Use alloc for no_std builds
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::hashes::{Hash, HashEngine};
22 use bitcoin::hashes::sha256::HashEngine as Sha256State;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
25 use bitcoin::hash_types::WPubkeyHash;
26
27 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
28 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
29 use bitcoin::secp256k1::recovery::RecoverableSignature;
30 use bitcoin::secp256k1;
31
32 use util::{byte_utils, transaction_utils};
33 use util::ser::{Writeable, Writer, Readable};
34
35 use chain::transaction::OutPoint;
36 use ln::chan_utils;
37 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction};
38 use ln::msgs::UnsignedChannelAnnouncement;
39
40 use prelude::*;
41 use std::collections::HashSet;
42 use core::sync::atomic::{AtomicUsize, Ordering};
43 use std::io::Error;
44 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
45
46 /// Information about a spendable output to a P2WSH script. See
47 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
48 #[derive(Clone, Debug, PartialEq)]
49 pub struct DelayedPaymentOutputDescriptor {
50         /// The outpoint which is spendable
51         pub outpoint: OutPoint,
52         /// Per commitment point to derive delayed_payment_key by key holder
53         pub per_commitment_point: PublicKey,
54         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
55         /// the witness_script.
56         pub to_self_delay: u16,
57         /// The output which is referenced by the given outpoint
58         pub output: TxOut,
59         /// The revocation point specific to the commitment transaction which was broadcast. Used to
60         /// derive the witnessScript for this output.
61         pub revocation_pubkey: PublicKey,
62         /// Arbitrary identification information returned by a call to
63         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
64         /// the channel to spend the output.
65         pub channel_keys_id: [u8; 32],
66         /// The value of the channel which this output originated from, possibly indirectly.
67         pub channel_value_satoshis: u64,
68 }
69 impl DelayedPaymentOutputDescriptor {
70         /// The maximum length a well-formed witness spending one of these should have.
71         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
72         // redeemscript push length.
73         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
74 }
75
76 /// Information about a spendable output to our "payment key". See
77 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
78 #[derive(Clone, Debug, PartialEq)]
79 pub struct StaticPaymentOutputDescriptor {
80         /// The outpoint which is spendable
81         pub outpoint: OutPoint,
82         /// The output which is referenced by the given outpoint
83         pub output: TxOut,
84         /// Arbitrary identification information returned by a call to
85         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
86         /// the channel to spend the output.
87         pub channel_keys_id: [u8; 32],
88         /// The value of the channel which this transactions spends.
89         pub channel_value_satoshis: u64,
90 }
91 impl StaticPaymentOutputDescriptor {
92         /// The maximum length a well-formed witness spending one of these should have.
93         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
94         // redeemscript push length.
95         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
96 }
97
98 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
99 /// claim at any point in the future) an event is generated which you must track and be able to
100 /// spend on-chain. The information needed to do this is provided in this enum, including the
101 /// outpoint describing which txid and output index is available, the full output which exists at
102 /// that txid/index, and any keys or other information required to sign.
103 #[derive(Clone, Debug, PartialEq)]
104 pub enum SpendableOutputDescriptor {
105         /// An output to a script which was provided via KeysInterface directly, either from
106         /// `get_destination_script()` or `get_shutdown_pubkey()`, thus you should already know how to
107         /// spend it. No secret keys are provided as rust-lightning was never given any key.
108         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
109         /// on-chain using the payment preimage or after it has timed out.
110         StaticOutput {
111                 /// The outpoint which is spendable
112                 outpoint: OutPoint,
113                 /// The output which is referenced by the given outpoint.
114                 output: TxOut,
115         },
116         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
117         ///
118         /// The witness in the spending input should be:
119         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
120         ///
121         /// Note that the nSequence field in the spending input must be set to to_self_delay
122         /// (which means the transaction is not broadcastable until at least to_self_delay
123         /// blocks after the outpoint confirms).
124         ///
125         /// These are generally the result of a "revocable" output to us, spendable only by us unless
126         /// it is an output from an old state which we broadcast (which should never happen).
