Actual no_std support
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::hashes::{Hash, HashEngine};
22 use bitcoin::hashes::sha256::HashEngine as Sha256State;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
25 use bitcoin::hash_types::WPubkeyHash;
26
27 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
28 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
29 use bitcoin::secp256k1::recovery::RecoverableSignature;
30 use bitcoin::secp256k1;
31
32 use util::{byte_utils, transaction_utils};
33 use util::ser::{Writeable, Writer, Readable};
34
35 use chain::transaction::OutPoint;
36 use ln::chan_utils;
37 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction};
38 use ln::msgs::UnsignedChannelAnnouncement;
39
40 use prelude::*;
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use io::{self, Error};
43 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
44
45 /// Information about a spendable output to a P2WSH script. See
46 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
47 #[derive(Clone, Debug, PartialEq)]
48 pub struct DelayedPaymentOutputDescriptor {
49         /// The outpoint which is spendable
50         pub outpoint: OutPoint,
51         /// Per commitment point to derive delayed_payment_key by key holder
52         pub per_commitment_point: PublicKey,
53         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
54         /// the witness_script.
55         pub to_self_delay: u16,
56         /// The output which is referenced by the given outpoint
57         pub output: TxOut,
58         /// The revocation point specific to the commitment transaction which was broadcast. Used to
59         /// derive the witnessScript for this output.
60         pub revocation_pubkey: PublicKey,
61         /// Arbitrary identification information returned by a call to
62         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
63         /// the channel to spend the output.
64         pub channel_keys_id: [u8; 32],
65         /// The value of the channel which this output originated from, possibly indirectly.
66         pub channel_value_satoshis: u64,
67 }
68 impl DelayedPaymentOutputDescriptor {
69         /// The maximum length a well-formed witness spending one of these should have.
70         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
71         // redeemscript push length.
72         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
73 }
74
75 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
76         (0, outpoint, required),
77         (2, per_commitment_point, required),
78         (4, to_self_delay, required),
79         (6, output, required),
80         (8, revocation_pubkey, required),
81         (10, channel_keys_id, required),
82         (12, channel_value_satoshis, required),
83 });
84
85 /// Information about a spendable output to our "payment key". See
86 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
87 #[derive(Clone, Debug, PartialEq)]
88 pub struct StaticPaymentOutputDescriptor {
89         /// The outpoint which is spendable
90         pub outpoint: OutPoint,
91         /// The output which is referenced by the given outpoint
92         pub output: TxOut,
93         /// Arbitrary identification information returned by a call to
94         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
95         /// the channel to spend the output.
96         pub channel_keys_id: [u8; 32],
97         /// The value of the channel which this transactions spends.
98         pub channel_value_satoshis: u64,
99 }
100 impl StaticPaymentOutputDescriptor {
101         /// The maximum length a well-formed witness spending one of these should have.
102         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
103         // redeemscript push length.
104         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
105 }
106 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
107         (0, outpoint, required),
108         (2, output, required),
109         (4, channel_keys_id, required),
110         (6, channel_value_satoshis, required),
111 });
112
113 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
114 /// claim at any point in the future) an event is generated which you must track and be able to
115 /// spend on-chain. The information needed to do this is provided in this enum, including the
116 /// outpoint describing which txid and output index is available, the full output which exists at
117 /// that txid/index, and any keys or other information required to sign.
118 #[derive(Clone, Debug, PartialEq)]
119 pub enum SpendableOutputDescriptor {
120         /// An output to a script which was provided via KeysInterface directly, either from
121         /// `get_destination_script()` or `get_shutdown_pubkey()`, thus you should already know how to
122         /// spend it. No secret keys are provided as rust-lightning was never given any key.
123         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
124         /// on-chain using the payment preimage or after it has timed out.
125         StaticOutput {
126                 /// The outpoint which is spendable
127                 outpoint: OutPoint,
128                 /// The output which is referenced by the given outpoint.
