Batch-sign local HTLC txn with a well-doc'd API, returning sigs
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
2 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
3 //! on-chain output which is theirs.
4
5 use bitcoin::blockdata::transaction::{Transaction, OutPoint, TxOut};
6 use bitcoin::blockdata::script::{Script, Builder};
7 use bitcoin::blockdata::opcodes;
8 use bitcoin::network::constants::Network;
9 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
10 use bitcoin::util::bip143;
11
12 use bitcoin_hashes::{Hash, HashEngine};
13 use bitcoin_hashes::sha256::HashEngine as Sha256State;
14 use bitcoin_hashes::sha256::Hash as Sha256;
15 use bitcoin_hashes::sha256d::Hash as Sha256dHash;
16 use bitcoin_hashes::hash160::Hash as Hash160;
17
18 use secp256k1::key::{SecretKey, PublicKey};
19 use secp256k1::{Secp256k1, Signature, Signing};
20 use secp256k1;
21
22 use util::byte_utils;
23 use util::logger::Logger;
24 use util::ser::{Writeable, Writer, Readable};
25
26 use ln::chan_utils;
27 use ln::chan_utils::{TxCreationKeys, HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, LocalCommitmentTransaction};
28 use ln::msgs;
29
30 use std::sync::Arc;
31 use std::sync::atomic::{AtomicUsize, Ordering};
32 use std::io::Error;
33 use ln::msgs::DecodeError;
34
35 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
36 /// claim at any point in the future) an event is generated which you must track and be able to
37 /// spend on-chain. The information needed to do this is provided in this enum, including the
38 /// outpoint describing which txid and output index is available, the full output which exists at
39 /// that txid/index, and any keys or other information required to sign.
40 #[derive(Clone, PartialEq)]
41 pub enum SpendableOutputDescriptor {
42         /// An output to a script which was provided via KeysInterface, thus you should already know
43         /// how to spend it. No keys are provided as rust-lightning was never given any keys - only the
44         /// script_pubkey as it appears in the output.
45         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
46         /// on-chain using the payment preimage or after it has timed out.
47         StaticOutput {
48                 /// The outpoint which is spendable
49                 outpoint: OutPoint,
50                 /// The output which is referenced by the given outpoint.
51                 output: TxOut,
52         },
53         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
54         /// The private key which should be used to sign the transaction is provided, as well as the
55         /// full witness redeemScript which is hashed in the output script_pubkey.
56         /// The witness in the spending input should be:
57         /// <BIP 143 signature generated with the given key> <empty vector> (MINIMALIF standard rule)
58         /// <witness_script as provided>
59         /// Note that the nSequence field in the input must be set to_self_delay (which corresponds to
60         /// the transaction not being broadcastable until at least to_self_delay blocks after the input
61         /// confirms).
62         /// These are generally the result of a "revocable" output to us, spendable only by us unless
63         /// it is an output from us having broadcast an old state (which should never happen).
64         DynamicOutputP2WSH {
65                 /// The outpoint which is spendable
66                 outpoint: OutPoint,
67                 /// The secret key which must be used to sign the spending transaction
68                 key: SecretKey,
69                 /// The witness redeemScript which is hashed to create the script_pubkey in the given output
70                 witness_script: Script,
71                 /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
72                 /// the witness_script.
73                 to_self_delay: u16,
74                 /// The output which is referenced by the given outpoint
75                 output: TxOut,
76         },
77         /// An output to a P2WPKH, spendable exclusively by the given private key.
