation_point.write(w)?;
538                                 (htlc_outputs.len() as u64).write(w)?;
539                                 for &(ref output, ref source) in htlc_outputs.iter() {
540                                         output.write(w)?;
541                                         source.as_ref().map(|b| b.as_ref()).write(w)?;
542                                 }
543                         },
544                         &ChannelMonitorUpdateStep::PaymentPreimage { ref payment_preimage } => {
545                                 2u8.write(w)?;
546                                 payment_preimage.write(w)?;
547                         },
548                         &ChannelMonitorUpdateStep::CommitmentSecret { ref idx, ref secret } => {
549                                 3u8.write(w)?;
550                                 idx.write(w)?;
551                                 secret.write(w)?;
552                         },
553                         &ChannelMonitorUpdateStep::ChannelForceClosed { ref should_broadcast } => {
554                                 4u8.write(w)?;
555                                 should_broadcast.write(w)?;
556                         },
557                 }
558                 Ok(())
559         }
560 }
561 impl Readable for ChannelMonitorUpdateStep {
562         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
563                 match Readable::read(r)? {
564                         0u8 => {
565                                 Ok(ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo {
566                                         commitment_tx: Readable::read(r)?,
567                                         htlc_outputs: {
568                                                 let len: u64 = Readable::read(r)?;
569                                                 let mut res = Vec::new();
570                                                 for _ in 0..len {
571                                                         res.push((Readable::read(r)?, Readable::read(r)?, Readable::read(r)?));
572                                                 }
573                                                 res
574                                         },
575                                 })
576                         },
577                         1u8 => {
578                                 Ok(ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo {
579                                         commitment_txid: Readable::read(r)?,
580                                         commitment_number: Readable::read(r)?,
581                                         their_revocation_point: Readable::read(r)?,
582                                         htlc_outputs: {
583                                                 let len: u64 = Readable::read(r)?;
584                                                 let mut res = Vec::new();
585                                                 for _ in 0..len {
586                                                         res.push((Readable::read(r)?, <Option<HTLCSource> as Readable>::read(r)?.map(|o| Box::new(o))));
587                                                 }
588                                                 res
589                                         },
590                                 })
591                         },
592                         2u8 => {
593                                 Ok(ChannelMonitorUpdateStep::PaymentPreimage {
594                                         payment_preimage: Readable::read(r)?,
595                                 })
596                         },
597                         3u8 => {
598                                 Ok(ChannelMonitorUpdateStep::CommitmentSecret {
599                                         idx: Readable::read(r)?,
600                                         secret: Readable::read(r)?,
601                                 })
602                         },
603                         4u8 => {
604                                 Ok(ChannelMonitorUpdateStep::ChannelForceClosed {
605                                         should_broadcast: Readable::read(r)?
606                                 })
607                         },
608                         _ => Err(DecodeError::InvalidValue),
609                 }
610         }
611 }
612
613 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
614 /// on-chain transactions to ensure no loss of funds occurs.
615 ///
616 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
617 /// information and are actively monitoring the chain.
618 ///
619 /// Pending Events or updated HTLCs which have not yet been read out by
620 /// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
621 /// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
622 /// gotten are fully handled before re-serializing the new state.
623 ///
624 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
625 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
626 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
627 /// returned block hash and the the current chain and then reconnecting blocks to get to the
628 /// best chain) upon deserializing the object!
629 pub struct ChannelMonitor<Signer: Sign> {
630         #[cfg(test)]
631         pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
632         #[cfg(not(test))]
633         inner: Mutex<ChannelMonitorImpl<Signer>>,
634 }
635
636 pub(crate) struct ChannelMonitorImpl<Signer: Sign> {
637         latest_update_id: u64,
638         commitment_transaction_number_obscure_factor: u64,
639
640         destination_script: Script,
641         broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
642         counterparty_payment_script: Script,
643         shutdown_script: Script,
644
645         channel_keys_id: [u8; 32],
646         holder_revocation_basepoint: PublicKey,
647         funding_info: (OutPoint, Script),
648         current_counterparty_commitment_txid: Option<Txid>,
649         prev_counterparty_commitment_txid: Option<Txid>,
650
651         counterparty_tx_cache: CounterpartyCommitmentTransaction,
652         funding_redeemscript: Script,
653         channel_value_satoshis: u64,
654         // first is the idx of the first of the two revocation points
655         their_cur_revocation_points: Option<(u64, PublicKey, Option<PublicKey>)>,
656
657         on_holder_tx_csv: u16,
658
659         commitment_secrets: CounterpartyCommitmentSecrets,
660         counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
661         /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
662         /// Nor can we figure out their commitment numbers without the commitment transaction they are
663         /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
664         /// commitment transactions which we find on-chain, mapping them to the commitment number which
665         /// can be used to derive the revocation key and claim the transactions.
666         counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
667         /// Cache used to make pruning of payment_preimages faster.
668         /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
669         /// counterparty transactions (ie should remain pretty small).
670         /// Serialized to disk but should generally not be sent to Watchtowers.
671         counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
672
673         // We store two holder commitment transactions to avoid any race conditions where we may update
674         // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
675         // various monitors for one channel being out of sync, and us broadcasting a holder
676         // transaction for which we have deleted claim information on some watchtowers.
677         prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
678         current_holder_commitment_tx: HolderSignedTx,
679
680         // Used just for ChannelManager to make sure it has the latest channel data during
681         // deserialization
682         current_counterparty_commitment_number: u64,
683         // Used just for ChannelManager to make sure it has the latest channel data during
684         // deserialization
685         current_holder_commitment_number: u64,
686
687         payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
688
689         pending_monitor_events: Vec<MonitorEvent>,
690         pending_events: Vec<Event>,
691
692         // Used to track onchain events, i.e transactions parts of channels confirmed on chain, on which
693         // we have to take actions once they reach enough confs. Key is a block height timer, i.e we enforce
694         // actions when we receive a block with given height. Actions depend on OnchainEvent type.
695         onchain_events_waiting_threshold_conf: HashMap<u32, Vec<OnchainEvent>>,
696
697         // If we get serialized out and re-read, we need to make sure that the chain monitoring
698         // interface knows about the TXOs that we want to be notified of spends of. We could probably
699         // be smart and derive them from the above storage fields, but its much simpler and more
700         // Obviously Correct (tm) if we just keep track of them explicitly.
701         outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,
702
703         #[cfg(test)]
704         pub onchain_tx_handler: OnchainTxHandler<Signer>,
705         #[cfg(not(test))]
706         onchain_tx_handler: OnchainTxHandler<Signer>,
707
708         // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
709         // channel has been force-closed. After this is set, no further holder commitment transaction
710         // updates may occur, and we panic!() if one is provided.
711         lockdown_from_offchain: bool,
712
713         // Set once we've signed a holder commitment transaction and handed it over to our
714         // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
715         // may occur, and we fail any such monitor updates.
716         //
717         // In case of update rejection due to a locally already signed commitment transaction, we
718         // nevertheless store update content to track in case of concurrent broadcast by another
719         // remote monitor out-of-order with regards to the block view.
720         holder_tx_signed: bool,
721
722         // We simply modify last_block_hash in Channel's block_connected so that serialization is
723         // consistent but hopefully the users' copy handles block_connected in a consistent way.
724         // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
725         // their last_block_hash from its state and not based on updated copies that didn't run through
726         // the full block_connected).
727         last_block_hash: BlockHash,
728         secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
729 }
730
731 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
732 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
733 /// underlying object
734 impl<Signer: Sign> PartialEq for ChannelMonitor<Signer> {
735         fn eq(&self, other: &Self) -> bool {
736                 let inner = self.inner.lock().unwrap();
737                 let other = other.inner.lock().unwrap();
738                 inner.eq(&other)
739         }
740 }
741
742 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
743 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
744 /// underlying object
745 impl<Signer: Sign> PartialEq for ChannelMonitorImpl<Signer> {
746         fn eq(&self, other: &Self) -> bool {
747                 if self.latest_update_id != other.latest_update_id ||
748                         self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
749                         self.destination_script != other.destination_script ||
750                         self.broadcasted_holder_revokable_script != other.broadcasted_holder_revokable_script ||
751                         self.counterparty_payment_script != other.counterparty_payment_script ||
752                         self.channel_keys_id != other.channel_keys_id ||
753                         self.holder_revocation_basepoint != other.holder_revocation_basepoint ||
754                         self.funding_info != other.funding_info ||
755                         self.current_counterparty_commitment_txid != other.current_counterparty_commitment_txid ||
756                         self.prev_counterparty_commitment_txid != other.prev_counterparty_commitment_txid ||
757                         self.counterparty_tx_cache != other.counterparty_tx_cache ||
758                         self.funding_redeemscript != other.funding_redeemscript ||
759                         self.channel_value_satoshis != other.channel_value_satoshis ||
760                         self.their_cur_revocation_points != other.their_cur_revocation_points ||
761                         self.on_holder_tx_csv != other.on_holder_tx_csv ||
762                         self.commitment_secrets != other.commitment_secrets ||
763                         self.counterparty_claimable_outpoints != other.counterparty_claimable_outpoints ||
764                         self.counterparty_commitment_txn_on_chain != other.counterparty_commitment_txn_on_chain ||
765                         self.counterparty_hash_commitment_number != other.counterparty_hash_commitment_number ||
766                         self.prev_holder_signed_commitment_tx != other.prev_holder_signed_commitment_tx ||
767                         self.current_counterparty_commitment_number != other.current_counterparty_commitment_number ||
768                         self.current_holder_commitment_number != other.current_holder_commitment_number ||
769                         self.current_holder_commitment_tx != other.current_holder_commitment_tx ||
770                         self.payment_preimages != other.payment_preimages ||
771                         self.pending_monitor_events != other.pending_monitor_events ||
772                         self.pending_events.len() != other.pending_events.len() || // We trust events to round-trip properly
773                         self.onchain_events_waiting_threshold_conf != other.onchain_events_waiting_threshold_conf ||
774                         self.outputs_to_watch != other.outputs_to_watch ||
775                         self.lockdown_from_offchain != other.lockdown_from_offchain ||
776                         self.holder_tx_signed != other.holder_tx_signed
777                 {
778                         false
779                 } else {
780                         true
781                 }
782         }
783 }
784
785 impl<Signer: Sign> Writeable for ChannelMonitor<Signer> {
786         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
787                 //TODO: We still write out all the serialization here manually instead of using the fancy
788                 //serialization framework we have, we should migrate things over to it.