129                 output: TxOut,
130         },
131         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
132         ///
133         /// The witness in the spending input should be:
134         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
135         ///
136         /// Note that the nSequence field in the spending input must be set to to_self_delay
137         /// (which means the transaction is not broadcastable until at least to_self_delay
138         /// blocks after the outpoint confirms).
139         ///
140         /// These are generally the result of a "revocable" output to us, spendable only by us unless
141         /// it is an output from an old state which we broadcast (which should never happen).
142         ///
143         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
144         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
145         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
146         /// chan_utils::derive_private_key. The public key can be generated without the secret key
147         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
148         /// Sign::pubkeys().
149         ///
150         /// To derive the revocation_pubkey provided here (which is used in the witness
151         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
152         /// call to Sign::ready_channel) and the provided per_commitment point
153         /// to chan_utils::derive_public_revocation_key.
154         ///
155         /// The witness script which is hashed and included in the output script_pubkey may be
156         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
157         /// (derived as above), and the to_self_delay contained here to
158         /// chan_utils::get_revokeable_redeemscript.
159         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
160         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
161         /// corresponds to the public key in Sign::pubkeys().payment_point).
162         /// The witness in the spending input, is, thus, simply:
163         /// <BIP 143 signature> <payment key>
164         ///
165         /// These are generally the result of our counterparty having broadcast the current state,
166         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
167         StaticPaymentOutput(StaticPaymentOutputDescriptor),
168 }
169
170 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
171         (0, StaticOutput) => {
172                 (0, outpoint, required),
173                 (2, output, required),
174         },
175 ;
176         (1, DelayedPaymentOutput),
177         (2, StaticPaymentOutput),
178 );
179
180 /// A trait to sign lightning channel transactions as described in BOLT 3.
181 ///
182 /// Signing services could be implemented on a hardware wallet. In this case,
183 /// the current Sign would be a front-end on top of a communication
184 /// channel connected to your secure device and lightning key material wouldn't
185 /// reside on a hot server. Nevertheless, a this deployment would still need
186 /// to trust the ChannelManager to avoid loss of funds as this latest component
187 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
188 ///
189 /// A more secure iteration would be to use hashlock (or payment points) to pair
190 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
191 /// at the price of more state and computation on the hardware wallet side. In the future,
192 /// we are looking forward to design such interface.
193 ///
194 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
195 /// to act, as liveness and breach reply correctness are always going to be hard requirements
196 /// of LN security model, orthogonal of key management issues.
197 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
198 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
199 pub trait BaseSign {
200         /// Gets the per-commitment point for a specific commitment number
201         ///
202         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
203         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
204         /// Gets the commitment secret for a specific commitment number as part of the revocation process
205         ///
206         /// An external signer implementation should error here if the commitment was already signed
207         /// and should refuse to sign it in the future.
208         ///
209         /// May be called more than once for the same index.
210         ///
211         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
212         // TODO: return a Result so we can signal a validation error
213         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
214         /// Gets the holder's channel public keys and basepoints
215         fn pubkeys(&self) -> &ChannelPublicKeys;
216         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
217         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
218         /// Sign object uniquely and lookup or re-derive its keys.
219         fn channel_keys_id(&self) -> [u8; 32];
220
221         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
222         ///
223         /// Note that if signing fails or is rejected, the channel will be force-closed.
224         //
225         // TODO: Document the things someone using this interface should enforce before signing.
226         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
227
228         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
229         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
230         /// latest commitment_tx when we initiate a force-close.
231         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
232         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
233         /// the latest.
234         /// This may be called multiple times for the same transaction.
235         ///
236         /// An external signer implementation should check that the commitment has not been revoked.
237         ///
238         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
239         //
240         // TODO: Document the things someone using this interface should enforce before signing.
241         // TODO: Key derivation failure should panic rather than Err
242         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
243
244         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
245         /// transactions which will be broadcasted later, after the channel has moved on to a newer
246         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
247         /// get called once.