78         /// The witness in the spending input, is, thus, simply:
79         /// <BIP 143 signature generated with the given key> <public key derived from the given key>
80         /// These are generally the result of our counterparty having broadcast the current state,
81         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
82         DynamicOutputP2WPKH {
83                 /// The outpoint which is spendable
84                 outpoint: OutPoint,
85                 /// The secret key which must be used to sign the spending transaction
86                 key: SecretKey,
87                 /// The output which is reference by the given outpoint
88                 output: TxOut,
89         }
90 }
91
92 impl Writeable for SpendableOutputDescriptor {
93         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
94                 match self {
95                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
96                                 0u8.write(writer)?;
97                                 outpoint.write(writer)?;
98                                 output.write(writer)?;
99                         },
100                         &SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref key, ref witness_script, ref to_self_delay, ref output } => {
101                                 1u8.write(writer)?;
102                                 outpoint.write(writer)?;
103                                 key.write(writer)?;
104                                 witness_script.write(writer)?;
105                                 to_self_delay.write(writer)?;
106                                 output.write(writer)?;
107                         },
108                         &SpendableOutputDescriptor::DynamicOutputP2WPKH { ref outpoint, ref key, ref output } => {
109                                 2u8.write(writer)?;
110                                 outpoint.write(writer)?;
111                                 key.write(writer)?;
112                                 output.write(writer)?;
113                         },
114                 }
115                 Ok(())
116         }
117 }
118
119 impl Readable for SpendableOutputDescriptor {
120         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
121                 match Readable::read(reader)? {
122                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
123                                 outpoint: Readable::read(reader)?,
124                                 output: Readable::read(reader)?,
125                         }),
126                         1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
127                                 outpoint: Readable::read(reader)?,
128                                 key: Readable::read(reader)?,
129                                 witness_script: Readable::read(reader)?,
130                                 to_self_delay: Readable::read(reader)?,
131                                 output: Readable::read(reader)?,
132                         }),
133                         2u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WPKH {
134                                 outpoint: Readable::read(reader)?,
135                                 key: Readable::read(reader)?,
136                                 output: Readable::read(reader)?,
137                         }),
138                         _ => Err(DecodeError::InvalidValue),
139                 }
140         }
141 }
142
143 /// A trait to describe an object which can get user secrets and key material.
144 pub trait KeysInterface: Send + Sync {
145         /// A type which implements ChannelKeys which will be returned by get_channel_keys.
146         type ChanKeySigner : ChannelKeys;
147
148         /// Get node secret key (aka node_id or network_key)
149         fn get_node_secret(&self) -> SecretKey;
150         /// Get destination redeemScript to encumber static protocol exit points.
151         fn get_destination_script(&self) -> Script;
152         /// Get shutdown_pubkey to use as PublicKey at channel closure
153         fn get_shutdown_pubkey(&self) -> PublicKey;
154         /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
155         /// restarted with some stale data!
156         fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
157         /// Get a secret and PRNG seed for construting an onion packet
158         fn get_onion_rand(&self) -> (SecretKey, [u8; 32]);
159         /// Get a unique temporary channel id. Channels will be referred to by this until the funding
160         /// transaction is created, at which point they will use the outpoint in the funding
161         /// transaction.
162         fn get_channel_id(&self) -> [u8; 32];
163 }
164
165 /// Set of lightning keys needed to operate a channel as described in BOLT 3.
166 ///
167 /// Signing services could be implemented on a hardware wallet. In this case,
168 /// the current ChannelKeys would be a front-end on top of a communication
169 /// channel connected to your secure device and lightning key material wouldn't
170 /// reside on a hot server. Nevertheless, a this deployment would still need
171 /// to trust the ChannelManager to avoid loss of funds as this latest component
172 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
173 ///
174 /// A more secure iteration would be to use hashlock (or payment points) to pair
175 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
176 /// at the price of more state and computation on the hardware wallet side. In the future,
177 /// we are looking forward to design such interface.
178 ///
179 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
180 /// to act, as liveness and breach reply correctness are always going to be hard requirements
181 /// of LN security model, orthogonal of key management issues.
182 ///
183 /// If you're implementing a custom signer, you almost certainly want to implement
184 /// Readable/Writable to serialize out a unique reference to this set of keys so
185 /// that you can serialize the full ChannelManager object.
186 ///
187 /// (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
188 /// to the possibility of reentrancy issues by calling the user's code during our deserialization
189 /// routine).