127         ///
128         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
129         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
130         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
131         /// chan_utils::derive_private_key. The public key can be generated without the secret key
132         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
133         /// Sign::pubkeys().
134         ///
135         /// To derive the revocation_pubkey provided here (which is used in the witness
136         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
137         /// call to Sign::ready_channel) and the provided per_commitment point
138         /// to chan_utils::derive_public_revocation_key.
139         ///
140         /// The witness script which is hashed and included in the output script_pubkey may be
141         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
142         /// (derived as above), and the to_self_delay contained here to
143         /// chan_utils::get_revokeable_redeemscript.
144         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
145         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
146         /// corresponds to the public key in Sign::pubkeys().payment_point).
147         /// The witness in the spending input, is, thus, simply:
148         /// <BIP 143 signature> <payment key>
149         ///
150         /// These are generally the result of our counterparty having broadcast the current state,
151         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
152         StaticPaymentOutput(StaticPaymentOutputDescriptor),
153 }
154
155 impl Writeable for SpendableOutputDescriptor {
156         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
157                 match self {
158                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
159                                 0u8.write(writer)?;
160                                 outpoint.write(writer)?;
161                                 output.write(writer)?;
162                         },
163                         &SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor) => {
164                                 1u8.write(writer)?;
165                                 descriptor.outpoint.write(writer)?;
166                                 descriptor.per_commitment_point.write(writer)?;
167                                 descriptor.to_self_delay.write(writer)?;
168                                 descriptor.output.write(writer)?;
169                                 descriptor.revocation_pubkey.write(writer)?;
170                                 descriptor.channel_keys_id.write(writer)?;
171                                 descriptor.channel_value_satoshis.write(writer)?;
172                         },
173                         &SpendableOutputDescriptor::StaticPaymentOutput(ref descriptor) => {
174                                 2u8.write(writer)?;
175                                 descriptor.outpoint.write(writer)?;
176                                 descriptor.output.write(writer)?;
177                                 descriptor.channel_keys_id.write(writer)?;
178                                 descriptor.channel_value_satoshis.write(writer)?;
179                         },
180                 }
181                 Ok(())
182         }
183 }
184
185 impl Readable for SpendableOutputDescriptor {
186         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
187                 match Readable::read(reader)? {
188                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
189                                 outpoint: Readable::read(reader)?,
190                                 output: Readable::read(reader)?,
191                         }),
192                         1u8 => Ok(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
193                                 outpoint: Readable::read(reader)?,
194                                 per_commitment_point: Readable::read(reader)?,
195                                 to_self_delay: Readable::read(reader)?,
196                                 output: Readable::read(reader)?,
197                                 revocation_pubkey: Readable::read(reader)?,
198                                 channel_keys_id: Readable::read(reader)?,
199                                 channel_value_satoshis: Readable::read(reader)?,
200                         })),
201                         2u8 => Ok(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
202                                 outpoint: Readable::read(reader)?,
203                                 output: Readable::read(reader)?,
204                                 channel_keys_id: Readable::read(reader)?,
205                                 channel_value_satoshis: Readable::read(reader)?,
206                         })),
207                         _ => Err(DecodeError::InvalidValue),
208                 }
209         }
210 }
211
212 /// A trait to sign lightning channel transactions as described in BOLT 3.
213 ///
214 /// Signing services could be implemented on a hardware wallet. In this case,
215 /// the current Sign would be a front-end on top of a communication
216 /// channel connected to your secure device and lightning key material wouldn't
217 /// reside on a hot server. Nevertheless, a this deployment would still need
218 /// to trust the ChannelManager to avoid loss of funds as this latest component
219 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
220 ///
221 /// A more secure iteration would be to use hashlock (or payment points) to pair
222 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
223 /// at the price of more state and computation on the hardware wallet side. In the future,
224 /// we are looking forward to design such interface.
225 ///
226 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
227 /// to act, as liveness and breach reply correctness are always going to be hard requirements
228 /// of LN security model, orthogonal of key management issues.