789                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
790                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
791
792                 self.inner.lock().unwrap().write(writer)
793         }
794 }
795
796 impl<Signer: Sign> Writeable for ChannelMonitorImpl<Signer> {
797         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
798                 self.latest_update_id.write(writer)?;
799
800                 // Set in initial Channel-object creation, so should always be set by now:
801                 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
802
803                 self.destination_script.write(writer)?;
804                 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
805                         writer.write_all(&[0; 1])?;
806                         broadcasted_holder_revokable_script.0.write(writer)?;
807                         broadcasted_holder_revokable_script.1.write(writer)?;
808                         broadcasted_holder_revokable_script.2.write(writer)?;
809                 } else {
810                         writer.write_all(&[1; 1])?;
811                 }
812
813                 self.counterparty_payment_script.write(writer)?;
814                 self.shutdown_script.write(writer)?;
815
816                 self.channel_keys_id.write(writer)?;
817                 self.holder_revocation_basepoint.write(writer)?;
818                 writer.write_all(&self.funding_info.0.txid[..])?;
819                 writer.write_all(&byte_utils::be16_to_array(self.funding_info.0.index))?;
820                 self.funding_info.1.write(writer)?;
821                 self.current_counterparty_commitment_txid.write(writer)?;
822                 self.prev_counterparty_commitment_txid.write(writer)?;
823
824                 self.counterparty_tx_cache.write(writer)?;
825                 self.funding_redeemscript.write(writer)?;
826                 self.channel_value_satoshis.write(writer)?;
827
828                 match self.their_cur_revocation_points {
829                         Some((idx, pubkey, second_option)) => {
830                                 writer.write_all(&byte_utils::be48_to_array(idx))?;
831                                 writer.write_all(&pubkey.serialize())?;
832                                 match second_option {
833                                         Some(second_pubkey) => {
834                                                 writer.write_all(&second_pubkey.serialize())?;
835                                         },
836                                         None => {
837                                                 writer.write_all(&[0; 33])?;
838                                         },
839                                 }
840                         },
841                         None => {
842                                 writer.write_all(&byte_utils::be48_to_array(0))?;
843                         },
844                 }
845
846                 writer.write_all(&byte_utils::be16_to_array(self.on_holder_tx_csv))?;
847
848                 self.commitment_secrets.write(writer)?;
849
850                 macro_rules! serialize_htlc_in_commitment {
851                         ($htlc_output: expr) => {
852                                 writer.write_all(&[$htlc_output.offered as u8; 1])?;
853                                 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
854                                 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
855                                 writer.write_all(&$htlc_output.payment_hash.0[..])?;
856                                 $htlc_output.transaction_output_index.write(writer)?;
857                         }
858                 }
859
860                 writer.write_all(&byte_utils::be64_to_array(self.counterparty_claimable_outpoints.len() as u64))?;
861                 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
862                         writer.write_all(&txid[..])?;
863                         writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
864                         for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
865                                 serialize_htlc_in_commitment!(htlc_output);
866                                 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
867                         }
868                 }
869
870                 writer.write_all(&byte_utils::be64_to_array(self.counterparty_commitment_txn_on_chain.len() as u64))?;
871                 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
872                         writer.write_all(&txid[..])?;
873                         writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
874                 }
875
876                 writer.write_all(&byte_utils::be64_to_array(self.counterparty_hash_commitment_number.len() as u64))?;
877                 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
878                         writer.write_all(&payment_hash.0[..])?;
879                         writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
880                 }
881
882                 macro_rules! serialize_holder_tx {
883                         ($holder_tx: expr) => {
884                                 $holder_tx.txid.write(writer)?;
885                                 writer.write_all(&$holder_tx.revocation_key.serialize())?;
886                                 writer.write_all(&$holder_tx.a_htlc_key.serialize())?;
887                                 writer.write_all(&$holder_tx.b_htlc_key.serialize())?;
888                                 writer.write_all(&$holder_tx.delayed_payment_key.serialize())?;
889                                 writer.write_all(&$holder_tx.per_commitment_point.serialize())?;
890
891                                 writer.write_all(&byte_utils::be32_to_array($holder_tx.feerate_per_kw))?;
892                                 writer.write_all(&byte_utils::be64_to_array($holder_tx.htlc_outputs.len() as u64))?;
893                                 for &(ref htlc_output, ref sig, ref htlc_source) in $holder_tx.htlc_outputs.iter() {
894                                         serialize_htlc_in_commitment!(htlc_output);
895                                         if let &Some(ref their_sig) = sig {
896                                                 1u8.write(writer)?;
897                                                 writer.write_all(&their_sig.serialize_compact())?;
898                                         } else {
899                                                 0u8.write(writer)?;
900                                         }
901                                         htlc_source.write(writer)?;
902                                 }
903                         }
904                 }
905
906                 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
907                         writer.write_all(&[1; 1])?;
908                         serialize_holder_tx!(prev_holder_tx);
909                 } else {
910                         writer.write_all(&[0; 1])?;
911                 }
912
913                 serialize_holder_tx!(self.current_holder_commitment_tx);
914
915                 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
916                 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
917
918                 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
919                 for payment_preimage in self.payment_preimages.values() {
920                         writer.write_all(&payment_preimage.0[..])?;
921                 }
922
923                 writer.write_all(&byte_utils::be64_to_array(self.pending_monitor_events.len() as u64))?;
924                 for event in self.pending_monitor_events.iter() {
925                         match event {
926                                 MonitorEvent::HTLCEvent(upd) => {
927                                         0u8.write(writer)?;
928                                         upd.write(writer)?;
929                                 },
930                                 MonitorEvent::CommitmentTxBroadcasted(_) => 1u8.write(writer)?
931                         }
932                 }
933
934                 writer.write_all(&byte_utils::be64_to_array(self.pending_events.len() as u64))?;
935                 for event in self.pending_events.iter() {
936                         event.write(writer)?;
937                 }
938
939                 self.last_block_hash.write(writer)?;
940
941                 writer.write_all(&byte_utils::be64_to_array(self.onchain_events_waiting_threshold_conf.len() as u64))?;
942                 for (ref target, ref events) in self.onchain_events_waiting_threshold_conf.iter() {
943                         writer.write_all(&byte_utils::be32_to_array(**target))?;
944                         writer.write_all(&byte_utils::be64_to_array(events.len() as u64))?;
945                         for ev in events.iter() {
946                                 match *ev {
947                                         OnchainEvent::HTLCUpdate { ref htlc_update } => {
948                                                 0u8.write(writer)?;
949                                                 htlc_update.0.write(writer)?;
950                                                 htlc_update.1.write(writer)?;
951                                         },
952                                         OnchainEvent::MaturingOutput { ref descriptor } => {
953                                                 1u8.write(writer)?;
954                                                 descriptor.write(writer)?;
955                                         },
956                                 }
957                         }
958                 }
959
960                 (self.outputs_to_watch.len() as u64).write(writer)?;
961                 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
962                         txid.write(writer)?;
963                         (idx_scripts.len() as u64).write(writer)?;
964                         for (idx, script) in idx_scripts.iter() {
965                                 idx.write(writer)?;
966                                 script.write(writer)?;
967                         }
968                 }
969                 self.onchain_tx_handler.write(writer)?;
970
971                 self.lockdown_from_offchain.write(writer)?;
972                 self.holder_tx_signed.write(writer)?;
973
974                 Ok(())
975         }
976 }
977
978 impl<Signer: Sign> ChannelMonitor<Signer> {
979         pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_pubkey: &PublicKey,
980                           on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
981                           channel_parameters: &ChannelTransactionParameters,
982                           funding_redeemscript: Script, channel_value_satoshis: u64,
983                           commitment_transaction_number_obscure_factor: u64,
984                           initial_holder_commitment_tx: HolderCommitmentTransaction,
985                           last_block_hash: BlockHash) -> ChannelMonitor<Signer> {
986
987                 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
988                 let our_channel_close_key_hash = WPubkeyHash::hash(&shutdown_pubkey.serialize());
989                 let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script();
990                 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
991                 let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
992
993                 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
994                 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
995                 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
996                 let counterparty_tx_cache = CounterpartyCommitmentTransaction { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv, per_htlc: HashMap::new() };
997
998                 let channel_keys_id = keys.channel_keys_id();
999                 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
1000
1001                 // block for Rust 1.34 compat
1002                 let (holder_commitment_tx, current_holder_commitment_number) = {
1003                         let trusted_tx = initial_holder_commitment_tx.trust();
1004                         let txid = trusted_tx.txid();
1005
1006                         let tx_keys = trusted_tx.keys();
1007                         let holder_commitment_tx = HolderSignedTx {
1008                                 txid,
1009                                 revocation_key: tx_keys.revocation_key,
1010                                 a_htlc_key: tx_keys.broadcaster_htlc_key,
1011                                 b_htlc_key: tx_keys.countersignatory_htlc_key,
1012                                 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1013                                 per_commitment_point: tx_keys.per_commitment_point,
1014                                 feerate_per_kw: trusted_tx.feerate_per_kw(),
1015                                 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1016                         };
1017                         (holder_commitment_tx, trusted_tx.commitment_number())
1018                 };
1019
1020                 let onchain_tx_handler =
1021                         OnchainTxHandler::new(destination_script.clone(), keys,
1022                         channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx.clone());
1023
1024                 let mut outputs_to_watch = HashMap::new();
1025                 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1026
1027                 ChannelMonitor {
1028                         inner: Mutex::new(ChannelMonitorImpl {
1029                                 latest_update_id: 0,
1030                                 commitment_transaction_number_obscure_factor,
1031
1032                                 destination_script: destination_script.clone(),
1033                                 broadcasted_holder_revokable_script: None,
1034                                 counterparty_payment_script,
1035                                 shutdown_script,
1036
1037                                 channel_keys_id,
1038                                 holder_revocation_basepoint,
1039                                 funding_info,
1040                                 current_counterparty_commitment_txid: None,
1041                                 prev_counterparty_commitment_txid: None,
1042
1043                                 counterparty_tx_cache,
1044                                 funding_redeemscript,
1045                                 channel_value_satoshis,
1046                                 their_cur_revocation_points: None,
1047
1048                                 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1049
1050                                 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1051                                 counterparty_claimable_outpoints: HashMap::new(),
1052                                 counterparty_commitment_txn_on_chain: HashMap::new(),
1053                                 counterparty_hash_commitment_number: HashMap::new(),
1054
1055                                 prev_holder_signed_commitment_tx: None,
1056                                 current_holder_commitment_tx: holder_commitment_tx,
1057                                 current_counterparty_commitment_number: 1 << 48,
1058                                 current_holder_commitment_number,
1059
1060                                 payment_preimages: HashMap::new(),
1061                                 pending_monitor_events: Vec::new(),
1062                                 pending_events: Vec::new(),
1063
1064                                 onchain_events_waiting_threshold_conf: HashMap::new(),
1065                                 outputs_to_watch,
1066
1067                                 onchain_tx_handler,
1068
1069                                 lockdown_from_offchain: false,
1070                                 holder_tx_signed: false,
1071
1072                                 last_block_hash,
1073                                 secp_ctx,
1074                         }),
1075                 }
1076         }
1077
1078         #[cfg(test)]
1079         fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
1080                 self.inner.lock().unwrap().provide_secret(idx, secret)
1081         }
1082
1083         /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1084         /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1085         /// possibly future revocation/preimage information) to claim outputs where possible.
1086         /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1087         pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(
1088                 &self,
1089                 txid: Txid,
1090                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1091                 commitment_number: u64,
1092                 their_revocation_point: PublicKey,
1093                 logger: &L,
1094         ) where L::Target: Logger {
1095                 self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
1096                         txid, htlc_outputs, commitment_number, their_revocation_point, logger)
1097         }
1098
1099         #[cfg(test)]
1100         fn provide_latest_holder_commitment_tx(
1101                 &self,
1102                 holder_commitment_tx: HolderCommitmentTransaction,
1103                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1104         ) -> Result<(), MonitorUpdateError> {
1105                 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(
1106                         holder_commitment_tx, htlc_outputs)
1107         }
1108
1109         #[cfg(test)]
1110         pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1111                 &self,
1112                 payment_hash: &PaymentHash,
1113                 payment_preimage: &PaymentPreimage,
1114                 broadcaster: &B,
1115                 fee_estimator: &F,
1116                 logger: &L,
1117         ) where
1118                 B::Target: BroadcasterInterface,
1119                 F::Target: FeeEstimator,
1120                 L::Target: Logger,
1121         {
1122                 self.inner.lock().unwrap().provide_payment_preimage(
1123                         payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
1124         }
1125
1126         pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(
1127                 &self,
1128                 broadcaster: &B,
1129                 logger: &L,
1130         ) where
1131                 B::Target: BroadcasterInterface,
1132                 L::Target: Logger,
1133         {
1134                 self.inner.lock().unwrap().broadcast_latest_holder_commitment_txn(broadcaster, logger)
1135         }
1136
1137         /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1138         /// itself.
1139         ///
1140         /// panics if the given update is not the next update by update_id.
1141         pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1142                 &self,
1143                 updates: &ChannelMonitorUpdate,
1144                 broadcaster: &B,
1145                 fee_estimator: &F,
1146                 logger: &L,
1147         ) -> Result<(), MonitorUpdateError>
1148         where
1149                 B::Target: BroadcasterInterface,
1150                 F::Target: FeeEstimator,
1151                 L::Target: Logger,
1152         {
1153                 self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
1154         }
1155
1156         /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1157         /// ChannelMonitor.
1158         pub fn get_latest_update_id(&self) -> u64 {
1159                 self.inner.lock().unwrap().get_latest_update_id()
1160         }
1161
1162         /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1163         pub fn get_funding_txo(&self) -> (OutPoint, Script) {
1164                 self.inner.lock().unwrap().get_funding_txo().clone()
1165         }
1166
1167         /// Gets a list of txids, with their output scripts (in the order they appear in the
1168         /// transaction), which we must learn about spends of via block_connected().
1169         ///
1170         /// (C-not exported) because we have no HashMap bindings
1171         pub fn get_outputs_to_watch(&self) -> HashMap<Txid, Vec<(u32, Script)>> {
1172                 self.inner.lock().unwrap().get_outputs_to_watch().clone()
1173         }
1174
1175         /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1176         /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1177         /// have been registered.
1178         pub fn load_outputs_to_watch<F: Deref>(&self, filter: F) where F::Target: chain::Filter {
1179                 let lock = self.inner.lock().unwrap();
1180                 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1181                 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1182                         for (index, script_pubkey) in outputs.iter() {
1183                                 assert!(*index <= u16::max_value() as u32);
1184                                 filter.register_output(&OutPoint { txid: *txid, index: *index as u16 }, script_pubkey);
1185                         }
1186                 }
1187         }
1188
1189         /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1190         /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1191         ///
1192         /// [`chain::Watch::release_pending_monitor_events`]: ../trait.Watch.html#tymethod.release_pending_monitor_events
1193         pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1194                 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1195         }
1196
1197         /// Gets the list of pending events which were generated by previous actions, clearing the list
1198         /// in the process.