190 /// TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
191 /// ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
192 pub trait ChannelKeys : Send+Clone {
193         /// Gets the private key for the anchor tx
194         fn funding_key<'a>(&'a self) -> &'a SecretKey;
195         /// Gets the local secret key for blinded revocation pubkey
196         fn revocation_base_key<'a>(&'a self) -> &'a SecretKey;
197         /// Gets the local secret key used in to_remote output of remote commitment tx
198         /// (and also as part of obscured commitment number)
199         fn payment_base_key<'a>(&'a self) -> &'a SecretKey;
200         /// Gets the local secret key used in HTLC-Success/HTLC-Timeout txn and to_local output
201         fn delayed_payment_base_key<'a>(&'a self) -> &'a SecretKey;
202         /// Gets the local htlc secret key used in commitment tx htlc outputs
203         fn htlc_base_key<'a>(&'a self) -> &'a SecretKey;
204         /// Gets the commitment seed
205         fn commitment_seed<'a>(&'a self) -> &'a [u8; 32];
206         /// Gets the local channel public keys and basepoints
207         fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys;
208
209         /// Create a signature for a remote commitment transaction and associated HTLC transactions.
210         ///
211         /// Note that if signing fails or is rejected, the channel will be force-closed.
212         ///
213         /// TODO: Document the things someone using this interface should enforce before signing.
214         /// TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
215         /// making the callee generate it via some util function we expose)!
216         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
217
218         /// Create a signature for a local commitment transaction. This will only ever be called with
219         /// the same local_commitment_tx (or a copy thereof), though there are currently no guarantees
220         /// that it will not be called multiple times.
221         ///
222         /// TODO: Document the things someone using this interface should enforce before signing.
223         /// TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
224         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
225
226         /// Same as sign_local_commitment, but exists only for tests to get access to local commitment
227         /// transactions which will be broadcasted later, after the channel has moved on to a newer
228         /// state. Thus, needs its own method as sign_local_commitment may enforce that we only ever
229         /// get called once.
230         #[cfg(test)]
231         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
232
233         /// Create a signature for each HTLC transaction spending a local commitment transaction.
234         ///
235         /// Unlike sign_local_commitment, this may be called multiple times with *different*
236         /// local_commitment_tx values. While this will never be called with a revoked
237         /// local_commitment_tx, it is possible that it is called with the second-latest
238         /// local_commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
239         /// ChannelMonitor decided to broadcast before it had been updated to the latest.
240         ///
241         /// Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
242         /// local_commitment_tx. For those HTLCs which have transaction_output_index set to None
243         /// (implying they were considered dust at the time the commitment transaction was negotiated),
244         /// a corresponding None should be included in the return value. All other positions in the
245         /// return value must contain a signature.
246         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()>;
247
248         /// Create a signature for a (proposed) closing transaction.
249         ///
250         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
251         /// chosen to forgo their output as dust.
252         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
253
254         /// Signs a channel announcement message with our funding key, proving it comes from one
255         /// of the channel participants.
256         ///
257         /// Note that if this fails or is rejected, the channel will not be publicly announced and
258         /// our counterparty may (though likely will not) close the channel on us for violating the
259         /// protocol.
260         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
261
262         /// Set the remote channel basepoints.  This is done immediately on incoming channels
263         /// and as soon as the channel is accepted on outgoing channels.
264         ///
265         /// Will be called before any signatures are applied.
266         fn set_remote_channel_pubkeys(&mut self, channel_points: &ChannelPublicKeys);
267 }
268
269 #[derive(Clone)]
270 /// A simple implementation of ChannelKeys that just keeps the private keys in memory.