229 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
230 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
231 pub trait BaseSign {
232         /// Gets the per-commitment point for a specific commitment number
233         ///
234         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
235         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
236         /// Gets the commitment secret for a specific commitment number as part of the revocation process
237         ///
238         /// An external signer implementation should error here if the commitment was already signed
239         /// and should refuse to sign it in the future.
240         ///
241         /// May be called more than once for the same index.
242         ///
243         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
244         // TODO: return a Result so we can signal a validation error
245         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
246         /// Gets the holder's channel public keys and basepoints
247         fn pubkeys(&self) -> &ChannelPublicKeys;
248         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
249         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
250         /// Sign object uniquely and lookup or re-derive its keys.
251         fn channel_keys_id(&self) -> [u8; 32];
252
253         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
254         ///
255         /// Note that if signing fails or is rejected, the channel will be force-closed.
256         //
257         // TODO: Document the things someone using this interface should enforce before signing.
258         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
259
260         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
261         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
262         /// latest commitment_tx when we initiate a force-close.
263         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
264         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
265         /// the latest.
266         /// This may be called multiple times for the same transaction.
267         ///
268         /// An external signer implementation should check that the commitment has not been revoked.
269         ///
270         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
271         //
272         // TODO: Document the things someone using this interface should enforce before signing.
273         // TODO: Key derivation failure should panic rather than Err
274         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
275
276         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
277         /// transactions which will be broadcasted later, after the channel has moved on to a newer
278         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
279         /// get called once.
280         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
281         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
282
283         /// Create a signature for the given input in a transaction spending an HTLC transaction output
284         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
285         ///
286         /// A justice transaction may claim multiple outputs at the same time if timelocks are
287         /// similar, but only a signature for the input at index `input` should be signed for here.
288         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
289         /// to an upcoming timelock expiration.
290         ///
291         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
292         ///
293         /// per_commitment_key is revocation secret which was provided by our counterparty when they
294         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
295         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
296         /// so).
297         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
298
299         /// Create a signature for the given input in a transaction spending a commitment transaction
300         /// HTLC output when our counterparty broadcasts an old state.
301         ///
302         /// A justice transaction may claim multiple outputs at the same time if timelocks are
303         /// similar, but only a signature for the input at index `input` should be signed for here.
304         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
305         /// to an upcoming timelock expiration.
306         ///
307         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
308         ///
309         /// per_commitment_key is revocation secret which was provided by our counterparty when they
310         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
311         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
312         /// so).
313         ///
314         /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
315         /// (which is committed to in the BIP 143 signatures).
316         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
317
318         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
319         /// transaction, either offered or received.
320         ///
321         /// Such a transaction may claim multiples offered outputs at same time if we know the
322         /// preimage for each when we create it, but only the input at index `input` should be
323         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
324         /// needed with regards to an upcoming timelock expiration.
325         ///
326         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
327         /// outputs.
328         ///
329         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
330         ///
331         /// Per_commitment_point is the dynamic point corresponding to the channel state
332         /// detected onchain. It has been generated by our counterparty and is used to derive
333         /// channel state keys, which are then included in the witness script and committed to in the
334         /// BIP 143 signature.
335         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
336
337         /// Create a signature for a (proposed) closing transaction.
338         ///
339         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
340         /// chosen to forgo their output as dust.
341         fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
342
343         /// Signs a channel announcement message with our funding key, proving it comes from one
344         /// of the channel participants.
345         ///
346         /// Note that if this fails or is rejected, the channel will not be publicly announced and
347         /// our counterparty may (though likely will not) close the channel on us for violating the
348         /// protocol.
349         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
350
351         /// Set the counterparty static channel data, including basepoints,
352         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
353         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
354         /// they MUST NOT be allowed to change to different values once set.
355         ///
356         /// channel_parameters.is_populated() MUST be true.
357         ///
358         /// We bind holder_selected_contest_delay late here for API convenience.
359         ///
360         /// Will be called before any signatures are applied.
361         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
362 }
363
364 /// A cloneable signer.
365 ///
366 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
367 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
368 /// which implies Sized, into this derived trait.
369 pub trait Sign: BaseSign + Writeable + Clone {
370 }
371
372 /// A trait to describe an object which can get user secrets and key material.