1199         ///
1200         /// This is called by ChainMonitor::get_and_clear_pending_events() and is equivalent to
1201         /// EventsProvider::get_and_clear_pending_events() except that it requires &mut self as we do
1202         /// no internal locking in ChannelMonitors.
1203         pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1204                 self.inner.lock().unwrap().get_and_clear_pending_events()
1205         }
1206
1207         pub(crate) fn get_min_seen_secret(&self) -> u64 {
1208                 self.inner.lock().unwrap().get_min_seen_secret()
1209         }
1210
1211         pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1212                 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1213         }
1214
1215         pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1216                 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1217         }
1218
1219         /// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
1220         /// the Channel was out-of-date. You may use it to get a broadcastable holder toxic tx in case of
1221         /// fallen-behind, i.e when receiving a channel_reestablish with a proof that our counterparty side knows
1222         /// a higher revocation secret than the holder commitment number we are aware of. Broadcasting these
1223         /// transactions are UNSAFE, as they allow counterparty side to punish you. Nevertheless you may want to
1224         /// broadcast them if counterparty don't close channel with his higher commitment transaction after a
1225         /// substantial amount of time (a month or even a year) to get back funds. Best may be to contact
1226         /// out-of-band the other node operator to coordinate with him if option is available to you.
1227         /// In any-case, choice is up to the user.
1228         pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1229         where L::Target: Logger {
1230                 self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
1231         }
1232
1233         /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
1234         /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1235         /// revoked commitment transaction.
1236         #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1237         pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1238         where L::Target: Logger {
1239                 self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
1240         }
1241
1242         /// Processes transactions in a newly connected block, which may result in any of the following:
1243         /// - update the monitor's state against resolved HTLCs
1244         /// - punish the counterparty in the case of seeing a revoked commitment transaction
1245         /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1246         /// - detect settled outputs for later spending
1247         /// - schedule and bump any in-flight claims
1248         ///
1249         /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1250         /// [`get_outputs_to_watch`].
1251         ///
1252         /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1253         pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1254                 &self,
1255                 header: &BlockHeader,
1256                 txdata: &TransactionData,
1257                 height: u32,
1258                 broadcaster: B,
1259                 fee_estimator: F,
1260                 logger: L,
1261         ) -> Vec<(Txid, Vec<(u32, TxOut)>)>
1262         where
1263                 B::Target: BroadcasterInterface,
1264                 F::Target: FeeEstimator,
1265                 L::Target: Logger,
1266         {
1267                 self.inner.lock().unwrap().block_connected(
1268                         header, txdata, height, broadcaster, fee_estimator, logger)
1269         }
1270
1271         /// Determines if the disconnected block contained any transactions of interest and updates
1272         /// appropriately.
1273         pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1274                 &self,
1275                 header: &BlockHeader,
1276                 height: u32,
1277                 broadcaster: B,
1278                 fee_estimator: F,
1279                 logger: L,
1280         ) where
1281                 B::Target: BroadcasterInterface,
1282                 F::Target: FeeEstimator,
1283                 L::Target: Logger,
1284         {
1285                 self.inner.lock().unwrap().block_disconnected(
1286                         header, height, broadcaster, fee_estimator, logger)
1287         }
1288 }
1289
1290 impl<Signer: Sign> ChannelMonitorImpl<Signer> {
1291         /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
1292         /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
1293         /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
1294         fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
1295                 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
1296                         return Err(MonitorUpdateError("Previous secret did not match new one"));
1297                 }
1298
1299                 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
1300                 // events for now-revoked/fulfilled HTLCs.
1301                 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
1302                         for &mut (_, ref mut source) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
1303                                 *source = None;
1304                         }
1305                 }
1306
1307                 if !self.payment_preimages.is_empty() {
1308                         let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
1309                         let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
1310                         let min_idx = self.get_min_seen_secret();
1311                         let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
1312
1313                         self.payment_preimages.retain(|&k, _| {
1314                                 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
1315                                         if k == htlc.payment_hash {
1316                                                 return true
1317                                         }
1318                                 }
1319                                 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
1320                                         for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
1321                                                 if k == htlc.payment_hash {
1322                                                         return true
1323                                                 }
1324                                         }
1325                                 }
1326                                 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
1327                                         if *cn < min_idx {
1328                                                 return true
1329                                         }
1330                                         true
1331                                 } else { false };
1332                                 if contains {
1333                                         counterparty_hash_commitment_number.remove(&k);
1334                                 }
1335                                 false
1336                         });
1337                 }
1338
1339                 Ok(())
1340         }
1341
1342         pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_revocation_point: PublicKey, logger: &L) where L::Target: Logger {
1343                 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
1344                 // so that a remote monitor doesn't learn anything unless there is a malicious close.
1345                 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
1346                 // timeouts)
1347                 for &(ref htlc, _) in &htlc_outputs {
1348                         self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
1349                 }
1350
1351                 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
1352                 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
1353                 self.current_counterparty_commitment_txid = Some(txid);
1354                 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
1355                 self.current_counterparty_commitment_number = commitment_number;
1356                 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
1357                 match self.their_cur_revocation_points {
1358                         Some(old_points) => {
1359                                 if old_points.0 == commitment_number + 1 {
1360                                         self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point)));
1361                                 } else if old_points.0 == commitment_number + 2 {
1362                                         if let Some(old_second_point) = old_points.2 {
1363                                                 self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point)));
1364                                         } else {
1365                                                 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1366                                         }
1367                                 } else {
1368                                         self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1369                                 }
1370                         },
1371                         None => {
1372                                 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1373                         }
1374                 }
1375                 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
1376                 for htlc in htlc_outputs {
1377                         if htlc.0.transaction_output_index.is_some() {
1378                                 htlcs.push(htlc.0);
1379                         }
1380                 }
1381                 self.counterparty_tx_cache.per_htlc.insert(txid, htlcs);
1382         }
1383
1384         /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
1385         /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
1386         /// is important that any clones of this channel monitor (including remote clones) by kept
1387         /// up-to-date as our holder commitment transaction is updated.
1388         /// Panics if set_on_holder_tx_csv has never been called.
1389         fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>) -> Result<(), MonitorUpdateError> {
1390                 // block for Rust 1.34 compat
1391                 let mut new_holder_commitment_tx = {
1392                         let trusted_tx = holder_commitment_tx.trust();
1393                         let txid = trusted_tx.txid();
1394                         let tx_keys = trusted_tx.keys();
1395                         self.current_holder_commitment_number = trusted_tx.commitment_number();
1396                         HolderSignedTx {
1397                                 txid,
1398                                 revocation_key: tx_keys.revocation_key,
1399                                 a_htlc_key: tx_keys.broadcaster_htlc_key,
1400                                 b_htlc_key: tx_keys.countersignatory_htlc_key,
1401                                 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1402                                 per_commitment_point: tx_keys.per_commitment_point,
1403                                 feerate_per_kw: trusted_tx.feerate_per_kw(),
1404                                 htlc_outputs,
1405                         }
1406                 };
1407                 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
1408                 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
1409                 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
1410                 if self.holder_tx_signed {
1411                         return Err(MonitorUpdateError("Latest holder commitment signed has already been signed, update is rejected"));
1412                 }
1413                 Ok(())
1414         }
1415
1416         /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
1417         /// commitment_tx_infos which contain the payment hash have been revoked.
1418         fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B, fee_estimator: &F, logger: &L)
1419         where B::Target: BroadcasterInterface,
1420                     F::Target: FeeEstimator,
1421                     L::Target: Logger,
1422         {
1423                 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
1424
1425                 // If the channel is force closed, try to claim the output from this preimage.
1426                 // First check if a counterparty commitment transaction has been broadcasted:
1427                 macro_rules! claim_htlcs {
1428                         ($commitment_number: expr, $txid: expr) => {
1429                                 let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs($commitment_number, $txid, None);
1430                                 self.onchain_tx_handler.update_claims_view(&Vec::new(), htlc_claim_reqs, None, broadcaster, fee_estimator, logger);
1431                         }
1432                 }
1433                 if let Some(txid) = self.current_counterparty_commitment_txid {
1434                         if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1435                                 claim_htlcs!(*commitment_number, txid);
1436                                 return;
1437                         }
1438                 }
1439                 if let Some(txid) = self.prev_counterparty_commitment_txid {
1440                         if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1441                                 claim_htlcs!(*commitment_number, txid);
1442                                 return;
1443                         }
1444                 }
1445
1446                 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
1447                 // claiming the HTLC output from each of the holder commitment transactions.
1448                 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
1449                 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
1450                 // holder commitment transactions.
1451                 if self.broadcasted_holder_revokable_script.is_some() {
1452                         let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx);
1453                         self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, None, broadcaster, fee_estimator, logger);
1454                         if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
1455                                 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx);
1456                                 self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, None, broadcaster, fee_estimator, logger);
1457                         }
1458                 }
1459         }
1460
1461         pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
1462                 where B::Target: BroadcasterInterface,
1463                                         L::Target: Logger,
1464         {
1465                 for tx in self.get_latest_holder_commitment_txn(logger).iter() {
1466                         broadcaster.broadcast_transaction(tx);
1467                 }
1468                 self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0));
1469         }
1470
1471         pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: &F, logger: &L) -> Result<(), MonitorUpdateError>
1472         where B::Target: BroadcasterInterface,
1473                     F::Target: FeeEstimator,
1474                     L::Target: Logger,
1475         {
1476                 // ChannelMonitor updates may be applied after force close if we receive a
1477                 // preimage for a broadcasted commitment transaction HTLC output that we'd
1478                 // like to claim on-chain. If this is the case, we no longer have guaranteed
1479                 // access to the monitor's update ID, so we use a sentinel value instead.
1480                 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
1481                         match updates.updates[0] {
1482                                 ChannelMonitorUpdateStep::PaymentPreimage { .. } => {},
1483                                 _ => panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage"),
1484                         }
1485                         assert_eq!(updates.updates.len(), 1);
1486                 } else if self.latest_update_id + 1 != updates.update_id {
1487                         panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
1488                 }
1489                 for update in updates.updates.iter() {
1490                         match update {
1491                                 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs } => {
1492                                         log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
1493                                         if self.lockdown_from_offchain { panic!(); }
1494                                         self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone())?
1495                                 }
1496                                 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_revocation_point } => {
1497                                         log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
1498                                         self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_revocation_point, logger)
1499                                 },
1500                                 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
1501                                         log_trace!(logger, "Updating ChannelMonitor with payment preimage");
1502                                         self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, fee_estimator, logger)
1503                                 },
1504                                 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
1505                                         log_trace!(logger, "Updating ChannelMonitor with commitment secret");
1506                                         self.provide_secret(*idx, *secret)?
1507                                 },
1508                                 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
1509                                         log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
1510                                         self.lockdown_from_offchain = true;
1511                                         if *should_broadcast {
1512                                                 self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
1513                                         } else {
1514                                                 log_error!(logger, "You have a toxic holder commitment transaction avaible in channel monitor, read comment in ChannelMonitor::get_latest_holder_commitment_txn to be informed of manual action to take");
1515                                         }
1516                                 }
1517                         }
1518                 }
1519                 self.latest_update_id = updates.update_id;
1520                 Ok(())
1521         }
1522
1523         pub fn get_latest_update_id(&self) -> u64 {
1524                 self.latest_update_id
1525         }
1526
1527         pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
1528                 &self.funding_info
1529         }
1530
1531         pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
1532                 // If we've detected a counterparty commitment tx on chain, we must include it in the set
1533                 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
1534                 // its trivial to do, double-check that here.
1535                 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
1536                         self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
1537                 }
1538                 &self.outputs_to_watch
1539         }
1540
1541         pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
1542                 let mut ret = Vec::new();
1543                 mem::swap(&mut ret, &mut self.pending_monitor_events);
1544                 ret
1545         }
1546
1547         pub fn get_and_clear_pending_events(&mut self) -> Vec<Event> {
1548                 let mut ret = Vec::new();
1549                 mem::swap(&mut ret, &mut self.pending_events);
1550                 ret
1551         }
1552
1553         /// Can only fail if idx is < get_min_seen_secret
1554         fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
1555                 self.commitment_secrets.get_secret(idx)
1556         }
1557
1558         pub(crate) fn get_min_seen_secret(&self) -> u64 {
1559                 self.commitment_secrets.get_min_seen_secret()
1560         }
1561
1562         pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1563                 self.current_counterparty_commitment_number
1564         }
1565
1566         pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1567                 self.current_holder_commitment_number
1568         }
1569
1570         /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
1571         /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
1572         /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
1573         /// HTLC-Success/HTLC-Timeout transactions.
