84d83196472142d4c4334dcba5bf2d1e0ffafb0b
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::hashes::{Hash, HashEngine};
22 use bitcoin::hashes::sha256::HashEngine as Sha256State;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
25 use bitcoin::hash_types::WPubkeyHash;
26
27 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
28 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
29 use bitcoin::secp256k1::recovery::RecoverableSignature;
30 use bitcoin::secp256k1;
31
32 use util::{byte_utils, transaction_utils};
33 use util::ser::{Writeable, Writer, Readable};
34
35 use chain::transaction::OutPoint;
36 use ln::chan_utils;
37 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction};
38 use ln::msgs::UnsignedChannelAnnouncement;
39
40 use prelude::*;
41 use std::collections::HashSet;
42 use core::sync::atomic::{AtomicUsize, Ordering};
43 use std::io::Error;
44 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
45
46 /// Information about a spendable output to a P2WSH script. See
47 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
48 #[derive(Clone, Debug, PartialEq)]
49 pub struct DelayedPaymentOutputDescriptor {
50         /// The outpoint which is spendable
51         pub outpoint: OutPoint,
52         /// Per commitment point to derive delayed_payment_key by key holder
53         pub per_commitment_point: PublicKey,
54         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
55         /// the witness_script.
56         pub to_self_delay: u16,
57         /// The output which is referenced by the given outpoint
58         pub output: TxOut,
59         /// The revocation point specific to the commitment transaction which was broadcast. Used to
60         /// derive the witnessScript for this output.
61         pub revocation_pubkey: PublicKey,
62         /// Arbitrary identification information returned by a call to
63         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
64         /// the channel to spend the output.
65         pub channel_keys_id: [u8; 32],
66         /// The value of the channel which this output originated from, possibly indirectly.
67         pub channel_value_satoshis: u64,
68 }
69 impl DelayedPaymentOutputDescriptor {
70         /// The maximum length a well-formed witness spending one of these should have.
71         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
72         // redeemscript push length.
73         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
74 }
75
76 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
77         (0, outpoint),
78         (2, per_commitment_point),
79         (4, to_self_delay),
80         (6, output),
81         (8, revocation_pubkey),
82         (10, channel_keys_id),
83         (12, channel_value_satoshis),
84 }, {}, {});
85
86 /// Information about a spendable output to our "payment key". See
87 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
88 #[derive(Clone, Debug, PartialEq)]
89 pub struct StaticPaymentOutputDescriptor {
90         /// The outpoint which is spendable
91         pub outpoint: OutPoint,
92         /// The output which is referenced by the given outpoint
93         pub output: TxOut,
94         /// Arbitrary identification information returned by a call to
95         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
96         /// the channel to spend the output.
97         pub channel_keys_id: [u8; 32],
98         /// The value of the channel which this transactions spends.
99         pub channel_value_satoshis: u64,
100 }
101 impl StaticPaymentOutputDescriptor {
102         /// The maximum length a well-formed witness spending one of these should have.
103         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
104         // redeemscript push length.
105         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
106 }
107 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
108         (0, outpoint),
109         (2, output),
110         (4, channel_keys_id),
111         (6, channel_value_satoshis),
112 }, {}, {});
113
114 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
115 /// claim at any point in the future) an event is generated which you must track and be able to
116 /// spend on-chain. The information needed to do this is provided in this enum, including the
117 /// outpoint describing which txid and output index is available, the full output which exists at
118 /// that txid/index, and any keys or other information required to sign.
119 #[derive(Clone, Debug, PartialEq)]
120 pub enum SpendableOutputDescriptor {
121         /// An output to a script which was provided via KeysInterface directly, either from
122         /// `get_destination_script()` or `get_shutdown_pubkey()`, thus you should already know how to
123         /// spend it. No secret keys are provided as rust-lightning was never given any key.
124         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
125         /// on-chain using the payment preimage or after it has timed out.
126         StaticOutput {
127                 /// The outpoint which is spendable
128                 outpoint: OutPoint,
129                 /// The output which is referenced by the given outpoint.