373 pub trait KeysInterface {
374         /// A type which implements Sign which will be returned by get_channel_signer.
375         type Signer : Sign;
376
377         /// Get node secret key (aka node_id or network_key).
378         ///
379         /// This method must return the same value each time it is called.
380         fn get_node_secret(&self) -> SecretKey;
381         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
382         ///
383         /// This method should return a different value each time it is called, to avoid linking
384         /// on-chain funds across channels as controlled to the same user.
385         fn get_destination_script(&self) -> Script;
386         /// Get a public key which we will send funds to (in the form of a P2WPKH output) when closing
387         /// a channel.
388         ///
389         /// This method should return a different value each time it is called, to avoid linking
390         /// on-chain funds across channels as controlled to the same user.
391         fn get_shutdown_pubkey(&self) -> PublicKey;
392         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
393         /// restarted with some stale data!
394         ///
395         /// This method must return a different value each time it is called.
396         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
397         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
398         /// onion packets and for temporary channel IDs. There is no requirement that these be
399         /// persisted anywhere, though they must be unique across restarts.
400         ///
401         /// This method must return a different value each time it is called.
402         fn get_secure_random_bytes(&self) -> [u8; 32];
403
404         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
405         /// This is only called during deserialization of other objects which contain
406         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
407         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
408         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
409         /// you've read all of the provided bytes to ensure no corruption occurred.
410         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
411
412         /// Sign an invoice's preimage (note that this is the preimage of the invoice, not the HTLC's
413         /// preimage). By parameterizing by the preimage instead of the hash, we allow implementors of
414         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
415         /// blindly signing the hash.
416         fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()>;
417 }
418
419 #[derive(Clone)]
420 /// A simple implementation of Sign that just keeps the private keys in memory.
421 ///
422 /// This implementation performs no policy checks and is insufficient by itself as
423 /// a secure external signer.
424 pub struct InMemorySigner {
425         /// Private key of anchor tx
426         pub funding_key: SecretKey,
427         /// Holder secret key for blinded revocation pubkey
428         pub revocation_base_key: SecretKey,
429         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
430         pub payment_key: SecretKey,
431         /// Holder secret key used in HTLC tx
432         pub delayed_payment_base_key: SecretKey,
433         /// Holder htlc secret key used in commitment tx htlc outputs
434         pub htlc_base_key: SecretKey,
435         /// Commitment seed
436         pub commitment_seed: [u8; 32],
437         /// Holder public keys and basepoints
438         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
439         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
440         channel_parameters: Option<ChannelTransactionParameters>,
441         /// The total value of this channel
442         channel_value_satoshis: u64,
443         /// Key derivation parameters
444         channel_keys_id: [u8; 32],
445 }
446
447 impl InMemorySigner {
448         /// Create a new InMemorySigner
449         pub fn new<C: Signing>(
450                 secp_ctx: &Secp256k1<C>,
451                 funding_key: SecretKey,
452                 revocation_base_key: SecretKey,
453                 payment_key: SecretKey,
454                 delayed_payment_base_key: SecretKey,
455                 htlc_base_key: SecretKey,
456                 commitment_seed: [u8; 32],
457                 channel_value_satoshis: u64,
458                 channel_keys_id: [u8; 32]) -> InMemorySigner {
459                 let holder_channel_pubkeys =
460                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
461                                                              &payment_key, &delayed_payment_base_key,
462                                                              &htlc_base_key);
463                 InMemorySigner {
464                         funding_key,
465                         revocation_base_key,
466                         payment_key,
467                         delayed_payment_base_key,
468                         htlc_base_key,
469                         commitment_seed,
470                         channel_value_satoshis,
471                         holder_channel_pubkeys,
472                         channel_parameters: None,
473                         channel_keys_id,
474                 }
475         }
476
477         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
478                                        funding_key: &SecretKey,
479                                        revocation_base_key: &SecretKey,
480                                        payment_key: &SecretKey,
481                                        delayed_payment_base_key: &SecretKey,
482                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
483                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
484                 ChannelPublicKeys {
485                         funding_pubkey: from_secret(&funding_key),
486                         revocation_basepoint: from_secret(&revocation_base_key),
487                         payment_point: from_secret(&payment_key),
488                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
489                         htlc_basepoint: from_secret(&htlc_base_key),
490                 }
491         }
492
493         /// Counterparty pubkeys.