1574         /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
1575         /// revoked counterparty commitment tx
1576         fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<ClaimRequest>, (Txid, Vec<(u32, TxOut)>)) where L::Target: Logger {
1577                 // Most secp and related errors trying to create keys means we have no hope of constructing
1578                 // a spend transaction...so we return no transactions to broadcast
1579                 let mut claimable_outpoints = Vec::new();
1580                 let mut watch_outputs = Vec::new();
1581
1582                 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1583                 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
1584
1585                 macro_rules! ignore_error {
1586                         ( $thing : expr ) => {
1587                                 match $thing {
1588                                         Ok(a) => a,
1589                                         Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs))
1590                                 }
1591                         };
1592                 }
1593
1594                 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
1595                 if commitment_number >= self.get_min_seen_secret() {
1596                         let secret = self.get_secret(commitment_number).unwrap();
1597                         let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1598                         let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1599                         let revocation_pubkey = ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint));
1600                         let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.counterparty_tx_cache.counterparty_delayed_payment_base_key));
1601
1602                         let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_tx_cache.on_counterparty_tx_csv, &delayed_key);
1603                         let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
1604
1605                         // First, process non-htlc outputs (to_holder & to_counterparty)
1606                         for (idx, outp) in tx.output.iter().enumerate() {
1607                                 if outp.script_pubkey == revokeable_p2wsh {
1608                                         let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, input_descriptor: InputDescriptors::RevokedOutput, amount: outp.value, htlc: None, on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv};
1609                                         claimable_outpoints.push(ClaimRequest { absolute_timelock: height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, aggregable: true, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 }, witness_data});
1610                                 }
1611                         }
1612
1613                         // Then, try to find revoked htlc outputs
1614                         if let Some(ref per_commitment_data) = per_commitment_option {
1615                                 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1616                                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1617                                                 if transaction_output_index as usize >= tx.output.len() ||
1618                                                                 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
1619                                                         return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user
1620                                                 }
1621                                                 let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, input_descriptor: if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC }, amount: tx.output[transaction_output_index as usize].value, htlc: Some(htlc.clone()), on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv};
1622                                                 claimable_outpoints.push(ClaimRequest { absolute_timelock: htlc.cltv_expiry, aggregable: true, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index }, witness_data });
1623                                         }
1624                                 }
1625                         }
1626
1627                         // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
1628                         if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
1629                                 // We're definitely a counterparty commitment transaction!
1630                                 log_trace!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
1631                                 for (idx, outp) in tx.output.iter().enumerate() {
1632                                         watch_outputs.push((idx as u32, outp.clone()));
1633                                 }
1634                                 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
1635
1636                                 macro_rules! check_htlc_fails {
1637                                         ($txid: expr, $commitment_tx: expr) => {
1638                                                 if let Some(ref outpoints) = self.counterparty_claimable_outpoints.get($txid) {
1639                                                         for &(ref htlc, ref source_option) in outpoints.iter() {
1640                                                                 if let &Some(ref source) = source_option {
1641                                                                         log_info!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of revoked counterparty commitment transaction, waiting for confirmation (at height {})", log_bytes!(htlc.payment_hash.0), $commitment_tx, height + ANTI_REORG_DELAY - 1);
1642                                                                         match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
1643                                                                                 hash_map::Entry::Occupied(mut entry) => {
1644                                                                                         let e = entry.get_mut();
1645                                                                                         e.retain(|ref event| {
1646                                                                                                 match **event {
1647                                                                                                         OnchainEvent::HTLCUpdate { ref htlc_update } => {
1648                                                                                                                 return htlc_update.0 != **source
1649                                                                                                         },
1650                                                                                                         _ => true
1651                                                                                                 }
1652                                                                                         });
1653                                                                                         e.push(OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())});
1654                                                                                 }
1655                                                                                 hash_map::Entry::Vacant(entry) => {
1656                                                                                         entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}]);
1657                                                                                 }
1658                                                                         }
1659                                                                 }
1660                                                         }
1661                                                 }
1662                                         }
1663                                 }
1664                                 if let Some(ref txid) = self.current_counterparty_commitment_txid {
1665                                         check_htlc_fails!(txid, "current");
1666                                 }
1667                                 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
1668                                         check_htlc_fails!(txid, "counterparty");
1669                                 }
1670                                 // No need to check holder commitment txn, symmetric HTLCSource must be present as per-htlc data on counterparty commitment tx
1671                         }
1672                 } else if let Some(per_commitment_data) = per_commitment_option {
1673                         // While this isn't useful yet, there is a potential race where if a counterparty
1674                         // revokes a state at the same time as the commitment transaction for that state is
1675                         // confirmed, and the watchtower receives the block before the user, the user could
1676                         // upload a new ChannelMonitor with the revocation secret but the watchtower has
1677                         // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
1678                         // not being generated by the above conditional. Thus, to be safe, we go ahead and
1679                         // insert it here.
1680                         for (idx, outp) in tx.output.iter().enumerate() {
1681                                 watch_outputs.push((idx as u32, outp.clone()));
1682                         }
1683                         self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
1684
1685                         log_trace!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
1686
1687                         macro_rules! check_htlc_fails {
1688                                 ($txid: expr, $commitment_tx: expr, $id: tt) => {
1689                                         if let Some(ref latest_outpoints) = self.counterparty_claimable_outpoints.get($txid) {
1690                                                 $id: for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1691                                                         if let &Some(ref source) = source_option {
1692                                                                 // Check if the HTLC is present in the commitment transaction that was
1693                                                                 // broadcast, but not if it was below the dust limit, which we should
1694                                                                 // fail backwards immediately as there is no way for us to learn the
1695                                                                 // payment_preimage.
1696                                                                 // Note that if the dust limit were allowed to change between
1697                                                                 // commitment transactions we'd want to be check whether *any*
1698                                                                 // broadcastable commitment transaction has the HTLC in it, but it
1699                                                                 // cannot currently change after channel initialization, so we don't
1700                                                                 // need to here.
1701                                                                 for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() {
1702                                                                         if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() {
1703                                                                                 continue $id;
1704                                                                         }
1705                                                                 }
1706                                                                 log_trace!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of counterparty commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx);
1707                                                                 match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
1708                                                                         hash_map::Entry::Occupied(mut entry) => {
1709                                                                                 let e = entry.get_mut();
1710                                                                                 e.retain(|ref event| {
1711                                                                                         match **event {
1712                                                                                                 OnchainEvent::HTLCUpdate { ref htlc_update } => {
1713                                                                                                         return htlc_update.0 != **source
1714                                                                                                 },
1715                                                                                                 _ => true
1716                                                                                         }
1717                                                                                 });
1718                                                                                 e.push(OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())});
1719                                                                         }
1720                                                                         hash_map::Entry::Vacant(entry) => {
1721                                                                                 entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}]);
1722                                                                         }
1723                                                                 }
1724                                                         }
1725                                                 }
1726                                         }
1727                                 }
1728                         }
1729                         if let Some(ref txid) = self.current_counterparty_commitment_txid {
1730                                 check_htlc_fails!(txid, "current", 'current_loop);
1731                         }
1732                         if let Some(ref txid) = self.prev_counterparty_commitment_txid {
1733                                 check_htlc_fails!(txid, "previous", 'prev_loop);
1734                         }
1735
1736                         let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs(commitment_number, commitment_txid, Some(tx));
1737                         for req in htlc_claim_reqs {
1738                                 claimable_outpoints.push(req);
1739                         }
1740
1741                 }
1742                 (claimable_outpoints, (commitment_txid, watch_outputs))
1743         }
1744
1745         fn get_counterparty_htlc_output_claim_reqs(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>) -> Vec<ClaimRequest> {
1746                 let mut claims = Vec::new();
1747                 if let Some(htlc_outputs) = self.counterparty_claimable_outpoints.get(&commitment_txid) {
1748                         if let Some(revocation_points) = self.their_cur_revocation_points {
1749                                 let revocation_point_option =
1750                                         // If the counterparty commitment tx is the latest valid state, use their latest
1751                                         // per-commitment point
1752                                         if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
1753                                         else if let Some(point) = revocation_points.2.as_ref() {
1754                                                 // If counterparty commitment tx is the state previous to the latest valid state, use
1755                                                 // their previous per-commitment point (non-atomicity of revocation means it's valid for
1756                                                 // them to temporarily have two valid commitment txns from our viewpoint)
1757                                                 if revocation_points.0 == commitment_number + 1 { Some(point) } else { None }
1758                                         } else { None };
1759                                 if let Some(revocation_point) = revocation_point_option {
1760                                         for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
1761                                                 if let Some(transaction_output_index) = htlc.transaction_output_index {
1762                                                         if let Some(transaction) = tx {
1763                                                                 if transaction_output_index as usize >= transaction.output.len() ||
1764                                                                         transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
1765                                                                                 return claims; // Corrupted per_commitment_data, fuck this user
1766                                                                         }
1767                                                         }
1768                                                         let preimage =
1769                                                                 if htlc.offered {
1770                                                                         if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) {
1771                                                                                 Some(*p)
1772                                                                         } else { None }
1773                                                                 } else { None };
1774                                                         let aggregable = if !htlc.offered { false } else { true };
1775                                                         if preimage.is_some() || !htlc.offered {
1776                                                                 let witness_data = InputMaterial::CounterpartyHTLC { per_commitment_point: *revocation_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, preimage, htlc: htlc.clone() };
1777                                                                 claims.push(ClaimRequest { absolute_timelock: htlc.cltv_expiry, aggregable, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index }, witness_data });
1778                                                         }
1779                                                 }
1780                                         }
1781                                 }
1782                         }
1783                 }
1784                 claims
1785         }
1786
1787         /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
1788         fn check_spend_counterparty_htlc<L: Deref>(&mut self, tx: &Transaction, commitment_number: u64, height: u32, logger: &L) -> (Vec<ClaimRequest>, Option<(Txid, Vec<(u32, TxOut)>)>) where L::Target: Logger {
1789                 let htlc_txid = tx.txid();
1790                 if tx.input.len() != 1 || tx.output.len() != 1 || tx.input[0].witness.len() != 5 {
1791                         return (Vec::new(), None)
1792                 }
1793
1794                 macro_rules! ignore_error {
1795                         ( $thing : expr ) => {
1796                                 match $thing {
1797                                         Ok(a) => a,
1798                                         Err(_) => return (Vec::new(), None)
1799                                 }
1800                         };
1801                 }
1802
1803                 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
1804                 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1805                 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1806
1807                 log_trace!(logger, "Counterparty HTLC broadcast {}:{}", htlc_txid, 0);
1808                 let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key,  per_commitment_key, input_descriptor: InputDescriptors::RevokedOutput, amount: tx.output[0].value, htlc: None, on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv };
1809                 let claimable_outpoints = vec!(ClaimRequest { absolute_timelock: height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, aggregable: true, outpoint: BitcoinOutPoint { txid: htlc_txid, vout: 0}, witness_data });
1810                 let outputs = vec![(0, tx.output[0].clone())];
1811                 (claimable_outpoints, Some((htlc_txid, outputs)))
1812         }
1813
1814         // Returns (1) `ClaimRequest`s that can be given to the OnChainTxHandler, so that the handler can
1815         // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
1816         // script so we can detect whether a holder transaction has been seen on-chain.
1817         fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx) -> (Vec<ClaimRequest>, Option<(Script, PublicKey, PublicKey)>) {
1818                 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
1819
1820                 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
1821                 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
1822
1823                 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
1824                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1825                                 claim_requests.push(ClaimRequest { absolute_timelock: ::std::u32::MAX, aggregable: false, outpoint: BitcoinOutPoint { txid: holder_tx.txid, vout: transaction_output_index as u32 },
1826                                         witness_data: InputMaterial::HolderHTLC {
1827                                                 preimage: if !htlc.offered {
1828                                                                 if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1829                                                                         Some(preimage.clone())
1830                                                                 } else {
1831                                                                         // We can't build an HTLC-Success transaction without the preimage
1832                                                                         continue;
1833                                                                 }
1834                                                         } else { None },
1835                                                 amount: htlc.amount_msat,
1836                                 }});
1837                         }
1838                 }
1839
1840                 (claim_requests, broadcasted_holder_revokable_script)
1841         }
1842
1843         // Returns holder HTLC outputs to watch and react to in case of spending.