248         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
249         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
250
251         /// Create a signature for the given input in a transaction spending an HTLC transaction output
252         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
253         ///
254         /// A justice transaction may claim multiple outputs at the same time if timelocks are
255         /// similar, but only a signature for the input at index `input` should be signed for here.
256         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
257         /// to an upcoming timelock expiration.
258         ///
259         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
260         ///
261         /// per_commitment_key is revocation secret which was provided by our counterparty when they
262         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
263         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
264         /// so).
265         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
266
267         /// Create a signature for the given input in a transaction spending a commitment transaction
268         /// HTLC output when our counterparty broadcasts an old state.
269         ///
270         /// A justice transaction may claim multiple outputs at the same time if timelocks are
271         /// similar, but only a signature for the input at index `input` should be signed for here.
272         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
273         /// to an upcoming timelock expiration.
274         ///
275         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
276         ///
277         /// per_commitment_key is revocation secret which was provided by our counterparty when they
278         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
279         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
280         /// so).
281         ///
282         /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
283         /// (which is committed to in the BIP 143 signatures).
284         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
285
286         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
287         /// transaction, either offered or received.
288         ///
289         /// Such a transaction may claim multiples offered outputs at same time if we know the
290         /// preimage for each when we create it, but only the input at index `input` should be
291         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
292         /// needed with regards to an upcoming timelock expiration.
293         ///
294         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
295         /// outputs.
296         ///
297         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
298         ///
299         /// Per_commitment_point is the dynamic point corresponding to the channel state
300         /// detected onchain. It has been generated by our counterparty and is used to derive
301         /// channel state keys, which are then included in the witness script and committed to in the
302         /// BIP 143 signature.
303         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
304
305         /// Create a signature for a (proposed) closing transaction.
306         ///
307         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
308         /// chosen to forgo their output as dust.
309         fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
310
311         /// Signs a channel announcement message with our funding key, proving it comes from one
312         /// of the channel participants.
313         ///
314         /// Note that if this fails or is rejected, the channel will not be publicly announced and
315         /// our counterparty may (though likely will not) close the channel on us for violating the
316         /// protocol.
317         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
318
319         /// Set the counterparty static channel data, including basepoints,
320         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
321         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
322         /// they MUST NOT be allowed to change to different values once set.
323         ///
324         /// channel_parameters.is_populated() MUST be true.
325         ///
326         /// We bind holder_selected_contest_delay late here for API convenience.
327         ///
328         /// Will be called before any signatures are applied.
329         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
330 }
331
332 /// A cloneable signer.
333 ///
334 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
335 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
336 /// which implies Sized, into this derived trait.
337 pub trait Sign: BaseSign + Writeable + Clone {
338 }
339
340 /// A trait to describe an object which can get user secrets and key material.
341 pub trait KeysInterface {
342         /// A type which implements Sign which will be returned by get_channel_signer.
343         type Signer : Sign;
344
345         /// Get node secret key (aka node_id or network_key).
346         ///
347         /// This method must return the same value each time it is called.
348         fn get_node_secret(&self) -> SecretKey;
349         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
350         ///
351         /// This method should return a different value each time it is called, to avoid linking
352         /// on-chain funds across channels as controlled to the same user.
353         fn get_destination_script(&self) -> Script;
354         /// Get a public key which we will send funds to (in the form of a P2WPKH output) when closing
355         /// a channel.
356         ///
357         /// This method should return a different value each time it is called, to avoid linking
358         /// on-chain funds across channels as controlled to the same user.
359         fn get_shutdown_pubkey(&self) -> PublicKey;
360         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
361         /// restarted with some stale data!
362         ///
363         /// This method must return a different value each time it is called.
364         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
365         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
366         /// onion packets and for temporary channel IDs. There is no requirement that these be
367         /// persisted anywhere, though they must be unique across restarts.