494         /// Will panic if ready_channel wasn't called.
495         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
496
497         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
498         /// transactions, ie the amount of time that we have to wait to recover our funds if we
499         /// broadcast a transaction.
500         /// Will panic if ready_channel wasn't called.
501         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
502
503         /// The contest_delay value specified by us and applied on transactions broadcastable
504         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
505         /// if they broadcast a transaction.
506         /// Will panic if ready_channel wasn't called.
507         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
508
509         /// Whether the holder is the initiator
510         /// Will panic if ready_channel wasn't called.
511         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
512
513         /// Funding outpoint
514         /// Will panic if ready_channel wasn't called.
515         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
516
517         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
518         /// building transactions.
519         ///
520         /// Will panic if ready_channel wasn't called.
521         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
522                 self.channel_parameters.as_ref().unwrap()
523         }
524
525         /// Sign the single input of spend_tx at index `input_idx` which spends the output
526         /// described by descriptor, returning the witness stack for the input.
527         ///
528         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
529         /// or is not spending the outpoint described by `descriptor.outpoint`.
530         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
531                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
532                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
533                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
534                 // bindings updates to support SigHashCache objects).
535                 if spend_tx.input.len() <= input_idx { return Err(()); }
536                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
537                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
538
539                 let remotepubkey = self.pubkeys().payment_point;
540                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
541                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
542                 let remotesig = secp_ctx.sign(&sighash, &self.payment_key);
543
544                 let mut witness = Vec::with_capacity(2);
545                 witness.push(remotesig.serialize_der().to_vec());
546                 witness[0].push(SigHashType::All as u8);
547                 witness.push(remotepubkey.serialize().to_vec());
548                 Ok(witness)
549         }
550
551         /// Sign the single input of spend_tx at index `input_idx` which spends the output
552         /// described by descriptor, returning the witness stack for the input.
553         ///
554         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
555         /// is not spending the outpoint described by `descriptor.outpoint`, or does not have a
556         /// sequence set to `descriptor.to_self_delay`.
557         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
558                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
559                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
560                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
561                 // bindings updates to support SigHashCache objects).
562                 if spend_tx.input.len() <= input_idx { return Err(()); }
563                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
564                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
565                 if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }
566
567                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
568                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
569                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
570                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
571                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
572                 let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);
573
574                 let mut witness = Vec::with_capacity(3);
575                 witness.push(local_delayedsig.serialize_der().to_vec());
576                 witness[0].push(SigHashType::All as u8);
577                 witness.push(vec!()); //MINIMALIF
578                 witness.push(witness_script.clone().into_bytes());
579                 Ok(witness)
580         }
581 }
582
583 impl BaseSign for InMemorySigner {
584         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
585                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
586                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
587         }
588
589         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
590                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
591         }
592
593         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
594         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
595
596         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
597                 let trusted_tx = commitment_tx.trust();
598                 let keys = trusted_tx.keys();
599
600                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
601                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
602
603                 let built_tx = trusted_tx.built_transaction();
604                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
605                 let commitment_txid = built_tx.txid;
606
607                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
608                 for htlc in commitment_tx.htlcs() {
609                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
610                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
611                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
612                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
613                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
614                 }
615
616                 Ok((commitment_sig, htlc_sigs))
617         }
618
619         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
620                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
621                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
622                 let trusted_tx = commitment_tx.trust();
623                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
624                 let channel_parameters = self.get_channel_parameters();
625                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
626                 Ok((sig, htlc_sigs))
627         }
628
629         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
630         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
631                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
632                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
633                 let trusted_tx = commitment_tx.trust();
634                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
635                 let channel_parameters = self.get_channel_parameters();
636                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
637                 Ok((sig, htlc_sigs))
638         }
639
640         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
641                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