271 pub struct InMemoryChannelKeys {
272         /// Private key of anchor tx
273         funding_key: SecretKey,
274         /// Local secret key for blinded revocation pubkey
275         revocation_base_key: SecretKey,
276         /// Local secret key used in commitment tx htlc outputs
277         payment_base_key: SecretKey,
278         /// Local secret key used in HTLC tx
279         delayed_payment_base_key: SecretKey,
280         /// Local htlc secret key used in commitment tx htlc outputs
281         htlc_base_key: SecretKey,
282         /// Commitment seed
283         commitment_seed: [u8; 32],
284         /// Local public keys and basepoints
285         pub(crate) local_channel_pubkeys: ChannelPublicKeys,
286         /// Remote public keys and base points
287         pub(crate) remote_channel_pubkeys: Option<ChannelPublicKeys>,
288         /// The total value of this channel
289         channel_value_satoshis: u64,
290 }
291
292 impl InMemoryChannelKeys {
293         /// Create a new InMemoryChannelKeys
294         pub fn new<C: Signing>(
295                 secp_ctx: &Secp256k1<C>,
296                 funding_key: SecretKey,
297                 revocation_base_key: SecretKey,
298                 payment_base_key: SecretKey,
299                 delayed_payment_base_key: SecretKey,
300                 htlc_base_key: SecretKey,
301                 commitment_seed: [u8; 32],
302                 channel_value_satoshis: u64) -> InMemoryChannelKeys {
303                 let local_channel_pubkeys =
304                         InMemoryChannelKeys::make_local_keys(secp_ctx, &funding_key, &revocation_base_key,
305                                                              &payment_base_key, &delayed_payment_base_key,
306                                                              &htlc_base_key);
307                 InMemoryChannelKeys {
308                         funding_key,
309                         revocation_base_key,
310                         payment_base_key,
311                         delayed_payment_base_key,
312                         htlc_base_key,
313                         commitment_seed,
314                         channel_value_satoshis,
315                         local_channel_pubkeys,
316                         remote_channel_pubkeys: None,
317                 }
318         }
319
320         fn make_local_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
321                                        funding_key: &SecretKey,
322                                        revocation_base_key: &SecretKey,
323                                        payment_base_key: &SecretKey,
324                                        delayed_payment_base_key: &SecretKey,
325                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
326                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
327                 ChannelPublicKeys {
328                         funding_pubkey: from_secret(&funding_key),
329                         revocation_basepoint: from_secret(&revocation_base_key),
330                         payment_basepoint: from_secret(&payment_base_key),
331                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
332                         htlc_basepoint: from_secret(&htlc_base_key),
333                 }
334         }
335 }
336
337 impl ChannelKeys for InMemoryChannelKeys {
338         fn funding_key(&self) -> &SecretKey { &self.funding_key }
339         fn revocation_base_key(&self) -> &SecretKey { &self.revocation_base_key }
340         fn payment_base_key(&self) -> &SecretKey { &self.payment_base_key }
341         fn delayed_payment_base_key(&self) -> &SecretKey { &self.delayed_payment_base_key }
342         fn htlc_base_key(&self) -> &SecretKey { &self.htlc_base_key }
343         fn commitment_seed(&self) -> &[u8; 32] { &self.commitment_seed }
344         fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys { &self.local_channel_pubkeys }
345
346         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
347                 if commitment_tx.input.len() != 1 { return Err(()); }
348
349                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
350                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
351                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
352
353                 let commitment_sighash = hash_to_message!(&bip143::SighashComponents::new(&commitment_tx).sighash_all(&commitment_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
354                 let commitment_sig = secp_ctx.sign(&commitment_sighash, &self.funding_key);
355
356                 let commitment_txid = commitment_tx.txid();
357
358                 let mut htlc_sigs = Vec::with_capacity(htlcs.len());
359                 for ref htlc in htlcs {
360                         if let Some(_) = htlc.transaction_output_index {
361                                 let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, feerate_per_kw, to_self_delay, htlc, &keys.a_delayed_payment_key, &keys.revocation_key);
362                                 let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
363                                 let htlc_sighash = hash_to_message!(&bip143::SighashComponents::new(&htlc_tx).sighash_all(&htlc_tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
364                                 let our_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
365                                         Ok(s) => s,
366                                         Err(_) => return Err(()),
367                                 };
368                                 htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &our_htlc_key));
369                         }
370                 }
371
372                 Ok((commitment_sig, htlc_sigs))
373         }
374
375         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
376                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
377                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
378                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
379
380                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
381         }
382
383         #[cfg(test)]