368         ///
369         /// This method must return a different value each time it is called.
370         fn get_secure_random_bytes(&self) -> [u8; 32];
371
372         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
373         /// This is only called during deserialization of other objects which contain
374         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
375         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
376         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
377         /// you've read all of the provided bytes to ensure no corruption occurred.
378         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
379
380         /// Sign an invoice's preimage (note that this is the preimage of the invoice, not the HTLC's
381         /// preimage). By parameterizing by the preimage instead of the hash, we allow implementors of
382         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
383         /// blindly signing the hash.
384         fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()>;
385 }
386
387 #[derive(Clone)]
388 /// A simple implementation of Sign that just keeps the private keys in memory.
389 ///
390 /// This implementation performs no policy checks and is insufficient by itself as
391 /// a secure external signer.
392 pub struct InMemorySigner {
393         /// Private key of anchor tx
394         pub funding_key: SecretKey,
395         /// Holder secret key for blinded revocation pubkey
396         pub revocation_base_key: SecretKey,
397         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
398         pub payment_key: SecretKey,
399         /// Holder secret key used in HTLC tx
400         pub delayed_payment_base_key: SecretKey,
401         /// Holder htlc secret key used in commitment tx htlc outputs
402         pub htlc_base_key: SecretKey,
403         /// Commitment seed
404         pub commitment_seed: [u8; 32],
405         /// Holder public keys and basepoints
406         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
407         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
408         channel_parameters: Option<ChannelTransactionParameters>,
409         /// The total value of this channel
410         channel_value_satoshis: u64,
411         /// Key derivation parameters
412         channel_keys_id: [u8; 32],
413 }
414
415 impl InMemorySigner {
416         /// Create a new InMemorySigner
417         pub fn new<C: Signing>(
418                 secp_ctx: &Secp256k1<C>,
419                 funding_key: SecretKey,
420                 revocation_base_key: SecretKey,
421                 payment_key: SecretKey,
422                 delayed_payment_base_key: SecretKey,
423                 htlc_base_key: SecretKey,
424                 commitment_seed: [u8; 32],
425                 channel_value_satoshis: u64,
426                 channel_keys_id: [u8; 32]) -> InMemorySigner {
427                 let holder_channel_pubkeys =
428                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
429                                                              &payment_key, &delayed_payment_base_key,
430                                                              &htlc_base_key);
431                 InMemorySigner {
432                         funding_key,
433                         revocation_base_key,
434                         payment_key,
435                         delayed_payment_base_key,
436                         htlc_base_key,
437                         commitment_seed,
438                         channel_value_satoshis,
439                         holder_channel_pubkeys,
440                         channel_parameters: None,
441                         channel_keys_id,
442                 }
443         }
444
445         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
446                                        funding_key: &SecretKey,
447                                        revocation_base_key: &SecretKey,
448                                        payment_key: &SecretKey,
449                                        delayed_payment_base_key: &SecretKey,
450                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
451                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
452                 ChannelPublicKeys {
453                         funding_pubkey: from_secret(&funding_key),
454                         revocation_basepoint: from_secret(&revocation_base_key),
455                         payment_point: from_secret(&payment_key),
456                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
457                         htlc_basepoint: from_secret(&htlc_base_key),
458                 }
459         }
460
461         /// Counterparty pubkeys.
462         /// Will panic if ready_channel wasn't called.
463         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
464
465         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
466         /// transactions, ie the amount of time that we have to wait to recover our funds if we
467         /// broadcast a transaction.
468         /// Will panic if ready_channel wasn't called.
469         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
470
471         /// The contest_delay value specified by us and applied on transactions broadcastable
472         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
473         /// if they broadcast a transaction.
474         /// Will panic if ready_channel wasn't called.
475         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
476
477         /// Whether the holder is the initiator
478         /// Will panic if ready_channel wasn't called.