130                 output: TxOut,
131         },
132         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
133         ///
134         /// The witness in the spending input should be:
135         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
136         ///
137         /// Note that the nSequence field in the spending input must be set to to_self_delay
138         /// (which means the transaction is not broadcastable until at least to_self_delay
139         /// blocks after the outpoint confirms).
140         ///
141         /// These are generally the result of a "revocable" output to us, spendable only by us unless
142         /// it is an output from an old state which we broadcast (which should never happen).
143         ///
144         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
145         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
146         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
147         /// chan_utils::derive_private_key. The public key can be generated without the secret key
148         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
149         /// Sign::pubkeys().
150         ///
151         /// To derive the revocation_pubkey provided here (which is used in the witness
152         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
153         /// call to Sign::ready_channel) and the provided per_commitment point
154         /// to chan_utils::derive_public_revocation_key.
155         ///
156         /// The witness script which is hashed and included in the output script_pubkey may be
157         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
158         /// (derived as above), and the to_self_delay contained here to
159         /// chan_utils::get_revokeable_redeemscript.
160         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
161         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
162         /// corresponds to the public key in Sign::pubkeys().payment_point).
163         /// The witness in the spending input, is, thus, simply:
164         /// <BIP 143 signature> <payment key>
165         ///
166         /// These are generally the result of our counterparty having broadcast the current state,
167         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
168         StaticPaymentOutput(StaticPaymentOutputDescriptor),
169 }
170
171 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
172         (0, StaticOutput) => {
173                 (0, outpoint),
174                 (2, output),
175         }, {}, {},
176 ;
177         (1, DelayedPaymentOutput),
178         (2, StaticPaymentOutput),
179 );
180
181 /// A trait to sign lightning channel transactions as described in BOLT 3.
182 ///
183 /// Signing services could be implemented on a hardware wallet. In this case,
184 /// the current Sign would be a front-end on top of a communication
185 /// channel connected to your secure device and lightning key material wouldn't
186 /// reside on a hot server. Nevertheless, a this deployment would still need
187 /// to trust the ChannelManager to avoid loss of funds as this latest component
188 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
189 ///
190 /// A more secure iteration would be to use hashlock (or payment points) to pair
191 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
192 /// at the price of more state and computation on the hardware wallet side. In the future,
193 /// we are looking forward to design such interface.
194 ///
195 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
196 /// to act, as liveness and breach reply correctness are always going to be hard requirements
197 /// of LN security model, orthogonal of key management issues.
198 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
199 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
200 pub trait BaseSign {
201         /// Gets the per-commitment point for a specific commitment number
202         ///
203         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
204         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
205         /// Gets the commitment secret for a specific commitment number as part of the revocation process
206         ///
207         /// An external signer implementation should error here if the commitment was already signed
208         /// and should refuse to sign it in the future.
209         ///
210         /// May be called more than once for the same index.
211         ///
212         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
213         // TODO: return a Result so we can signal a validation error
214         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
215         /// Gets the holder's channel public keys and basepoints
216         fn pubkeys(&self) -> &ChannelPublicKeys;
217         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
218         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
219         /// Sign object uniquely and lookup or re-derive its keys.
220         fn channel_keys_id(&self) -> [u8; 32];
221
222         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
223         ///
224         /// Note that if signing fails or is rejected, the channel will be force-closed.
225         //
226         // TODO: Document the things someone using this interface should enforce before signing.
227         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
228
229         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
230         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
231         /// latest commitment_tx when we initiate a force-close.
232         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
233         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
234         /// the latest.
235         /// This may be called multiple times for the same transaction.
236         ///
237         /// An external signer implementation should check that the commitment has not been revoked.
238         ///
239         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
240         //
241         // TODO: Document the things someone using this interface should enforce before signing.
242         // TODO: Key derivation failure should panic rather than Err
243         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
244
245         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
246         /// transactions which will be broadcasted later, after the channel has moved on to a newer
247         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
248         /// get called once.