384         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
385                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
386                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
387                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
388
389                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
390         }
391
392         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
393                 local_commitment_tx.get_htlc_sigs(&self.htlc_base_key, local_csv, secp_ctx)
394         }
395
396         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
397                 if closing_tx.input.len() != 1 { return Err(()); }
398                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
399                 if closing_tx.output.len() > 2 { return Err(()); }
400
401                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
402                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
403                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
404
405                 let sighash = hash_to_message!(&bip143::SighashComponents::new(closing_tx)
406                         .sighash_all(&closing_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
407                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
408         }
409
410         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
411                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
412                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
413         }
414
415         fn set_remote_channel_pubkeys(&mut self, channel_pubkeys: &ChannelPublicKeys) {
416                 assert!(self.remote_channel_pubkeys.is_none(), "Already set remote channel pubkeys");
417                 self.remote_channel_pubkeys = Some(channel_pubkeys.clone());
418         }
419 }
420
421 impl Writeable for InMemoryChannelKeys {
422         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
423                 self.funding_key.write(writer)?;
424                 self.revocation_base_key.write(writer)?;
425                 self.payment_base_key.write(writer)?;
426                 self.delayed_payment_base_key.write(writer)?;
427                 self.htlc_base_key.write(writer)?;
428                 self.commitment_seed.write(writer)?;
429                 self.remote_channel_pubkeys.write(writer)?;
430                 self.channel_value_satoshis.write(writer)?;
431
432                 Ok(())
433         }
434 }
435
436 impl Readable for InMemoryChannelKeys {
437         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
438                 let funding_key = Readable::read(reader)?;
439                 let revocation_base_key = Readable::read(reader)?;
440                 let payment_base_key = Readable::read(reader)?;
441                 let delayed_payment_base_key = Readable::read(reader)?;
442                 let htlc_base_key = Readable::read(reader)?;
443                 let commitment_seed = Readable::read(reader)?;
444                 let remote_channel_pubkeys = Readable::read(reader)?;
445                 let channel_value_satoshis = Readable::read(reader)?;
446                 let secp_ctx = Secp256k1::signing_only();
447                 let local_channel_pubkeys =
448                         InMemoryChannelKeys::make_local_keys(&secp_ctx, &funding_key, &revocation_base_key,
449                                                              &payment_base_key, &delayed_payment_base_key,
450                                                              &htlc_base_key);
451
452                 Ok(InMemoryChannelKeys {
453                         funding_key,
454                         revocation_base_key,
455                         payment_base_key,
456                         delayed_payment_base_key,
457                         htlc_base_key,
458                         commitment_seed,
459                         channel_value_satoshis,
460                         local_channel_pubkeys,
461                         remote_channel_pubkeys
462                 })
463         }
464 }
465
466 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
467 /// and derives keys from that.
468 ///
469 /// Your node_id is seed/0'
470 /// ChannelMonitor closes may use seed/1'
471 /// Cooperative closes may use seed/2'
472 /// The two close keys may be needed to claim on-chain funds!
473 pub struct KeysManager {
474         secp_ctx: Secp256k1<secp256k1::SignOnly>,
475         node_secret: SecretKey,
476         destination_script: Script,
477         shutdown_pubkey: PublicKey,
478         channel_master_key: ExtendedPrivKey,
479         channel_child_index: AtomicUsize,
480         session_master_key: ExtendedPrivKey,
481         session_child_index: AtomicUsize,
482         channel_id_master_key: ExtendedPrivKey,
483         channel_id_child_index: AtomicUsize,
484
485         unique_start: Sha256State,
486         logger: Arc<Logger>,
487 }
488
489 impl KeysManager {
490         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
491         /// RNG is busted) this may panic (but more importantly, you will possibly lose funds).
492         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
493         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
494         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
495         /// simply use the current time (with very high precision).
496         ///
497         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
498         /// obviously, starting_time should be unique every time you reload the library - it is only
499         /// used to generate new ephemeral key data (which will be stored by the individual channel if
500         /// necessary).
501         ///
502         /// Note that the seed is required to recover certain on-chain funds independent of
503         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
504         /// channel, and some on-chain during-closing funds.
505         ///
506         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
507         /// versions. Once the library is more fully supported, the docs will be updated to include a
508         /// detailed description of the guarantee.