1844         fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
1845                 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
1846                 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
1847                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1848                                 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
1849                         }
1850                 }
1851                 watch_outputs
1852         }
1853
1854         /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
1855         /// revoked using data in holder_claimable_outpoints.
1856         /// Should not be used if check_spend_revoked_transaction succeeds.
1857         fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<ClaimRequest>, (Txid, Vec<(u32, TxOut)>)) where L::Target: Logger {
1858                 let commitment_txid = tx.txid();
1859                 let mut claim_requests = Vec::new();
1860                 let mut watch_outputs = Vec::new();
1861
1862                 macro_rules! wait_threshold_conf {
1863                         ($height: expr, $source: expr, $commitment_tx: expr, $payment_hash: expr) => {
1864                                 log_trace!(logger, "Failing HTLC with payment_hash {} from {} holder commitment tx due to broadcast of transaction, waiting confirmation (at height{})", log_bytes!($payment_hash.0), $commitment_tx, height + ANTI_REORG_DELAY - 1);
1865                                 match self.onchain_events_waiting_threshold_conf.entry($height + ANTI_REORG_DELAY - 1) {
1866                                         hash_map::Entry::Occupied(mut entry) => {
1867                                                 let e = entry.get_mut();
1868                                                 e.retain(|ref event| {
1869                                                         match **event {
1870                                                                 OnchainEvent::HTLCUpdate { ref htlc_update } => {
1871                                                                         return htlc_update.0 != $source
1872                                                                 },
1873                                                                 _ => true
1874                                                         }
1875                                                 });
1876                                                 e.push(OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash)});
1877                                         }
1878                                         hash_map::Entry::Vacant(entry) => {
1879                                                 entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash)}]);
1880                                         }
1881                                 }
1882                         }
1883                 }
1884
1885                 macro_rules! append_onchain_update {
1886                         ($updates: expr, $to_watch: expr) => {
1887                                 claim_requests = $updates.0;
1888                                 self.broadcasted_holder_revokable_script = $updates.1;
1889                                 watch_outputs.append(&mut $to_watch);
1890                         }
1891                 }
1892
1893                 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
1894                 let mut is_holder_tx = false;
1895
1896                 if self.current_holder_commitment_tx.txid == commitment_txid {
1897                         is_holder_tx = true;
1898                         log_trace!(logger, "Got latest holder commitment tx broadcast, searching for available HTLCs to claim");
1899                         let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx);
1900                         let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
1901                         append_onchain_update!(res, to_watch);
1902                 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
1903                         if holder_tx.txid == commitment_txid {
1904                                 is_holder_tx = true;
1905                                 log_trace!(logger, "Got previous holder commitment tx broadcast, searching for available HTLCs to claim");
1906                                 let res = self.get_broadcasted_holder_claims(holder_tx);
1907                                 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
1908                                 append_onchain_update!(res, to_watch);
1909                         }
1910                 }
1911
1912                 macro_rules! fail_dust_htlcs_after_threshold_conf {
1913                         ($holder_tx: expr) => {
1914                                 for &(ref htlc, _, ref source) in &$holder_tx.htlc_outputs {
1915                                         if htlc.transaction_output_index.is_none() {
1916                                                 if let &Some(ref source) = source {
1917                                                         wait_threshold_conf!(height, source.clone(), "lastest", htlc.payment_hash.clone());
1918                                                 }
1919                                         }
1920                                 }
1921                         }
1922                 }
1923
1924                 if is_holder_tx {
1925                         fail_dust_htlcs_after_threshold_conf!(self.current_holder_commitment_tx);
1926                         if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
1927                                 fail_dust_htlcs_after_threshold_conf!(holder_tx);
1928                         }
1929                 }
1930
1931                 (claim_requests, (commitment_txid, watch_outputs))
1932         }
1933
1934         pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
1935                 log_trace!(logger, "Getting signed latest holder commitment transaction!");
1936                 self.holder_tx_signed = true;
1937                 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
1938                 let txid = commitment_tx.txid();
1939                 let mut res = vec![commitment_tx];
1940                 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
1941                         if let Some(vout) = htlc.0.transaction_output_index {
1942                                 let preimage = if !htlc.0.offered {
1943                                         if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
1944                                                 // We can't build an HTLC-Success transaction without the preimage
1945                                                 continue;
1946                                         }
1947                                 } else { None };
1948                                 if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
1949                                         &::bitcoin::OutPoint { txid, vout }, &preimage) {
1950                                         res.push(htlc_tx);
1951                                 }
1952                         }
1953                 }
1954                 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
1955                 // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
1956                 return res;
1957         }
1958
1959         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
1960         fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
1961                 log_trace!(logger, "Getting signed copy of latest holder commitment transaction!");
1962                 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
1963                 let txid = commitment_tx.txid();
1964                 let mut res = vec![commitment_tx];
1965                 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
1966                         if let Some(vout) = htlc.0.transaction_output_index {
1967                                 let preimage = if !htlc.0.offered {
1968                                         if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
1969                                                 // We can't build an HTLC-Success transaction without the preimage
1970                                                 continue;
1971                                         }
1972                                 } else { None };
1973                                 if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
1974                                         &::bitcoin::OutPoint { txid, vout }, &preimage) {
1975                                         res.push(htlc_tx);
1976                                 }
1977                         }
1978                 }
1979                 return res
1980         }
1981
1982         pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L)-> Vec<(Txid, Vec<(u32, TxOut)>)>
1983                 where B::Target: BroadcasterInterface,
1984                       F::Target: FeeEstimator,
1985                                         L::Target: Logger,
1986         {
1987                 let txn_matched = self.filter_block(txdata);
1988                 for tx in &txn_matched {
1989                         let mut output_val = 0;
1990                         for out in tx.output.iter() {
1991                                 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
1992                                 output_val += out.value;
1993                                 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
1994                         }
1995                 }
1996
1997                 let block_hash = header.block_hash();
1998                 log_trace!(logger, "Block {} at height {} connected with {} txn matched", block_hash, height, txn_matched.len());
1999
2000                 let mut watch_outputs = Vec::new();
2001                 let mut claimable_outpoints = Vec::new();
2002                 for tx in &txn_matched {
2003                         if tx.input.len() == 1 {
2004                                 // Assuming our keys were not leaked (in which case we're screwed no matter what),
2005                                 // commitment transactions and HTLC transactions will all only ever have one input,
2006                                 // which is an easy way to filter out any potential non-matching txn for lazy
2007                                 // filters.
2008                                 let prevout = &tx.input[0].previous_output;
2009                                 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
2010                                         if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 {
2011                                                 let (mut new_outpoints, new_outputs) = self.check_spend_counterparty_transaction(&tx, height, &logger);
2012                                                 if !new_outputs.1.is_empty() {
2013                                                         watch_outputs.push(new_outputs);
2014                                                 }
2015                                                 if new_outpoints.is_empty() {
2016                                                         let (mut new_outpoints, new_outputs) = self.check_spend_holder_transaction(&tx, height, &logger);
2017                                                         if !new_outputs.1.is_empty() {
2018                                                                 watch_outputs.push(new_outputs);
2019                                                         }
2020                                                         claimable_outpoints.append(&mut new_outpoints);
2021                                                 }
2022                                                 claimable_outpoints.append(&mut new_outpoints);
2023                                         }
2024                                 } else {
2025                                         if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&prevout.txid) {
2026                                                 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(&tx, commitment_number, height, &logger);
2027                                                 claimable_outpoints.append(&mut new_outpoints);
2028                                                 if let Some(new_outputs) = new_outputs_option {
2029                                                         watch_outputs.push(new_outputs);
2030                                                 }
2031                                         }
2032                                 }
2033                         }
2034                         // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
2035                         // can also be resolved in a few other ways which can have more than one output. Thus,
2036                         // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
2037                         self.is_resolving_htlc_output(&tx, height, &logger);
2038
2039                         self.is_paying_spendable_output(&tx, height, &logger);
2040                 }
2041                 let should_broadcast = self.would_broadcast_at_height(height, &logger);
2042                 if should_broadcast {
2043                         claimable_outpoints.push(ClaimRequest { absolute_timelock: height, aggregable: false, outpoint: BitcoinOutPoint { txid: self.funding_info.0.txid.clone(), vout: self.funding_info.0.index as u32 }, witness_data: InputMaterial::Funding { funding_redeemscript: self.funding_redeemscript.clone() }});
2044                 }
2045                 if should_broadcast {
2046                         self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0));
2047                         let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2048                         self.holder_tx_signed = true;
2049                         let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx);
2050                         let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &commitment_tx);
2051                         if !new_outputs.is_empty() {
2052                                 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
2053                         }
2054                         claimable_outpoints.append(&mut new_outpoints);
2055                 }
2056                 if let Some(events) = self.onchain_events_waiting_threshold_conf.remove(&height) {
2057                         for ev in events {
2058                                 match ev {
2059                                         OnchainEvent::HTLCUpdate { htlc_update } => {
2060                                                 log_trace!(logger, "HTLC {} failure update has got enough confirmations to be passed upstream", log_bytes!((htlc_update.1).0));
2061                                                 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2062                                                         payment_hash: htlc_update.1,
2063                                                         payment_preimage: None,
2064                                                         source: htlc_update.0,
2065                                                 }));
2066                                         },
2067                                         OnchainEvent::MaturingOutput { descriptor } => {
2068                                                 log_trace!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
2069                                                 self.pending_events.push(Event::SpendableOutputs {
2070                                                         outputs: vec![descriptor]
2071                                                 });
2072                                         }
2073                                 }
2074                         }
2075                 }
2076
2077                 self.onchain_tx_handler.update_claims_view(&txn_matched, claimable_outpoints, Some(height), &&*broadcaster, &&*fee_estimator, &&*logger);
2078                 self.last_block_hash = block_hash;
2079
2080                 // Determine new outputs to watch by comparing against previously known outputs to watch,
2081                 // updating the latter in the process.
2082                 watch_outputs.retain(|&(ref txid, ref txouts)| {
2083                         let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
2084                         self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
2085                 });
2086                 #[cfg(test)]
2087                 {
2088                         // If we see a transaction for which we registered outputs previously,
2089                         // make sure the registered scriptpubkey at the expected index match
2090                         // the actual transaction output one. We failed this case before #653.
2091                         for tx in &txn_matched {
2092                                 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
2093                                         for idx_and_script in outputs.iter() {
2094                                                 assert!((idx_and_script.0 as usize) < tx.output.len());
2095                                                 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
2096                                         }
2097                                 }
2098                         }
2099                 }
2100                 watch_outputs
2101         }
2102
2103         pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
2104                 where B::Target: BroadcasterInterface,
2105                       F::Target: FeeEstimator,
2106                       L::Target: Logger,
2107         {
2108                 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
2109
2110                 if let Some(_) = self.onchain_events_waiting_threshold_conf.remove(&(height + ANTI_REORG_DELAY - 1)) {
2111                         //We may discard:
2112                         //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
2113                         //- maturing spendable output has transaction paying us has been disconnected
2114                 }
2115
2116                 self.onchain_tx_handler.block_disconnected(height, broadcaster, fee_estimator, logger);
2117
2118                 self.last_block_hash = header.prev_blockhash;
2119         }
2120
2121         /// Filters a block's `txdata` for transactions spending watched outputs or for any child
2122         /// transactions thereof.
2123         fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
2124                 let mut matched_txn = HashSet::new();
2125                 txdata.iter().filter(|&&(_, tx)| {
2126                         let mut matches = self.spends_watched_output(tx);
2127                         for input in tx.input.iter() {
2128                                 if matches { break; }
2129                                 if matched_txn.contains(&input.previous_output.txid) {
2130                                         matches = true;
2131                                 }
2132                         }
2133                         if matches {
2134                                 matched_txn.insert(tx.txid());
2135                         }
2136                         matches
2137                 }).map(|(_, tx)| *tx).collect()
2138         }
2139
2140         /// Checks if a given transaction spends any watched outputs.
2141         fn spends_watched_output(&self, tx: &Transaction) -> bool {
2142                 for input in tx.input.iter() {
2143                         if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
2144                                 for (idx, _script_pubkey) in outputs.iter() {
2145                                         if *idx == input.previous_output.vout {
2146                                                 #[cfg(test)]
2147                                                 {
2148                                                         // If the expected script is a known type, check that the witness
2149                                                         // appears to be spending the correct type (ie that the match would
2150                                                         // actually succeed in BIP 158/159-style filters).