642                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
643                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
644                 let witness_script = {
645                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
646                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
647                 };
648                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
649                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
650                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
651         }
652
653         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
654                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
655                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
656                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
657                 let witness_script = {
658                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
659                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
660                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
661                 };
662                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
663                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
664                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
665         }
666
667         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
668                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
669                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
670                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
671                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
672                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
673                                         } else { return Err(()) }
674                                 } else { return Err(()) }
675                         } else { return Err(()) };
676                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
677                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
678                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
679                 }
680                 Err(())
681         }
682
683         fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
684                 if closing_tx.input.len() != 1 { return Err(()); }
685                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
686                 if closing_tx.output.len() > 2 { return Err(()); }
687
688                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
689                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
690
691                 let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
692                         .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
693                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
694         }
695
696         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
697                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
698                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
699         }
700
701         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
702                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
703                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
704                 self.channel_parameters = Some(channel_parameters.clone());
705         }
706 }
707
708 const SERIALIZATION_VERSION: u8 = 1;
709 const MIN_SERIALIZATION_VERSION: u8 = 1;
710
711 impl Sign for InMemorySigner {}
712
713 impl Writeable for InMemorySigner {
714         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
715                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
716
717                 self.funding_key.write(writer)?;
718                 self.revocation_base_key.write(writer)?;
719                 self.payment_key.write(writer)?;
720                 self.delayed_payment_base_key.write(writer)?;
721                 self.htlc_base_key.write(writer)?;
722                 self.commitment_seed.write(writer)?;
723                 self.channel_parameters.write(writer)?;
724                 self.channel_value_satoshis.write(writer)?;
725                 self.channel_keys_id.write(writer)?;
726
727                 write_tlv_fields!(writer, {}, {});
728
729                 Ok(())
730         }
731 }
732
733 impl Readable for InMemorySigner {
734         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
735                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
736
737                 let funding_key = Readable::read(reader)?;
738                 let revocation_base_key = Readable::read(reader)?;
739                 let payment_key = Readable::read(reader)?;
740                 let delayed_payment_base_key = Readable::read(reader)?;
741                 let htlc_base_key = Readable::read(reader)?;
742                 let commitment_seed = Readable::read(reader)?;
743                 let counterparty_channel_data = Readable::read(reader)?;
744                 let channel_value_satoshis = Readable::read(reader)?;
745                 let secp_ctx = Secp256k1::signing_only();
746                 let holder_channel_pubkeys =
747                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
748                                                              &payment_key, &delayed_payment_base_key,
749                                                              &htlc_base_key);
750                 let keys_id = Readable::read(reader)?;
751
752                 read_tlv_fields!(reader, {}, {});
753
754                 Ok(InMemorySigner {
755                         funding_key,
756                         revocation_base_key,
757                         payment_key,
758                         delayed_payment_base_key,
759                         htlc_base_key,
760                         commitment_seed,
761                         channel_value_satoshis,
762                         holder_channel_pubkeys,
763                         channel_parameters: counterparty_channel_data,
764                         channel_keys_id: keys_id,
765                 })
766         }
767 }
768
769 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
770 /// and derives keys from that.
771 ///
772 /// Your node_id is seed/0'
773 /// ChannelMonitor closes may use seed/1'
774 /// Cooperative closes may use seed/2'
775 /// The two close keys may be needed to claim on-chain funds!
776 pub struct KeysManager {
777         secp_ctx: Secp256k1<secp256k1::All>,
778         node_secret: SecretKey,
779         destination_script: Script,
780         shutdown_pubkey: PublicKey,
781         channel_master_key: ExtendedPrivKey,
782         channel_child_index: AtomicUsize,
783
784         rand_bytes_master_key: ExtendedPrivKey,
785         rand_bytes_child_index: AtomicUsize,
786         rand_bytes_unique_start: Sha256State,
787
788         seed: [u8; 32],
789         starting_time_secs: u64,
790         starting_time_nanos: u32,
791 }
792
793 impl KeysManager {
794         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
795         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
796         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
797         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
798         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
799         /// simply use the current time (with very high precision).
800         ///
801         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
802         /// obviously, starting_time should be unique every time you reload the library - it is only
803         /// used to generate new ephemeral key data (which will be stored by the individual channel if
804         /// necessary).