249         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
250         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
251
252         /// Create a signature for the given input in a transaction spending an HTLC transaction output
253         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
254         ///
255         /// A justice transaction may claim multiple outputs at the same time if timelocks are
256         /// similar, but only a signature for the input at index `input` should be signed for here.
257         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
258         /// to an upcoming timelock expiration.
259         ///
260         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
261         ///
262         /// per_commitment_key is revocation secret which was provided by our counterparty when they
263         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
264         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
265         /// so).
266         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
267
268         /// Create a signature for the given input in a transaction spending a commitment transaction
269         /// HTLC output when our counterparty broadcasts an old state.
270         ///
271         /// A justice transaction may claim multiple outputs at the same time if timelocks are
272         /// similar, but only a signature for the input at index `input` should be signed for here.
273         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
274         /// to an upcoming timelock expiration.
275         ///
276         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
277         ///
278         /// per_commitment_key is revocation secret which was provided by our counterparty when they
279         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
280         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
281         /// so).
282         ///
283         /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
284         /// (which is committed to in the BIP 143 signatures).
285         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
286
287         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
288         /// transaction, either offered or received.
289         ///
290         /// Such a transaction may claim multiples offered outputs at same time if we know the
291         /// preimage for each when we create it, but only the input at index `input` should be
292         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
293         /// needed with regards to an upcoming timelock expiration.
294         ///
295         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
296         /// outputs.
297         ///
298         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
299         ///
300         /// Per_commitment_point is the dynamic point corresponding to the channel state
301         /// detected onchain. It has been generated by our counterparty and is used to derive
302         /// channel state keys, which are then included in the witness script and committed to in the
303         /// BIP 143 signature.
304         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
305
306         /// Create a signature for a (proposed) closing transaction.
307         ///
308         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
309         /// chosen to forgo their output as dust.
310         fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
311
312         /// Signs a channel announcement message with our funding key, proving it comes from one
313         /// of the channel participants.
314         ///
315         /// Note that if this fails or is rejected, the channel will not be publicly announced and
316         /// our counterparty may (though likely will not) close the channel on us for violating the
317         /// protocol.
318         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
319
320         /// Set the counterparty static channel data, including basepoints,
321         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
322         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
323         /// they MUST NOT be allowed to change to different values once set.
324         ///
325         /// channel_parameters.is_populated() MUST be true.
326         ///
327         /// We bind holder_selected_contest_delay late here for API convenience.
328         ///
329         /// Will be called before any signatures are applied.
330         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
331 }
332
333 /// A cloneable signer.
334 ///
335 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
336 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
337 /// which implies Sized, into this derived trait.
338 pub trait Sign: BaseSign + Writeable + Clone {
339 }
340
341 /// A trait to describe an object which can get user secrets and key material.
342 pub trait KeysInterface {
343         /// A type which implements Sign which will be returned by get_channel_signer.
344         type Signer : Sign;
345
346         /// Get node secret key (aka node_id or network_key).
347         ///
348         /// This method must return the same value each time it is called.
349         fn get_node_secret(&self) -> SecretKey;
350         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
351         ///
352         /// This method should return a different value each time it is called, to avoid linking
353         /// on-chain funds across channels as controlled to the same user.
354         fn get_destination_script(&self) -> Script;
355         /// Get a public key which we will send funds to (in the form of a P2WPKH output) when closing
356         /// a channel.
357         ///
358         /// This method should return a different value each time it is called, to avoid linking
359         /// on-chain funds across channels as controlled to the same user.
360         fn get_shutdown_pubkey(&self) -> PublicKey;
361         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
362         /// restarted with some stale data!
363         ///
364         /// This method must return a different value each time it is called.
365         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
366         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
367         /// onion packets and for temporary channel IDs. There is no requirement that these be
368         /// persisted anywhere, though they must be unique across restarts.
369         ///
370         /// This method must return a different value each time it is called.
371         fn get_secure_random_bytes(&self) -> [u8; 32];
372
373         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
374         /// This is only called during deserialization of other objects which contain
375         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
376         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
377         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
378         /// you've read all of the provided bytes to ensure no corruption occurred.