2151                                                         if _script_pubkey.is_v0_p2wsh() {
2152                                                                 assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().clone()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
2153                                                         } else if _script_pubkey.is_v0_p2wpkh() {
2154                                                                 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
2155                                                         } else { panic!(); }
2156                                                 }
2157                                                 return true;
2158                                         }
2159                                 }
2160                         }
2161                 }
2162
2163                 false
2164         }
2165
2166         fn would_broadcast_at_height<L: Deref>(&self, height: u32, logger: &L) -> bool where L::Target: Logger {
2167                 // We need to consider all HTLCs which are:
2168                 //  * in any unrevoked counterparty commitment transaction, as they could broadcast said
2169                 //    transactions and we'd end up in a race, or
2170                 //  * are in our latest holder commitment transaction, as this is the thing we will
2171                 //    broadcast if we go on-chain.
2172                 // Note that we consider HTLCs which were below dust threshold here - while they don't
2173                 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
2174                 // to the source, and if we don't fail the channel we will have to ensure that the next
2175                 // updates that peer sends us are update_fails, failing the channel if not. It's probably
2176                 // easier to just fail the channel as this case should be rare enough anyway.
2177                 macro_rules! scan_commitment {
2178                         ($htlcs: expr, $holder_tx: expr) => {
2179                                 for ref htlc in $htlcs {
2180                                         // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
2181                                         // chain with enough room to claim the HTLC without our counterparty being able to
2182                                         // time out the HTLC first.
2183                                         // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
2184                                         // concern is being able to claim the corresponding inbound HTLC (on another
2185                                         // channel) before it expires. In fact, we don't even really care if our
2186                                         // counterparty here claims such an outbound HTLC after it expired as long as we
2187                                         // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
2188                                         // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
2189                                         // we give ourselves a few blocks of headroom after expiration before going
2190                                         // on-chain for an expired HTLC.
2191                                         // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
2192                                         // from us until we've reached the point where we go on-chain with the
2193                                         // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
2194                                         // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
2195                                         //  aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
2196                                         //      inbound_cltv == height + CLTV_CLAIM_BUFFER
2197                                         //      outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
2198                                         //      LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
2199                                         //      CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
2200                                         //      LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
2201                                         //  The final, above, condition is checked for statically in channelmanager
2202                                         //  with CHECK_CLTV_EXPIRY_SANITY_2.
2203                                         let htlc_outbound = $holder_tx == htlc.offered;
2204                                         if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
2205                                            (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
2206                                                 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
2207                                                 return true;
2208                                         }
2209                                 }
2210                         }
2211                 }
2212
2213                 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
2214
2215                 if let Some(ref txid) = self.current_counterparty_commitment_txid {
2216                         if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2217                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2218                         }
2219                 }
2220                 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
2221                         if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2222                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2223                         }
2224                 }
2225
2226                 false
2227         }
2228
2229         /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
2230         /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
2231         fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2232                 'outer_loop: for input in &tx.input {
2233                         let mut payment_data = None;
2234                         let revocation_sig_claim = (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC) && input.witness[1].len() == 33)
2235                                 || (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::AcceptedHTLC) && input.witness[1].len() == 33);
2236                         let accepted_preimage_claim = input.witness.len() == 5 && HTLCType::scriptlen_to_htlctype(input.witness[4].len()) == Some(HTLCType::AcceptedHTLC);
2237                         let offered_preimage_claim = input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC);
2238
2239                         macro_rules! log_claim {
2240                                 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
2241                                         // We found the output in question, but aren't failing it backwards
2242                                         // as we have no corresponding source and no valid counterparty commitment txid
2243                                         // to try a weak source binding with same-hash, same-value still-valid offered HTLC.
2244                                         // This implies either it is an inbound HTLC or an outbound HTLC on a revoked transaction.
2245                                         let outbound_htlc = $holder_tx == $htlc.offered;
2246                                         if ($holder_tx && revocation_sig_claim) ||
2247                                                         (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
2248                                                 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
2249                                                         $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2250                                                         if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2251                                                         if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
2252                                         } else {
2253                                                 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
2254                                                         $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2255                                                         if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2256                                                         if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
2257                                         }
2258                                 }
2259                         }
2260
2261                         macro_rules! check_htlc_valid_counterparty {
2262                                 ($counterparty_txid: expr, $htlc_output: expr) => {
2263                                         if let Some(txid) = $counterparty_txid {
2264                                                 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2265                                                         if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
2266                                                                 if let &Some(ref source) = pending_source {
2267                                                                         log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
2268                                                                         payment_data = Some(((**source).clone(), $htlc_output.payment_hash));
2269                                                                         break;
2270                                                                 }
2271                                                         }
2272                                                 }
2273                                         }
2274                                 }
2275                         }
2276
2277                         macro_rules! scan_commitment {
2278                                 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
2279                                         for (ref htlc_output, source_option) in $htlcs {
2280                                                 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
2281                                                         if let Some(ref source) = source_option {
2282                                                                 log_claim!($tx_info, $holder_tx, htlc_output, true);
2283                                                                 // We have a resolution of an HTLC either from one of our latest
2284                                                                 // holder commitment transactions or an unrevoked counterparty commitment
2285                                                                 // transaction. This implies we either learned a preimage, the HTLC
2286                                                                 // has timed out, or we screwed up. In any case, we should now
2287                                                                 // resolve the source HTLC with the original sender.
2288                                                                 payment_data = Some(((*source).clone(), htlc_output.payment_hash));
2289                                                         } else if !$holder_tx {
2290                                                                         check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
2291                                                                 if payment_data.is_none() {
2292                                                                         check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
2293                                                                 }
2294                                                         }
2295                                                         if payment_data.is_none() {
2296                                                                 log_claim!($tx_info, $holder_tx, htlc_output, false);
2297                                                                 continue 'outer_loop;
2298                                                         }
2299                                                 }
2300                                         }
2301                                 }
2302                         }
2303
2304                         if input.previous_output.txid == self.current_holder_commitment_tx.txid {
2305                                 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2306                                         "our latest holder commitment tx", true);
2307                         }
2308                         if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
2309                                 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
2310                                         scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2311                                                 "our previous holder commitment tx", true);
2312                                 }
2313                         }
2314                         if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
2315                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
2316                                         "counterparty commitment tx", false);
2317                         }
2318
2319                         // Check that scan_commitment, above, decided there is some source worth relaying an
2320                         // HTLC resolution backwards to and figure out whether we learned a preimage from it.
2321                         if let Some((source, payment_hash)) = payment_data {
2322                                 let mut payment_preimage = PaymentPreimage([0; 32]);
2323                                 if accepted_preimage_claim {
2324                                         if !self.pending_monitor_events.iter().any(
2325                                                 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
2326                                                 payment_preimage.0.copy_from_slice(&input.witness[3]);
2327                                                 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2328                                                         source,
2329                                                         payment_preimage: Some(payment_preimage),
2330                                                         payment_hash
2331                                                 }));
2332                                         }
2333                                 } else if offered_preimage_claim {
2334                                         if !self.pending_monitor_events.iter().any(
2335                                                 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
2336                                                         upd.source == source
2337                                                 } else { false }) {
2338                                                 payment_preimage.0.copy_from_slice(&input.witness[1]);
2339                                                 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2340                                                         source,
2341                                                         payment_preimage: Some(payment_preimage),
2342                                                         payment_hash
2343                                                 }));
2344                                         }
2345                                 } else {
2346                                         log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height{})", log_bytes!(payment_hash.0), height + ANTI_REORG_DELAY - 1);
2347                                         match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
2348                                                 hash_map::Entry::Occupied(mut entry) => {
2349                                                         let e = entry.get_mut();
2350                                                         e.retain(|ref event| {
2351                                                                 match **event {
2352                                                                         OnchainEvent::HTLCUpdate { ref htlc_update } => {
2353                                                                                 return htlc_update.0 != source
2354                                                                         },
2355                                                                         _ => true
2356                                                                 }
2357                                                         });
2358                                                         e.push(OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash)});
2359                                                 }
2360                                                 hash_map::Entry::Vacant(entry) => {
2361                                                         entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash)}]);
2362                                                 }
2363                                         }
2364                                 }
2365                         }
2366                 }
2367         }
2368
2369         /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
2370         fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2371                 let mut spendable_output = None;
2372                 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
2373                         if i > ::std::u16::MAX as usize {
2374                                 // While it is possible that an output exists on chain which is greater than the
2375                                 // 2^16th output in a given transaction, this is only possible if the output is not
2376                                 // in a lightning transaction and was instead placed there by some third party who
2377                                 // wishes to give us money for no reason.
2378                                 // Namely, any lightning transactions which we pre-sign will never have anywhere
2379                                 // near 2^16 outputs both because such transactions must have ~2^16 outputs who's
2380                                 // scripts are not longer than one byte in length and because they are inherently
2381                                 // non-standard due to their size.
2382                                 // Thus, it is completely safe to ignore such outputs, and while it may result in
2383                                 // us ignoring non-lightning fund to us, that is only possible if someone fills
2384                                 // nearly a full block with garbage just to hit this case.
2385                                 continue;
2386                         }
2387                         if outp.script_pubkey == self.destination_script {
2388                                 spendable_output =  Some(SpendableOutputDescriptor::StaticOutput {
2389                                         outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2390                                         output: outp.clone(),
2391                                 });
2392                                 break;
2393                         } else if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
2394                                 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
2395                                         spendable_output =  Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
2396                                                 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2397                                                 per_commitment_point: broadcasted_holder_revokable_script.1,
2398                                                 to_self_delay: self.on_holder_tx_csv,
2399                                                 output: outp.clone(),
2400                                                 revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
2401                                                 channel_keys_id: self.channel_keys_id,
2402                                                 channel_value_satoshis: self.channel_value_satoshis,
2403                                         }));
2404                                         break;
2405                                 }
2406                         } else if self.counterparty_payment_script == outp.script_pubkey {
2407                                 spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
2408                                         outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2409                                         output: outp.clone(),
2410                                         channel_keys_id: self.channel_keys_id,
2411                                         channel_value_satoshis: self.channel_value_satoshis,
2412                                 }));
2413                                 break;
2414                         } else if outp.script_pubkey == self.shutdown_script {
2415                                 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
2416                                         outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2417                                         output: outp.clone(),
2418                                 });
2419                         }
2420                 }
2421                 if let Some(spendable_output) = spendable_output {
2422                         log_trace!(logger, "Maturing {} until {}", log_spendable!(spendable_output), height + ANTI_REORG_DELAY - 1);
2423                         match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
2424                                 hash_map::Entry::Occupied(mut entry) => {
2425                                         let e = entry.get_mut();
2426                                         e.push(OnchainEvent::MaturingOutput { descriptor: spendable_output });
2427                                 }
2428                                 hash_map::Entry::Vacant(entry) => {
2429                                         entry.insert(vec![OnchainEvent::MaturingOutput { descriptor: spendable_output }]);
2430                                 }
2431                         }
2432                 }
2433         }
2434 }
2435
2436 /// `Persist` defines behavior for persisting channel monitors: this could mean
2437 /// writing once to disk, and/or uploading to one or more backup services.
2438 ///
2439 /// Note that for every new monitor, you **must** persist the new `ChannelMonitor`
2440 /// to disk/backups. And, on every update, you **must** persist either the
2441 /// `ChannelMonitorUpdate` or the updated monitor itself. Otherwise, there is risk
2442 /// of situations such as revoking a transaction, then crashing before this
2443 /// revocation can be persisted, then unintentionally broadcasting a revoked
2444 /// transaction and losing money. This is a risk because previous channel states
2445 /// are toxic, so it's important that whatever channel state is persisted is
2446 /// kept up-to-date.
2447 pub trait Persist<ChannelSigner: Sign>: Send + Sync {
2448         /// Persist a new channel's data. The data can be stored any way you want, but
2449         /// the identifier provided by Rust-Lightning is the channel's outpoint (and
2450         /// it is up to you to maintain a correct mapping between the outpoint and the
2451         /// stored channel data). Note that you **must** persist every new monitor to
2452         /// disk. See the `Persist` trait documentation for more details.
2453         ///
2454         /// See [`ChannelMonitor::serialize_for_disk`] for writing out a `ChannelMonitor`,
2455         /// and [`ChannelMonitorUpdateErr`] for requirements when returning errors.
2456         ///
2457         /// [`ChannelMonitor::serialize_for_disk`]: struct.ChannelMonitor.html#method.serialize_for_disk
2458         /// [`ChannelMonitorUpdateErr`]: enum.ChannelMonitorUpdateErr.html
2459         fn persist_new_channel(&self, id: OutPoint, data: &ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr>;
2460
2461         /// Update one channel's data. The provided `ChannelMonitor` has already
2462         /// applied the given update.
2463         ///
2464         /// Note that on every update, you **must** persist either the
2465         /// `ChannelMonitorUpdate` or the updated monitor itself to disk/backups. See
2466         /// the `Persist` trait documentation for more details.