805         ///
806         /// Note that the seed is required to recover certain on-chain funds independent of
807         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
808         /// channel, and some on-chain during-closing funds.
809         ///
810         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
811         /// versions. Once the library is more fully supported, the docs will be updated to include a
812         /// detailed description of the guarantee.
813         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
814                 let secp_ctx = Secp256k1::new();
815                 // Note that when we aren't serializing the key, network doesn't matter
816                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
817                         Ok(master_key) => {
818                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
819                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
820                                         Ok(destination_key) => {
821                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
822                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
823                                                               .push_slice(&wpubkey_hash.into_inner())
824                                                               .into_script()
825                                         },
826                                         Err(_) => panic!("Your RNG is busted"),
827                                 };
828                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
829                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
830                                         Err(_) => panic!("Your RNG is busted"),
831                                 };
832                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
833                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
834
835                                 let mut rand_bytes_unique_start = Sha256::engine();
836                                 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
837                                 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
838                                 rand_bytes_unique_start.input(seed);
839
840                                 let mut res = KeysManager {
841                                         secp_ctx,
842                                         node_secret,
843
844                                         destination_script,
845                                         shutdown_pubkey,
846
847                                         channel_master_key,
848                                         channel_child_index: AtomicUsize::new(0),
849
850                                         rand_bytes_master_key,
851                                         rand_bytes_child_index: AtomicUsize::new(0),
852                                         rand_bytes_unique_start,
853
854                                         seed: *seed,
855                                         starting_time_secs,
856                                         starting_time_nanos,
857                                 };
858                                 let secp_seed = res.get_secure_random_bytes();
859                                 res.secp_ctx.seeded_randomize(&secp_seed);
860                                 res
861                         },
862                         Err(_) => panic!("Your rng is busted"),
863                 }
864         }
865         /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
866         ///
867         /// Key derivation parameters are accessible through a per-channel secrets
868         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
869         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
870         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
871                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
872                 assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
873                 let mut unique_start = Sha256::engine();
874                 unique_start.input(params);
875                 unique_start.input(&self.seed);
876
877                 // We only seriously intend to rely on the channel_master_key for true secure
878                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
879                 // starting_time provided in the constructor) to be unique.
880                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
881                 unique_start.input(&child_privkey.private_key.key[..]);
882
883                 let seed = Sha256::from_engine(unique_start).into_inner();
884
885                 let commitment_seed = {
886                         let mut sha = Sha256::engine();
887                         sha.input(&seed);
888                         sha.input(&b"commitment seed"[..]);
889                         Sha256::from_engine(sha).into_inner()
890                 };
891                 macro_rules! key_step {
892                         ($info: expr, $prev_key: expr) => {{
893                                 let mut sha = Sha256::engine();
894                                 sha.input(&seed);
895                                 sha.input(&$prev_key[..]);
896                                 sha.input(&$info[..]);
897                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
898                         }}
899                 }
900                 let funding_key = key_step!(b"funding key", commitment_seed);
901                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
902                 let payment_key = key_step!(b"payment key", revocation_base_key);
903                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
904                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
905
906                 InMemorySigner::new(
907                         &self.secp_ctx,
908                         funding_key,
909                         revocation_base_key,
910                         payment_key,
911                         delayed_payment_base_key,
912                         htlc_base_key,
913                         commitment_seed,
914                         channel_value_satoshis,
915                         params.clone()
916                 )
917         }
918
919         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
920         /// output to the given change destination (if sufficient change value remains). The
921         /// transaction will have a feerate, at least, of the given value.
922         ///
923         /// Returns `Err(())` if the output value is greater than the input value minus required fee or
924         /// if a descriptor was duplicated.