479         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
480
481         /// Funding outpoint
482         /// Will panic if ready_channel wasn't called.
483         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
484
485         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
486         /// building transactions.
487         ///
488         /// Will panic if ready_channel wasn't called.
489         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
490                 self.channel_parameters.as_ref().unwrap()
491         }
492
493         /// Sign the single input of spend_tx at index `input_idx` which spends the output
494         /// described by descriptor, returning the witness stack for the input.
495         ///
496         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
497         /// or is not spending the outpoint described by `descriptor.outpoint`.
498         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
499                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
500                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
501                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
502                 // bindings updates to support SigHashCache objects).
503                 if spend_tx.input.len() <= input_idx { return Err(()); }
504                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
505                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
506
507                 let remotepubkey = self.pubkeys().payment_point;
508                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
509                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
510                 let remotesig = secp_ctx.sign(&sighash, &self.payment_key);
511
512                 let mut witness = Vec::with_capacity(2);
513                 witness.push(remotesig.serialize_der().to_vec());
514                 witness[0].push(SigHashType::All as u8);
515                 witness.push(remotepubkey.serialize().to_vec());
516                 Ok(witness)
517         }
518
519         /// Sign the single input of spend_tx at index `input_idx` which spends the output
520         /// described by descriptor, returning the witness stack for the input.
521         ///
522         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
523         /// is not spending the outpoint described by `descriptor.outpoint`, or does not have a
524         /// sequence set to `descriptor.to_self_delay`.
525         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
526                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
527                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
528                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
529                 // bindings updates to support SigHashCache objects).
530                 if spend_tx.input.len() <= input_idx { return Err(()); }
531                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
532                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
533                 if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }
534
535                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
536                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
537                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
538                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
539                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
540                 let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);
541
542                 let mut witness = Vec::with_capacity(3);
543                 witness.push(local_delayedsig.serialize_der().to_vec());
544                 witness[0].push(SigHashType::All as u8);
545                 witness.push(vec!()); //MINIMALIF
546                 witness.push(witness_script.clone().into_bytes());
547                 Ok(witness)
548         }
549 }
550
551 impl BaseSign for InMemorySigner {
552         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
553                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
554                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
555         }
556
557         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
558                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
559         }
560
561         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
562         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
563
564         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
565                 let trusted_tx = commitment_tx.trust();
566                 let keys = trusted_tx.keys();
567
568                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
569                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
570
571                 let built_tx = trusted_tx.built_transaction();
572                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
573                 let commitment_txid = built_tx.txid;
574
575                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
576                 for htlc in commitment_tx.htlcs() {
577                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
578                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
579                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
580                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
581                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
582                 }
583
584                 Ok((commitment_sig, htlc_sigs))
585         }
586
587         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
588                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
589                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
590                 let trusted_tx = commitment_tx.trust();
591                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
592                 let channel_parameters = self.get_channel_parameters();
593                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
594                 Ok((sig, htlc_sigs))
595         }
596
597         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
598         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
599                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
600                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
601                 let trusted_tx = commitment_tx.trust();
602                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
603                 let channel_parameters = self.get_channel_parameters();
604                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
605                 Ok((sig, htlc_sigs))
606         }
607
608         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
609                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
610                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
611                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
612                 let witness_script = {
613                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
614                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
615                 };
616                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
617                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
618                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
619         }
620
621         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