2467         ///
2468         /// If an implementer chooses to persist the updates only, they need to make
2469         /// sure that all the updates are applied to the `ChannelMonitors` *before*
2470         /// the set of channel monitors is given to the `ChannelManager`
2471         /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
2472         /// applying a monitor update to a monitor. If full `ChannelMonitors` are
2473         /// persisted, then there is no need to persist individual updates.
2474         ///
2475         /// Note that there could be a performance tradeoff between persisting complete
2476         /// channel monitors on every update vs. persisting only updates and applying
2477         /// them in batches. The size of each monitor grows `O(number of state updates)`
2478         /// whereas updates are small and `O(1)`.
2479         ///
2480         /// See [`ChannelMonitor::serialize_for_disk`] for writing out a `ChannelMonitor`,
2481         /// [`ChannelMonitorUpdate::write`] for writing out an update, and
2482         /// [`ChannelMonitorUpdateErr`] for requirements when returning errors.
2483         ///
2484         /// [`ChannelMonitor::update_monitor`]: struct.ChannelMonitor.html#impl-1
2485         /// [`ChannelMonitor::serialize_for_disk`]: struct.ChannelMonitor.html#method.serialize_for_disk
2486         /// [`ChannelMonitorUpdate::write`]: struct.ChannelMonitorUpdate.html#method.write
2487         /// [`ChannelMonitorUpdateErr`]: enum.ChannelMonitorUpdateErr.html
2488         fn update_persisted_channel(&self, id: OutPoint, update: &ChannelMonitorUpdate, data: &ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr>;
2489 }
2490
2491 impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
2492 where
2493         T::Target: BroadcasterInterface,
2494         F::Target: FeeEstimator,
2495         L::Target: Logger,
2496 {
2497         fn block_connected(&self, block: &Block, height: u32) {
2498                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
2499                 self.0.block_connected(&block.header, &txdata, height, &*self.1, &*self.2, &*self.3);
2500         }
2501
2502         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
2503                 self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
2504         }
2505 }
2506
2507 const MAX_ALLOC_SIZE: usize = 64*1024;
2508
2509 impl<'a, Signer: Sign, K: KeysInterface<Signer = Signer>> ReadableArgs<&'a K>
2510                 for (BlockHash, ChannelMonitor<Signer>) {
2511         fn read<R: ::std::io::Read>(reader: &mut R, keys_manager: &'a K) -> Result<Self, DecodeError> {
2512                 macro_rules! unwrap_obj {
2513                         ($key: expr) => {
2514                                 match $key {
2515                                         Ok(res) => res,
2516                                         Err(_) => return Err(DecodeError::InvalidValue),
2517                                 }
2518                         }
2519                 }
2520
2521                 let _ver: u8 = Readable::read(reader)?;
2522                 let min_ver: u8 = Readable::read(reader)?;
2523                 if min_ver > SERIALIZATION_VERSION {
2524                         return Err(DecodeError::UnknownVersion);
2525                 }
2526
2527                 let latest_update_id: u64 = Readable::read(reader)?;
2528                 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
2529
2530                 let destination_script = Readable::read(reader)?;
2531                 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
2532                         0 => {
2533                                 let revokable_address = Readable::read(reader)?;
2534                                 let per_commitment_point = Readable::read(reader)?;
2535                                 let revokable_script = Readable::read(reader)?;
2536                                 Some((revokable_address, per_commitment_point, revokable_script))
2537                         },
2538                         1 => { None },
2539                         _ => return Err(DecodeError::InvalidValue),
2540                 };
2541                 let counterparty_payment_script = Readable::read(reader)?;
2542                 let shutdown_script = Readable::read(reader)?;
2543
2544                 let channel_keys_id = Readable::read(reader)?;
2545                 let holder_revocation_basepoint = Readable::read(reader)?;
2546                 // Technically this can fail and serialize fail a round-trip, but only for serialization of
2547                 // barely-init'd ChannelMonitors that we can't do anything with.
2548                 let outpoint = OutPoint {
2549                         txid: Readable::read(reader)?,
2550                         index: Readable::read(reader)?,
2551                 };
2552                 let funding_info = (outpoint, Readable::read(reader)?);
2553                 let current_counterparty_commitment_txid = Readable::read(reader)?;
2554                 let prev_counterparty_commitment_txid = Readable::read(reader)?;
2555
2556                 let counterparty_tx_cache = Readable::read(reader)?;
2557                 let funding_redeemscript = Readable::read(reader)?;
2558                 let channel_value_satoshis = Readable::read(reader)?;
2559
2560                 let their_cur_revocation_points = {
2561                         let first_idx = <U48 as Readable>::read(reader)?.0;
2562                         if first_idx == 0 {
2563                                 None
2564                         } else {
2565                                 let first_point = Readable::read(reader)?;
2566                                 let second_point_slice: [u8; 33] = Readable::read(reader)?;
2567                                 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
2568                                         Some((first_idx, first_point, None))
2569                                 } else {
2570                                         Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
2571                                 }
2572                         }
2573                 };
2574
2575                 let on_holder_tx_csv: u16 = Readable::read(reader)?;
2576
2577                 let commitment_secrets = Readable::read(reader)?;
2578
2579                 macro_rules! read_htlc_in_commitment {
2580                         () => {
2581                                 {
2582                                         let offered: bool = Readable::read(reader)?;
2583                                         let amount_msat: u64 = Readable::read(reader)?;
2584                                         let cltv_expiry: u32 = Readable::read(reader)?;
2585                                         let payment_hash: PaymentHash = Readable::read(reader)?;
2586                                         let transaction_output_index: Option<u32> = Readable::read(reader)?;
2587
2588                                         HTLCOutputInCommitment {
2589                                                 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
2590                                         }
2591                                 }
2592                         }
2593                 }
2594
2595                 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
2596                 let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
2597                 for _ in 0..counterparty_claimable_outpoints_len {
2598                         let txid: Txid = Readable::read(reader)?;
2599                         let htlcs_count: u64 = Readable::read(reader)?;
2600                         let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
2601                         for _ in 0..htlcs_count {
2602                                 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
2603                         }
2604                         if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
2605                                 return Err(DecodeError::InvalidValue);
2606                         }
2607                 }
2608
2609                 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
2610                 let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
2611                 for _ in 0..counterparty_commitment_txn_on_chain_len {
2612                         let txid: Txid = Readable::read(reader)?;
2613                         let commitment_number = <U48 as Readable>::read(reader)?.0;
2614                         if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
2615                                 return Err(DecodeError::InvalidValue);
2616                         }
2617                 }
2618
2619                 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
2620                 let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
2621                 for _ in 0..counterparty_hash_commitment_number_len {
2622                         let payment_hash: PaymentHash = Readable::read(reader)?;
2623                         let commitment_number = <U48 as Readable>::read(reader)?.0;
2624                         if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
2625                                 return Err(DecodeError::InvalidValue);
2626                         }
2627                 }
2628
2629                 macro_rules! read_holder_tx {
2630                         () => {
2631                                 {
2632                                         let txid = Readable::read(reader)?;
2633                                         let revocation_key = Readable::read(reader)?;
2634                                         let a_htlc_key = Readable::read(reader)?;
2635                                         let b_htlc_key = Readable::read(reader)?;
2636                                         let delayed_payment_key = Readable::read(reader)?;
2637                                         let per_commitment_point = Readable::read(reader)?;
2638                                         let feerate_per_kw: u32 = Readable::read(reader)?;
2639
2640                                         let htlcs_len: u64 = Readable::read(reader)?;
2641                                         let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128));
2642                                         for _ in 0..htlcs_len {
2643                                                 let htlc = read_htlc_in_commitment!();
2644                                                 let sigs = match <u8 as Readable>::read(reader)? {
2645                                                         0 => None,
2646                                                         1 => Some(Readable::read(reader)?),
2647                                                         _ => return Err(DecodeError::InvalidValue),
2648                                                 };
2649                                                 htlcs.push((htlc, sigs, Readable::read(reader)?));
2650                                         }
2651
2652                                         HolderSignedTx {
2653                                                 txid,
2654                                                 revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, per_commitment_point, feerate_per_kw,
2655                                                 htlc_outputs: htlcs
2656                                         }
2657                                 }
2658                         }
2659                 }
2660
2661                 let prev_holder_signed_commitment_tx = match <u8 as Readable>::read(reader)? {
2662                         0 => None,
2663                         1 => {
2664                                 Some(read_holder_tx!())
2665                         },
2666                         _ => return Err(DecodeError::InvalidValue),
2667                 };
2668                 let current_holder_commitment_tx = read_holder_tx!();
2669
2670                 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
2671                 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
2672
2673                 let payment_preimages_len: u64 = Readable::read(reader)?;
2674                 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
2675                 for _ in 0..payment_preimages_len {
2676                         let preimage: PaymentPreimage = Readable::read(reader)?;
2677                         let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2678                         if let Some(_) = payment_preimages.insert(hash, preimage) {
2679                                 return Err(DecodeError::InvalidValue);
2680                         }
2681                 }
2682
2683                 let pending_monitor_events_len: u64 = Readable::read(reader)?;
2684                 let mut pending_monitor_events = Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3)));
2685                 for _ in 0..pending_monitor_events_len {
2686                         let ev = match <u8 as Readable>::read(reader)? {
2687                                 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
2688                                 1 => MonitorEvent::CommitmentTxBroadcasted(funding_info.0),
2689                                 _ => return Err(DecodeError::InvalidValue)
2690                         };
2691                         pending_monitor_events.push(ev);
2692                 }
2693
2694                 let pending_events_len: u64 = Readable::read(reader)?;
2695                 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
2696                 for _ in 0..pending_events_len {
2697                         if let Some(event) = MaybeReadable::read(reader)? {
2698                                 pending_events.push(event);
2699                         }
2700                 }
2701
2702                 let last_block_hash: BlockHash = Readable::read(reader)?;
2703
2704                 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
2705                 let mut onchain_events_waiting_threshold_conf = HashMap::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
2706                 for _ in 0..waiting_threshold_conf_len {
2707                         let height_target = Readable::read(reader)?;
2708                         let events_len: u64 = Readable::read(reader)?;
2709                         let mut events = Vec::with_capacity(cmp::min(events_len as usize, MAX_ALLOC_SIZE / 128));
2710                         for _ in 0..events_len {
2711                                 let ev = match <u8 as Readable>::read(reader)? {
2712                                         0 => {
2713                                                 let htlc_source = Readable::read(reader)?;
2714                                                 let hash = Readable::read(reader)?;
2715                                                 OnchainEvent::HTLCUpdate {
2716                                                         htlc_update: (htlc_source, hash)
2717                                                 }
2718                                         },
2719                                         1 => {
2720                                                 let descriptor = Readable::read(reader)?;
2721                                                 OnchainEvent::MaturingOutput {
2722                                                         descriptor
2723                                                 }
2724                                         },
2725                                         _ => return Err(DecodeError::InvalidValue),
2726                                 };
2727                                 events.push(ev);
2728                         }
2729                         onchain_events_waiting_threshold_conf.insert(height_target, events);
2730                 }
2731
2732                 let outputs_to_watch_len: u64 = Readable::read(reader)?;
2733                 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
2734                 for _ in 0..outputs_to_watch_len {
2735                         let txid = Readable::read(reader)?;
2736                         let outputs_len: u64 = Readable::read(reader)?;
2737                         let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
2738                         for _ in 0..outputs_len {
2739                                 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
2740                         }
2741                         if let Some(_) = outputs_to_watch.insert(txid, outputs) {
2742                                 return Err(DecodeError::InvalidValue);
2743                         }
2744                 }
2745                 let onchain_tx_handler = ReadableArgs::read(reader, keys_manager)?;
2746
2747                 let lockdown_from_offchain = Readable::read(reader)?;
2748                 let holder_tx_signed = Readable::read(reader)?;
2749
2750                 let mut secp_ctx = Secp256k1::new();
2751                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
2752
2753                 Ok((last_block_hash.clone(), ChannelMonitor {
2754                         inner: Mutex::new(ChannelMonitorImpl {
2755                                 latest_update_id,
2756                                 commitment_transaction_number_obscure_factor,
2757
2758                                 destination_script,
2759                                 broadcasted_holder_revokable_script,
2760                                 counterparty_payment_script,
2761                                 shutdown_script,
2762
2763                                 channel_keys_id,
2764                                 holder_revocation_basepoint,
2765                                 funding_info,
2766                                 current_counterparty_commitment_txid,
2767                                 prev_counterparty_commitment_txid,
2768
2769                                 counterparty_tx_cache,
2770                                 funding_redeemscript,
2771                                 channel_value_satoshis,
2772                                 their_cur_revocation_points,
2773
2774                                 on_holder_tx_csv,
2775
2776                                 commitment_secrets,
2777                                 counterparty_claimable_outpoints,
2778                                 counterparty_commitment_txn_on_chain,