925         ///
926         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
927         ///
928         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
929         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
930         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
931                 let mut input = Vec::new();
932                 let mut input_value = 0;
933                 let mut witness_weight = 0;
934                 let mut output_set = HashSet::with_capacity(descriptors.len());
935                 for outp in descriptors {
936                         match outp {
937                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
938                                         input.push(TxIn {
939                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
940                                                 script_sig: Script::new(),
941                                                 sequence: 0,
942                                                 witness: Vec::new(),
943                                         });
944                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
945                                         input_value += descriptor.output.value;
946                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
947                                 },
948                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
949                                         input.push(TxIn {
950                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
951                                                 script_sig: Script::new(),
952                                                 sequence: descriptor.to_self_delay as u32,
953                                                 witness: Vec::new(),
954                                         });
955                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
956                                         input_value += descriptor.output.value;
957                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
958                                 },
959                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
960                                         input.push(TxIn {
961                                                 previous_output: outpoint.into_bitcoin_outpoint(),
962                                                 script_sig: Script::new(),
963                                                 sequence: 0,
964                                                 witness: Vec::new(),
965                                         });
966                                         witness_weight += 1 + 73 + 34;
967                                         input_value += output.value;
968                                         if !output_set.insert(*outpoint) { return Err(()); }
969                                 }
970                         }
971                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
972                 }
973                 let mut spend_tx = Transaction {
974                         version: 2,
975                         lock_time: 0,
976                         input,
977                         output: outputs,
978                 };
979                 transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
980
981                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
982                 let mut input_idx = 0;
983                 for outp in descriptors {
984                         match outp {
985                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
986                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
987                                                 keys_cache = Some((
988                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
989                                                         descriptor.channel_keys_id));
990                                         }
991                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
992                                 },
993                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
994                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
995                                                 keys_cache = Some((
996                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
997                                                         descriptor.channel_keys_id));
998                                         }
999                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
1000                                 },
1001                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1002                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1003                                                 1
1004                                         } else {
1005                                                 2
1006                                         };
1007                                         let secret = {
1008                                                 // Note that when we aren't serializing the key, network doesn't matter
1009                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1010                                                         Ok(master_key) => {
1011                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1012                                                                         Ok(key) => key,
1013                                                                         Err(_) => panic!("Your RNG is busted"),
1014                                                                 }
1015                                                         }
1016                                                         Err(_) => panic!("Your rng is busted"),
1017                                                 }
1018                                         };
1019                                         let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key;
1020                                         if derivation_idx == 2 {
1021                                                 assert_eq!(pubkey.key, self.shutdown_pubkey);
1022                                         }
1023                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1024                                         let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
1025                                         let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
1026                                         spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
1027                                         spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8);
1028                                         spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec());
1029                                 },
1030                         }
1031                         input_idx += 1;
1032                 }
1033                 Ok(spend_tx)
1034         }
1035 }
1036
1037 impl KeysInterface for KeysManager {
1038         type Signer = InMemorySigner;
1039
1040         fn get_node_secret(&self) -> SecretKey {
1041                 self.node_secret.clone()
1042         }
1043
1044         fn get_destination_script(&self) -> Script {
1045                 self.destination_script.clone()
1046         }
1047
1048         fn get_shutdown_pubkey(&self) -> PublicKey {
1049                 self.shutdown_pubkey.clone()
1050         }
1051
1052         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1053                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1054                 assert!(child_ix <= core::u32::MAX as usize);
1055                 let mut id = [0; 32];
1056                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1057                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1058                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1059                 self.derive_channel_keys(channel_value_satoshis, &id)
1060         }
1061
1062         fn get_secure_random_bytes(&self) -> [u8; 32] {
1063                 let mut sha = self.rand_bytes_unique_start.clone();
1064
1065                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1066                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1067                 sha.input(&child_privkey.private_key.key[..]);
1068
1069                 sha.input(b"Unique Secure Random Bytes Salt");
1070                 Sha256::from_engine(sha).into_inner()
1071         }
1072
1073         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1074                 InMemorySigner::read(&mut std::io::Cursor::new(reader))
1075         }
1076
1077         fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()> {
1078                 Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&invoice_preimage)), &self.get_node_secret()))
1079         }
1080 }
1081
1082 // Ensure that BaseSign can have a vtable
1083 #[test]
1084 pub fn dyn_sign() {
1085         let _signer: Box<dyn BaseSign>;
1086 }