622                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
623                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
624                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
625                 let witness_script = {
626                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
627                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
628                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
629                 };
630                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
631                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
632                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
633         }
634
635         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
636                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
637                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
638                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
639                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
640                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
641                                         } else { return Err(()) }
642                                 } else { return Err(()) }
643                         } else { return Err(()) };
644                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
645                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
646                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
647                 }
648                 Err(())
649         }
650
651         fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
652                 if closing_tx.input.len() != 1 { return Err(()); }
653                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
654                 if closing_tx.output.len() > 2 { return Err(()); }
655
656                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
657                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
658
659                 let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
660                         .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
661                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
662         }
663
664         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
665                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
666                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
667         }
668
669         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
670                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
671                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
672                 self.channel_parameters = Some(channel_parameters.clone());
673         }
674 }
675
676 const SERIALIZATION_VERSION: u8 = 1;
677 const MIN_SERIALIZATION_VERSION: u8 = 1;
678
679 impl Sign for InMemorySigner {}
680
681 impl Writeable for InMemorySigner {
682         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
683                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
684
685                 self.funding_key.write(writer)?;
686                 self.revocation_base_key.write(writer)?;
687                 self.payment_key.write(writer)?;
688                 self.delayed_payment_base_key.write(writer)?;
689                 self.htlc_base_key.write(writer)?;
690                 self.commitment_seed.write(writer)?;
691                 self.channel_parameters.write(writer)?;
692                 self.channel_value_satoshis.write(writer)?;
693                 self.channel_keys_id.write(writer)?;
694
695                 write_tlv_fields!(writer, {});
696
697                 Ok(())
698         }
699 }
700
701 impl Readable for InMemorySigner {
702         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
703                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
704
705                 let funding_key = Readable::read(reader)?;
706                 let revocation_base_key = Readable::read(reader)?;
707                 let payment_key = Readable::read(reader)?;
708                 let delayed_payment_base_key = Readable::read(reader)?;
709                 let htlc_base_key = Readable::read(reader)?;
710                 let commitment_seed = Readable::read(reader)?;
711                 let counterparty_channel_data = Readable::read(reader)?;
712                 let channel_value_satoshis = Readable::read(reader)?;
713                 let secp_ctx = Secp256k1::signing_only();
714                 let holder_channel_pubkeys =
715                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
716                                                              &payment_key, &delayed_payment_base_key,
717                                                              &htlc_base_key);
718                 let keys_id = Readable::read(reader)?;
719
720                 read_tlv_fields!(reader, {});
721
722                 Ok(InMemorySigner {
723                         funding_key,
724                         revocation_base_key,
725                         payment_key,
726                         delayed_payment_base_key,
727                         htlc_base_key,
728                         commitment_seed,
729                         channel_value_satoshis,
730                         holder_channel_pubkeys,
731                         channel_parameters: counterparty_channel_data,
732                         channel_keys_id: keys_id,
733                 })
734         }
735 }
736
737 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
738 /// and derives keys from that.
739 ///
740 /// Your node_id is seed/0'
741 /// ChannelMonitor closes may use seed/1'
742 /// Cooperative closes may use seed/2'
743 /// The two close keys may be needed to claim on-chain funds!
744 pub struct KeysManager {
745         secp_ctx: Secp256k1<secp256k1::All>,
746         node_secret: SecretKey,
747         destination_script: Script,
748         shutdown_pubkey: PublicKey,
749         channel_master_key: ExtendedPrivKey,
750         channel_child_index: AtomicUsize,
751
752         rand_bytes_master_key: ExtendedPrivKey,
753         rand_bytes_child_index: AtomicUsize,
754         rand_bytes_unique_start: Sha256State,
755
756         seed: [u8; 32],
757         starting_time_secs: u64,
758         starting_time_nanos: u32,
759 }
760
761 impl KeysManager {
762         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
763         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
764         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
765         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
766         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
767         /// simply use the current time (with very high precision).
768         ///
769         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
770         /// obviously, starting_time should be unique every time you reload the library - it is only
771         /// used to generate new ephemeral key data (which will be stored by the individual channel if
772         /// necessary).
773         ///
774         /// Note that the seed is required to recover certain on-chain funds independent of
775         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
776         /// channel, and some on-chain during-closing funds.
777         ///
778         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
779         /// versions. Once the library is more fully supported, the docs will be updated to include a
780         /// detailed description of the guarantee.