379         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
380
381         /// Sign an invoice's preimage (note that this is the preimage of the invoice, not the HTLC's
382         /// preimage). By parameterizing by the preimage instead of the hash, we allow implementors of
383         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
384         /// blindly signing the hash.
385         fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()>;
386 }
387
388 #[derive(Clone)]
389 /// A simple implementation of Sign that just keeps the private keys in memory.
390 ///
391 /// This implementation performs no policy checks and is insufficient by itself as
392 /// a secure external signer.
393 pub struct InMemorySigner {
394         /// Private key of anchor tx
395         pub funding_key: SecretKey,
396         /// Holder secret key for blinded revocation pubkey
397         pub revocation_base_key: SecretKey,
398         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
399         pub payment_key: SecretKey,
400         /// Holder secret key used in HTLC tx
401         pub delayed_payment_base_key: SecretKey,
402         /// Holder htlc secret key used in commitment tx htlc outputs
403         pub htlc_base_key: SecretKey,
404         /// Commitment seed
405         pub commitment_seed: [u8; 32],
406         /// Holder public keys and basepoints
407         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
408         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
409         channel_parameters: Option<ChannelTransactionParameters>,
410         /// The total value of this channel
411         channel_value_satoshis: u64,
412         /// Key derivation parameters
413         channel_keys_id: [u8; 32],
414 }
415
416 impl InMemorySigner {
417         /// Create a new InMemorySigner
418         pub fn new<C: Signing>(
419                 secp_ctx: &Secp256k1<C>,
420                 funding_key: SecretKey,
421                 revocation_base_key: SecretKey,
422                 payment_key: SecretKey,
423                 delayed_payment_base_key: SecretKey,
424                 htlc_base_key: SecretKey,
425                 commitment_seed: [u8; 32],
426                 channel_value_satoshis: u64,
427                 channel_keys_id: [u8; 32]) -> InMemorySigner {
428                 let holder_channel_pubkeys =
429                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
430                                                              &payment_key, &delayed_payment_base_key,
431                                                              &htlc_base_key);
432                 InMemorySigner {
433                         funding_key,
434                         revocation_base_key,
435                         payment_key,
436                         delayed_payment_base_key,
437                         htlc_base_key,
438                         commitment_seed,
439                         channel_value_satoshis,
440                         holder_channel_pubkeys,
441                         channel_parameters: None,
442                         channel_keys_id,
443                 }
444         }
445
446         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
447                                        funding_key: &SecretKey,
448                                        revocation_base_key: &SecretKey,
449                                        payment_key: &SecretKey,
450                                        delayed_payment_base_key: &SecretKey,
451                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
452                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
453                 ChannelPublicKeys {
454                         funding_pubkey: from_secret(&funding_key),
455                         revocation_basepoint: from_secret(&revocation_base_key),
456                         payment_point: from_secret(&payment_key),
457                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
458                         htlc_basepoint: from_secret(&htlc_base_key),
459                 }
460         }
461
462         /// Counterparty pubkeys.
463         /// Will panic if ready_channel wasn't called.
464         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
465
466         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
467         /// transactions, ie the amount of time that we have to wait to recover our funds if we
468         /// broadcast a transaction.
469         /// Will panic if ready_channel wasn't called.
470         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
471
472         /// The contest_delay value specified by us and applied on transactions broadcastable
473         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
474         /// if they broadcast a transaction.
475         /// Will panic if ready_channel wasn't called.
476         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
477
478         /// Whether the holder is the initiator
479         /// Will panic if ready_channel wasn't called.
480         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
481
482         /// Funding outpoint
483         /// Will panic if ready_channel wasn't called.
484         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
485
486         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
487         /// building transactions.
488         ///
489         /// Will panic if ready_channel wasn't called.
490         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
491                 self.channel_parameters.as_ref().unwrap()
492         }
493
494         /// Sign the single input of spend_tx at index `input_idx` which spends the output
495         /// described by descriptor, returning the witness stack for the input.