2779                                 counterparty_hash_commitment_number,
2780
2781                                 prev_holder_signed_commitment_tx,
2782                                 current_holder_commitment_tx,
2783                                 current_counterparty_commitment_number,
2784                                 current_holder_commitment_number,
2785
2786                                 payment_preimages,
2787                                 pending_monitor_events,
2788                                 pending_events,
2789
2790                                 onchain_events_waiting_threshold_conf,
2791                                 outputs_to_watch,
2792
2793                                 onchain_tx_handler,
2794
2795                                 lockdown_from_offchain,
2796                                 holder_tx_signed,
2797
2798                                 last_block_hash,
2799                                 secp_ctx,
2800                         }),
2801                 }))
2802         }
2803 }
2804
2805 #[cfg(test)]
2806 mod tests {
2807         use bitcoin::blockdata::constants::genesis_block;
2808         use bitcoin::blockdata::script::{Script, Builder};
2809         use bitcoin::blockdata::opcodes;
2810         use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, SigHashType};
2811         use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
2812         use bitcoin::util::bip143;
2813         use bitcoin::hashes::Hash;
2814         use bitcoin::hashes::sha256::Hash as Sha256;
2815         use bitcoin::hashes::hex::FromHex;
2816         use bitcoin::hash_types::Txid;
2817         use bitcoin::network::constants::Network;
2818         use hex;
2819         use chain::channelmonitor::ChannelMonitor;
2820         use chain::transaction::OutPoint;
2821         use ln::channelmanager::{PaymentPreimage, PaymentHash};
2822         use ln::onchaintx::{OnchainTxHandler, InputDescriptors};
2823         use ln::chan_utils;
2824         use ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
2825         use util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
2826         use bitcoin::secp256k1::key::{SecretKey,PublicKey};
2827         use bitcoin::secp256k1::Secp256k1;
2828         use std::sync::{Arc, Mutex};
2829         use chain::keysinterface::InMemorySigner;
2830
2831         #[test]
2832         fn test_prune_preimages() {
2833                 let secp_ctx = Secp256k1::new();
2834                 let logger = Arc::new(TestLogger::new());
2835                 let broadcaster = Arc::new(TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())});
2836                 let fee_estimator = Arc::new(TestFeeEstimator { sat_per_kw: 253 });
2837
2838                 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
2839                 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
2840
2841                 let mut preimages = Vec::new();
2842                 {
2843                         for i in 0..20 {
2844                                 let preimage = PaymentPreimage([i; 32]);
2845                                 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2846                                 preimages.push((preimage, hash));
2847                         }
2848                 }
2849
2850                 macro_rules! preimages_slice_to_htlc_outputs {
2851                         ($preimages_slice: expr) => {
2852                                 {
2853                                         let mut res = Vec::new();
2854                                         for (idx, preimage) in $preimages_slice.iter().enumerate() {
2855                                                 res.push((HTLCOutputInCommitment {
2856                                                         offered: true,
2857                                                         amount_msat: 0,
2858                                                         cltv_expiry: 0,
2859                                                         payment_hash: preimage.1.clone(),
2860                                                         transaction_output_index: Some(idx as u32),
2861                                                 }, None));
2862                                         }
2863                                         res
2864                                 }
2865                         }
2866                 }
2867                 macro_rules! preimages_to_holder_htlcs {
2868                         ($preimages_slice: expr) => {
2869                                 {
2870                                         let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
2871                                         let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
2872                                         res
2873                                 }
2874                         }
2875                 }
2876
2877                 macro_rules! test_preimages_exist {
2878                         ($preimages_slice: expr, $monitor: expr) => {
2879                                 for preimage in $preimages_slice {
2880                                         assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
2881                                 }
2882                         }
2883                 }
2884
2885                 let keys = InMemorySigner::new(
2886                         &secp_ctx,
2887                         SecretKey::from_slice(&[41; 32]).unwrap(),
2888                         SecretKey::from_slice(&[41; 32]).unwrap(),
2889                         SecretKey::from_slice(&[41; 32]).unwrap(),
2890                         SecretKey::from_slice(&[41; 32]).unwrap(),
2891                         SecretKey::from_slice(&[41; 32]).unwrap(),
2892                         [41; 32],
2893                         0,
2894                         [0; 32]
2895                 );
2896
2897                 let counterparty_pubkeys = ChannelPublicKeys {
2898                         funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
2899                         revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
2900                         payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
2901                         delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
2902                         htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
2903                 };
2904                 let funding_outpoint = OutPoint { txid: Default::default(), index: u16::max_value() };
2905                 let channel_parameters = ChannelTransactionParameters {
2906                         holder_pubkeys: keys.holder_channel_pubkeys.clone(),
2907                         holder_selected_contest_delay: 66,
2908                         is_outbound_from_holder: true,
2909                         counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
2910                                 pubkeys: counterparty_pubkeys,
2911                                 selected_contest_delay: 67,
2912                         }),
2913                         funding_outpoint: Some(funding_outpoint),
2914                 };
2915                 // Prune with one old state and a holder commitment tx holding a few overlaps with the
2916                 // old state.
2917                 let last_block_hash = genesis_block(Network::Testnet).block_hash();
2918                 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
2919                                                   &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap()), 0, &Script::new(),
2920                                                   (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
2921                                                   &channel_parameters,
2922                                                   Script::new(), 46, 0,
2923                                                   HolderCommitmentTransaction::dummy(), last_block_hash);
2924
2925                 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..10])).unwrap();
2926                 let dummy_txid = dummy_tx.txid();
2927                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
2928                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
2929                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
2930                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
2931                 for &(ref preimage, ref hash) in preimages.iter() {
2932                         monitor.provide_payment_preimage(hash, preimage, &broadcaster, &fee_estimator, &logger);
2933                 }
2934
2935                 // Now provide a secret, pruning preimages 10-15
2936                 let mut secret = [0; 32];
2937                 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2938                 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
2939                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
2940                 test_preimages_exist!(&preimages[0..10], monitor);
2941                 test_preimages_exist!(&preimages[15..20], monitor);
2942
2943                 // Now provide a further secret, pruning preimages 15-17
2944                 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2945                 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
2946                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
2947                 test_preimages_exist!(&preimages[0..10], monitor);
2948                 test_preimages_exist!(&preimages[17..20], monitor);
2949
2950                 // Now update holder commitment tx info, pruning only element 18 as we still care about the
2951                 // previous commitment tx's preimages too
2952                 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..5])).unwrap();
2953                 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2954                 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
2955                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
2956                 test_preimages_exist!(&preimages[0..10], monitor);
2957                 test_preimages_exist!(&preimages[18..20], monitor);
2958
2959                 // But if we do it again, we'll prune 5-10
2960                 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..3])).unwrap();
2961                 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2962                 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
2963                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
2964                 test_preimages_exist!(&preimages[0..5], monitor);
2965         }
2966
2967         #[test]
2968         fn test_claim_txn_weight_computation() {
2969                 // We test Claim txn weight, knowing that we want expected weigth and
2970                 // not actual case to avoid sigs and time-lock delays hell variances.
2971
2972                 let secp_ctx = Secp256k1::new();
2973                 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
2974                 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
2975                 let mut sum_actual_sigs = 0;
2976
2977                 macro_rules! sign_input {
2978                         ($sighash_parts: expr, $idx: expr, $amount: expr, $input_type: expr, $sum_actual_sigs: expr) => {
2979                                 let htlc = HTLCOutputInCommitment {
2980                                         offered: if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::OfferedHTLC { true } else { false },
2981                                         amount_msat: 0,
2982                                         cltv_expiry: 2 << 16,
2983                                         payment_hash: PaymentHash([1; 32]),
2984                                         transaction_output_index: Some($idx as u32),
2985                                 };
2986                                 let redeem_script = if *$input_type == InputDescriptors::RevokedOutput { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &pubkey, &pubkey, &pubkey) };
2987                                 let sighash = hash_to_message!(&$sighash_parts.signature_hash($idx, &redeem_script, $amount, SigHashType::All)[..]);
2988                                 let sig = secp_ctx.sign(&sighash, &privkey);
2989                                 $sighash_parts.access_witness($idx).push(sig.serialize_der().to_vec());
2990                                 $sighash_parts.access_witness($idx)[0].push(SigHashType::All as u8);
2991                                 sum_actual_sigs += $sighash_parts.access_witness($idx)[0].len();
2992                                 if *$input_type == InputDescriptors::RevokedOutput {
2993                                         $sighash_parts.access_witness($idx).push(vec!(1));
2994                                 } else if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::RevokedReceivedHTLC {
2995                                         $sighash_parts.access_witness($idx).push(pubkey.clone().serialize().to_vec());
2996                                 } else if *$input_type == InputDescriptors::ReceivedHTLC {
2997                                         $sighash_parts.access_witness($idx).push(vec![0]);
2998                                 } else {
2999                                         $sighash_parts.access_witness($idx).push(PaymentPreimage([1; 32]).0.to_vec());
3000                                 }
3001                                 $sighash_parts.access_witness($idx).push(redeem_script.into_bytes());
3002                                 println!("witness[0] {}", $sighash_parts.access_witness($idx)[0].len());
3003                                 println!("witness[1] {}", $sighash_parts.access_witness($idx)[1].len());
3004                                 println!("witness[2] {}", $sighash_parts.access_witness($idx)[2].len());
3005                         }
3006                 }
3007
3008                 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
3009                 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
3010
3011                 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
3012                 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3013                 for i in 0..4 {
3014                         claim_tx.input.push(TxIn {
3015                                 previous_output: BitcoinOutPoint {
3016                                         txid,
3017                                         vout: i,
3018                                 },
3019                                 script_sig: Script::new(),
3020                                 sequence: 0xfffffffd,
3021                                 witness: Vec::new(),
3022                         });
3023                 }
3024                 claim_tx.output.push(TxOut {
3025                         script_pubkey: script_pubkey.clone(),
3026                         value: 0,
3027                 });
3028                 let base_weight = claim_tx.get_weight();
3029                 let inputs_des = vec![InputDescriptors::RevokedOutput, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedReceivedHTLC];
3030                 {
3031                         let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3032                         for (idx, inp) in inputs_des.iter().enumerate() {
3033                                 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3034                         }
3035                 }
3036                 assert_eq!(base_weight + OnchainTxHandler::<InMemorySigner>::get_witnesses_weight(&inputs_des[..]),  claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs));
3037
3038                 // Claim tx with 1 offered HTLCs, 3 received HTLCs
3039                 claim_tx.input.clear();
3040                 sum_actual_sigs = 0;
3041                 for i in 0..4 {
3042                         claim_tx.input.push(TxIn {
3043                                 previous_output: BitcoinOutPoint {
3044                                         txid,
3045                                         vout: i,
3046                                 },
3047                                 script_sig: Script::new(),
3048                                 sequence: 0xfffffffd,
3049                                 witness: Vec::new(),
3050                         });
3051                 }
3052                 let base_weight = claim_tx.get_weight();
3053                 let inputs_des = vec![InputDescriptors::OfferedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC];
3054                 {
3055                         let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3056                         for (idx, inp) in inputs_des.iter().enumerate() {
3057                                 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3058                         }
3059                 }
3060                 assert_eq!(base_weight + OnchainTxHandler::<InMemorySigner>::get_witnesses_weight(&inputs_des[..]),  claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs));
3061
3062                 // Justice tx with 1 revoked HTLC-Success tx output
3063                 claim_tx.input.clear();
3064                 sum_actual_sigs = 0;
3065                 claim_tx.input.push(TxIn {
3066                         previous_output: BitcoinOutPoint {
3067                                 txid,
3068                                 vout: 0,
3069                         },
3070                         script_sig: Script::new(),
3071                         sequence: 0xfffffffd,
3072                         witness: Vec::new(),
3073                 });
3074                 let base_weight = claim_tx.get_weight();
3075                 let inputs_des = vec![InputDescriptors::RevokedOutput];
3076                 {
3077                         let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3078                         for (idx, inp) in inputs_des.iter().enumerate() {
3079                                 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3080                         }
3081                 }
3082                 assert_eq!(base_weight + OnchainTxHandler::<InMemorySigner>::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_isg */ (73 * inputs_des.len() - sum_actual_sigs));
3083         }
3084
3085         // Further testing is done in the ChannelManager integration tests.
3086 }