781         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
782                 let secp_ctx = Secp256k1::new();
783                 // Note that when we aren't serializing the key, network doesn't matter
784                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
785                         Ok(master_key) => {
786                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
787                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
788                                         Ok(destination_key) => {
789                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
790                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
791                                                               .push_slice(&wpubkey_hash.into_inner())
792                                                               .into_script()
793                                         },
794                                         Err(_) => panic!("Your RNG is busted"),
795                                 };
796                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
797                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
798                                         Err(_) => panic!("Your RNG is busted"),
799                                 };
800                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
801                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
802
803                                 let mut rand_bytes_unique_start = Sha256::engine();
804                                 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
805                                 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
806                                 rand_bytes_unique_start.input(seed);
807
808                                 let mut res = KeysManager {
809                                         secp_ctx,
810                                         node_secret,
811
812                                         destination_script,
813                                         shutdown_pubkey,
814
815                                         channel_master_key,
816                                         channel_child_index: AtomicUsize::new(0),
817
818                                         rand_bytes_master_key,
819                                         rand_bytes_child_index: AtomicUsize::new(0),
820                                         rand_bytes_unique_start,
821
822                                         seed: *seed,
823                                         starting_time_secs,
824                                         starting_time_nanos,
825                                 };
826                                 let secp_seed = res.get_secure_random_bytes();
827                                 res.secp_ctx.seeded_randomize(&secp_seed);
828                                 res
829                         },
830                         Err(_) => panic!("Your rng is busted"),
831                 }
832         }
833         /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
834         ///
835         /// Key derivation parameters are accessible through a per-channel secrets
836         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
837         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
838         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
839                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
840                 assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
841                 let mut unique_start = Sha256::engine();
842                 unique_start.input(params);
843                 unique_start.input(&self.seed);
844
845                 // We only seriously intend to rely on the channel_master_key for true secure
846                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
847                 // starting_time provided in the constructor) to be unique.
848                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
849                 unique_start.input(&child_privkey.private_key.key[..]);
850
851                 let seed = Sha256::from_engine(unique_start).into_inner();
852
853                 let commitment_seed = {
854                         let mut sha = Sha256::engine();
855                         sha.input(&seed);
856                         sha.input(&b"commitment seed"[..]);
857                         Sha256::from_engine(sha).into_inner()
858                 };
859                 macro_rules! key_step {
860                         ($info: expr, $prev_key: expr) => {{
861                                 let mut sha = Sha256::engine();
862                                 sha.input(&seed);
863                                 sha.input(&$prev_key[..]);
864                                 sha.input(&$info[..]);
865                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
866                         }}
867                 }
868                 let funding_key = key_step!(b"funding key", commitment_seed);
869                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
870                 let payment_key = key_step!(b"payment key", revocation_base_key);
871                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
872                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
873
874                 InMemorySigner::new(
875                         &self.secp_ctx,
876                         funding_key,
877                         revocation_base_key,
878                         payment_key,
879                         delayed_payment_base_key,
880                         htlc_base_key,
881                         commitment_seed,
882                         channel_value_satoshis,
883                         params.clone()
884                 )
885         }
886
887         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
888         /// output to the given change destination (if sufficient change value remains). The
889         /// transaction will have a feerate, at least, of the given value.
890         ///
891         /// Returns `Err(())` if the output value is greater than the input value minus required fee or
892         /// if a descriptor was duplicated.