496         ///
497         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
498         /// or is not spending the outpoint described by `descriptor.outpoint`.
499         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
500                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
501                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
502                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
503                 // bindings updates to support SigHashCache objects).
504                 if spend_tx.input.len() <= input_idx { return Err(()); }
505                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
506                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
507
508                 let remotepubkey = self.pubkeys().payment_point;
509                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
510                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
511                 let remotesig = secp_ctx.sign(&sighash, &self.payment_key);
512
513                 let mut witness = Vec::with_capacity(2);
514                 witness.push(remotesig.serialize_der().to_vec());
515                 witness[0].push(SigHashType::All as u8);
516                 witness.push(remotepubkey.serialize().to_vec());
517                 Ok(witness)
518         }
519
520         /// Sign the single input of spend_tx at index `input_idx` which spends the output
521         /// described by descriptor, returning the witness stack for the input.
522         ///
523         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
524         /// is not spending the outpoint described by `descriptor.outpoint`, or does not have a
525         /// sequence set to `descriptor.to_self_delay`.
526         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
527                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
528                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
529                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
530                 // bindings updates to support SigHashCache objects).
531                 if spend_tx.input.len() <= input_idx { return Err(()); }
532                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
533                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
534                 if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }
535
536                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
537                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
538                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
539                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
540                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
541                 let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);
542
543                 let mut witness = Vec::with_capacity(3);
544                 witness.push(local_delayedsig.serialize_der().to_vec());
545                 witness[0].push(SigHashType::All as u8);
546                 witness.push(vec!()); //MINIMALIF
547                 witness.push(witness_script.clone().into_bytes());
548                 Ok(witness)
549         }
550 }
551
552 impl BaseSign for InMemorySigner {
553         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
554                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
555                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
556         }
557
558         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
559                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
560         }
561
562         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
563         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
564
565         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
566                 let trusted_tx = commitment_tx.trust();
567                 let keys = trusted_tx.keys();
568
569                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
570                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
571
572                 let built_tx = trusted_tx.built_transaction();
573                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
574                 let commitment_txid = built_tx.txid;
575
576                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
577                 for htlc in commitment_tx.htlcs() {
578                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
579                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
580                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
581                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
582                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
583                 }
584
585                 Ok((commitment_sig, htlc_sigs))
586         }
587
588         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
589                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
590                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
591                 let trusted_tx = commitment_tx.trust();
592                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
593                 let channel_parameters = self.get_channel_parameters();
594                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
595                 Ok((sig, htlc_sigs))
596         }
597
598         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
599         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
600                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
601                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
602                 let trusted_tx = commitment_tx.trust();
603                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
604                 let channel_parameters = self.get_channel_parameters();
605                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
606                 Ok((sig, htlc_sigs))
607         }
608
609         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
610                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
611                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
612                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
613                 let witness_script = {
614                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
615                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
616                 };
617                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
618                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
619                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
620         }
621
622         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
623                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
624                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
625                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
626                 let witness_script = {
627                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
628                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