509         pub fn new(seed: &[u8; 32], network: Network, logger: Arc<Logger>, starting_time_secs: u64, starting_time_nanos: u32) -> KeysManager {
510                 let secp_ctx = Secp256k1::signing_only();
511                 match ExtendedPrivKey::new_master(network.clone(), seed) {
512                         Ok(master_key) => {
513                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
514                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
515                                         Ok(destination_key) => {
516                                                 let pubkey_hash160 = Hash160::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.key.serialize()[..]);
517                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
518                                                               .push_slice(&pubkey_hash160.into_inner())
519                                                               .into_script()
520                                         },
521                                         Err(_) => panic!("Your RNG is busted"),
522                                 };
523                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
524                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
525                                         Err(_) => panic!("Your RNG is busted"),
526                                 };
527                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
528                                 let session_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
529                                 let channel_id_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted");
530
531                                 let mut unique_start = Sha256::engine();
532                                 unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
533                                 unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
534                                 unique_start.input(seed);
535
536                                 KeysManager {
537                                         secp_ctx,
538                                         node_secret,
539                                         destination_script,
540                                         shutdown_pubkey,
541                                         channel_master_key,
542                                         channel_child_index: AtomicUsize::new(0),
543                                         session_master_key,
544                                         session_child_index: AtomicUsize::new(0),
545                                         channel_id_master_key,
546                                         channel_id_child_index: AtomicUsize::new(0),
547
548                                         unique_start,
549                                         logger,
550                                 }
551                         },
552                         Err(_) => panic!("Your rng is busted"),
553                 }
554         }
555 }
556
557 impl KeysInterface for KeysManager {
558         type ChanKeySigner = InMemoryChannelKeys;
559
560         fn get_node_secret(&self) -> SecretKey {
561                 self.node_secret.clone()
562         }
563
564         fn get_destination_script(&self) -> Script {
565                 self.destination_script.clone()
566         }
567
568         fn get_shutdown_pubkey(&self) -> PublicKey {
569                 self.shutdown_pubkey.clone()
570         }
571
572         fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> InMemoryChannelKeys {
573                 // We only seriously intend to rely on the channel_master_key for true secure
574                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
575                 // starting_time provided in the constructor) to be unique.
576                 let mut sha = self.unique_start.clone();
577
578                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
579                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
580                 sha.input(&child_privkey.private_key.key[..]);
581
582                 let seed = Sha256::from_engine(sha).into_inner();
583
584                 let commitment_seed = {
585                         let mut sha = Sha256::engine();
586                         sha.input(&seed);
587                         sha.input(&b"commitment seed"[..]);
588                         Sha256::from_engine(sha).into_inner()
589                 };
590                 macro_rules! key_step {
591                         ($info: expr, $prev_key: expr) => {{
592                                 let mut sha = Sha256::engine();
593                                 sha.input(&seed);
594                                 sha.input(&$prev_key[..]);
595                                 sha.input(&$info[..]);
596                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
597                         }}
598                 }
599                 let funding_key = key_step!(b"funding key", commitment_seed);
600                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
601                 let payment_base_key = key_step!(b"payment base key", revocation_base_key);
602                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_base_key);
603                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
604
605                 InMemoryChannelKeys::new(
606                         &self.secp_ctx,
607                         funding_key,
608                         revocation_base_key,
609                         payment_base_key,
610                         delayed_payment_base_key,
611                         htlc_base_key,
612                         commitment_seed,
613                         channel_value_satoshis
614                 )
615         }
616
617         fn get_onion_rand(&self) -> (SecretKey, [u8; 32]) {
618                 let mut sha = self.unique_start.clone();
619
620                 let child_ix = self.session_child_index.fetch_add(1, Ordering::AcqRel);
621                 let child_privkey = self.session_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
622                 sha.input(&child_privkey.private_key.key[..]);
623
624                 let mut rng_seed = sha.clone();
625                 // Not exactly the most ideal construction, but the second value will get fed into
626                 // ChaCha so it is another step harder to break.
627                 rng_seed.input(b"RNG Seed Salt");
628                 sha.input(b"Session Key Salt");
629                 (SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("Your RNG is busted"),
630                 Sha256::from_engine(rng_seed).into_inner())
631         }
632
633         fn get_channel_id(&self) -> [u8; 32] {
634                 let mut sha = self.unique_start.clone();
635
636                 let child_ix = self.channel_id_child_index.fetch_add(1, Ordering::AcqRel);
637                 let child_privkey = self.channel_id_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
638                 sha.input(&child_privkey.private_key.key[..]);
639
640                 Sha256::from_engine(sha).into_inner()
641         }
642 }