893         ///
894         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
895         ///
896         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
897         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
898         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
899                 let mut input = Vec::new();
900                 let mut input_value = 0;
901                 let mut witness_weight = 0;
902                 let mut output_set = HashSet::with_capacity(descriptors.len());
903                 for outp in descriptors {
904                         match outp {
905                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
906                                         input.push(TxIn {
907                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
908                                                 script_sig: Script::new(),
909                                                 sequence: 0,
910                                                 witness: Vec::new(),
911                                         });
912                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
913                                         input_value += descriptor.output.value;
914                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
915                                 },
916                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
917                                         input.push(TxIn {
918                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
919                                                 script_sig: Script::new(),
920                                                 sequence: descriptor.to_self_delay as u32,
921                                                 witness: Vec::new(),
922                                         });
923                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
924                                         input_value += descriptor.output.value;
925                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
926                                 },
927                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
928                                         input.push(TxIn {
929                                                 previous_output: outpoint.into_bitcoin_outpoint(),
930                                                 script_sig: Script::new(),
931                                                 sequence: 0,
932                                                 witness: Vec::new(),
933                                         });
934                                         witness_weight += 1 + 73 + 34;
935                                         input_value += output.value;
936                                         if !output_set.insert(*outpoint) { return Err(()); }
937                                 }
938                         }
939                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
940                 }
941                 let mut spend_tx = Transaction {
942                         version: 2,
943                         lock_time: 0,
944                         input,
945                         output: outputs,
946                 };
947                 transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
948
949                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
950                 let mut input_idx = 0;
951                 for outp in descriptors {
952                         match outp {
953                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
954                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
955                                                 keys_cache = Some((
956                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
957                                                         descriptor.channel_keys_id));
958                                         }
959                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
960                                 },
961                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
962                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
963                                                 keys_cache = Some((
964                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
965                                                         descriptor.channel_keys_id));
966                                         }
967                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
968                                 },
969                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
970                                         let derivation_idx = if output.script_pubkey == self.destination_script {
971                                                 1
972                                         } else {
973                                                 2
974                                         };
975                                         let secret = {
976                                                 // Note that when we aren't serializing the key, network doesn't matter
977                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
978                                                         Ok(master_key) => {
979                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
980                                                                         Ok(key) => key,
981                                                                         Err(_) => panic!("Your RNG is busted"),
982                                                                 }
983                                                         }
984                                                         Err(_) => panic!("Your rng is busted"),
985                                                 }
986                                         };
987                                         let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key;
988                                         if derivation_idx == 2 {
989                                                 assert_eq!(pubkey.key, self.shutdown_pubkey);
990                                         }
991                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
992                                         let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
993                                         let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
994                                         spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
995                                         spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8);
996                                         spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec());
997                                 },
998                         }
999                         input_idx += 1;
1000                 }
1001                 Ok(spend_tx)
1002         }
1003 }
1004
1005 impl KeysInterface for KeysManager {
1006         type Signer = InMemorySigner;
1007
1008         fn get_node_secret(&self) -> SecretKey {
1009                 self.node_secret.clone()
1010         }
1011
1012         fn get_destination_script(&self) -> Script {
1013                 self.destination_script.clone()
1014         }
1015
1016         fn get_shutdown_pubkey(&self) -> PublicKey {
1017                 self.shutdown_pubkey.clone()
1018         }
1019
1020         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1021                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1022                 assert!(child_ix <= core::u32::MAX as usize);
1023                 let mut id = [0; 32];
1024                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1025                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1026                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1027                 self.derive_channel_keys(channel_value_satoshis, &id)
1028         }
1029
1030         fn get_secure_random_bytes(&self) -> [u8; 32] {
1031                 let mut sha = self.rand_bytes_unique_start.clone();
1032
1033                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1034                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1035                 sha.input(&child_privkey.private_key.key[..]);
1036
1037                 sha.input(b"Unique Secure Random Bytes Salt");
1038                 Sha256::from_engine(sha).into_inner()
1039         }
1040
1041         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1042                 InMemorySigner::read(&mut io::Cursor::new(reader))
1043         }
1044
1045         fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()> {
1046                 Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&invoice_preimage)), &self.get_node_secret()))
1047         }
1048 }
1049
1050 // Ensure that BaseSign can have a vtable
1051 #[test]
1052 pub fn dyn_sign() {
1053         let _signer: Box<dyn BaseSign>;
1054 }