629                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
630                 };
631                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
632                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
633                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
634         }
635
636         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
637                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
638                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
639                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
640                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
641                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
642                                         } else { return Err(()) }
643                                 } else { return Err(()) }
644                         } else { return Err(()) };
645                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
646                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
647                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
648                 }
649                 Err(())
650         }
651
652         fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
653                 if closing_tx.input.len() != 1 { return Err(()); }
654                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
655                 if closing_tx.output.len() > 2 { return Err(()); }
656
657                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
658                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
659
660                 let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
661                         .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
662                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
663         }
664
665         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
666                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
667                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
668         }
669
670         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
671                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
672                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
673                 self.channel_parameters = Some(channel_parameters.clone());
674         }
675 }
676
677 const SERIALIZATION_VERSION: u8 = 1;
678 const MIN_SERIALIZATION_VERSION: u8 = 1;
679
680 impl Sign for InMemorySigner {}
681
682 impl Writeable for InMemorySigner {
683         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
684                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
685
686                 self.funding_key.write(writer)?;
687                 self.revocation_base_key.write(writer)?;
688                 self.payment_key.write(writer)?;
689                 self.delayed_payment_base_key.write(writer)?;
690                 self.htlc_base_key.write(writer)?;
691                 self.commitment_seed.write(writer)?;
692                 self.channel_parameters.write(writer)?;
693                 self.channel_value_satoshis.write(writer)?;
694                 self.channel_keys_id.write(writer)?;
695
696                 write_tlv_fields!(writer, {}, {});
697
698                 Ok(())
699         }
700 }
701
702 impl Readable for InMemorySigner {
703         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
704                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
705
706                 let funding_key = Readable::read(reader)?;
707                 let revocation_base_key = Readable::read(reader)?;
708                 let payment_key = Readable::read(reader)?;
709                 let delayed_payment_base_key = Readable::read(reader)?;
710                 let htlc_base_key = Readable::read(reader)?;
711                 let commitment_seed = Readable::read(reader)?;
712                 let counterparty_channel_data = Readable::read(reader)?;
713                 let channel_value_satoshis = Readable::read(reader)?;
714                 let secp_ctx = Secp256k1::signing_only();
715                 let holder_channel_pubkeys =
716                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
717                                                              &payment_key, &delayed_payment_base_key,
718                                                              &htlc_base_key);
719                 let keys_id = Readable::read(reader)?;
720
721                 read_tlv_fields!(reader, {}, {});
722
723                 Ok(InMemorySigner {
724                         funding_key,
725                         revocation_base_key,
726                         payment_key,
727                         delayed_payment_base_key,
728                         htlc_base_key,
729                         commitment_seed,
730                         channel_value_satoshis,
731                         holder_channel_pubkeys,
732                         channel_parameters: counterparty_channel_data,
733                         channel_keys_id: keys_id,
734                 })
735         }
736 }
737
738 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
739 /// and derives keys from that.
740 ///
741 /// Your node_id is seed/0'
742 /// ChannelMonitor closes may use seed/1'
743 /// Cooperative closes may use seed/2'
744 /// The two close keys may be needed to claim on-chain funds!
745 pub struct KeysManager {
746         secp_ctx: Secp256k1<secp256k1::All>,
747         node_secret: SecretKey,
748         destination_script: Script,
749         shutdown_pubkey: PublicKey,
750         channel_master_key: ExtendedPrivKey,
751         channel_child_index: AtomicUsize,
752
753         rand_bytes_master_key: ExtendedPrivKey,
754         rand_bytes_child_index: AtomicUsize,
755         rand_bytes_unique_start: Sha256State,
756
757         seed: [u8; 32],
758         starting_time_secs: u64,
759         starting_time_nanos: u32,
760 }
761
762 impl KeysManager {
763         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
764         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
765         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
766         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
767         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
768         /// simply use the current time (with very high precision).
769         ///
770         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
771         /// obviously, starting_time should be unique every time you reload the library - it is only
772         /// used to generate new ephemeral key data (which will be stored by the individual channel if
773         /// necessary).
774         ///
775         /// Note that the seed is required to recover certain on-chain funds independent of
776         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
777         /// channel, and some on-chain during-closing funds.
778         ///
779         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
780         /// versions. Once the library is more fully supported, the docs will be updated to include a
781         /// detailed description of the guarantee.
782         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
783                 let secp_ctx = Secp256k1::new();
784                 // Note that when we aren't serializing the key, network doesn't matter
785                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
786                         Ok(master_key) => {
787                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
788                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
789                                         Ok(destination_key) => {
790                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
791                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
792                                                               .push_slice(&wpubkey_hash.into_inner())
793                                                               .into_script()
794                                         },
795                                         Err(_) => panic!("Your RNG is busted"),
796                                 };
797                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
798                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
799                                         Err(_) => panic!("Your RNG is busted"),
800                                 };
801                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
802                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
803
804                                 let mut rand_bytes_unique_start = Sha256::engine();
805                                 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
806                                 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
807                                 rand_bytes_unique_start.input(seed);
808
809                                 let mut res = KeysManager {
810                                         secp_ctx,
811                                         node_secret,
812
813                                         destination_script,
814                                         shutdown_pubkey,
815
816                                         channel_master_key,
817                                         channel_child_index: AtomicUsize::new(0),
818
819                                         rand_bytes_master_key,
820                                         rand_bytes_child_index: AtomicUsize::new(0),
821                                         rand_bytes_unique_start,
822
823                                         seed: *seed,
824                                         starting_time_secs,
825                                         starting_time_nanos,
826                                 };
827                                 let secp_seed = res.get_secure_random_bytes();
828                                 res.secp_ctx.seeded_randomize(&secp_seed);
829                                 res
830                         },
831                         Err(_) => panic!("Your rng is busted"),
832                 }
833         }
834         /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
835         ///
836         /// Key derivation parameters are accessible through a per-channel secrets
837         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
838         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
839         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
840                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
841                 assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
842                 let mut unique_start = Sha256::engine();
843                 unique_start.input(params);
844                 unique_start.input(&self.seed);
845
846                 // We only seriously intend to rely on the channel_master_key for true secure
847                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
848                 // starting_time provided in the constructor) to be unique.
849                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
850                 unique_start.input(&child_privkey.private_key.key[..]);
851
852                 let seed = Sha256::from_engine(unique_start).into_inner();
853
854                 let commitment_seed = {
855                         let mut sha = Sha256::engine();
856                         sha.input(&seed);
857                         sha.input(&b"commitment seed"[..]);
858                         Sha256::from_engine(sha).into_inner()
859                 };
860                 macro_rules! key_step {
861                         ($info: expr, $prev_key: expr) => {{
862                                 let mut sha = Sha256::engine();
863                                 sha.input(&seed);
864                                 sha.input(&$prev_key[..]);
865                                 sha.input(&$info[..]);
866                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
867                         }}
868                 }
869                 let funding_key = key_step!(b"funding key", commitment_seed);
870                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
871                 let payment_key = key_step!(b"payment key", revocation_base_key);
872                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
873                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
874
875                 InMemorySigner::new(
876                         &self.secp_ctx,
877                         funding_key,
878                         revocation_base_key,
879                         payment_key,
880                         delayed_payment_base_key,
881                         htlc_base_key,
882                         commitment_seed,
883                         channel_value_satoshis,
884                         params.clone()
885                 )
886         }
887
888         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
889         /// output to the given change destination (if sufficient change value remains). The
890         /// transaction will have a feerate, at least, of the given value.
891         ///
892         /// Returns `Err(())` if the output value is greater than the input value minus required fee or
893         /// if a descriptor was duplicated.
894         ///
895         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
896         ///
897         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
898         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
899         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
900                 let mut input = Vec::new();
901                 let mut input_value = 0;
902                 let mut witness_weight = 0;
903                 let mut output_set = HashSet::with_capacity(descriptors.len());
904                 for outp in descriptors {
905                         match outp {
906                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
907                                         input.push(TxIn {
908                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
909                                                 script_sig: Script::new(),
910                                                 sequence: 0,
911                                                 witness: Vec::new(),
912                                         });
913                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
914                                         input_value += descriptor.output.value;
915                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
916                                 },
917                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
918                                         input.push(TxIn {
919                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
920                                                 script_sig: Script::new(),
921                                                 sequence: descriptor.to_self_delay as u32,
922                                                 witness: Vec::new(),
923                                         });
924                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
925                                         input_value += descriptor.output.value;
926                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
927                                 },
928                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
929                                         input.push(TxIn {
930                                                 previous_output: outpoint.into_bitcoin_outpoint(),
931                                                 script_sig: Script::new(),
932                                                 sequence: 0,
933                                                 witness: Vec::new(),
934                                         });
935                                         witness_weight += 1 + 73 + 34;
936                                         input_value += output.value;
937                                         if !output_set.insert(*outpoint) { return Err(()); }
938                                 }
939                         }
940                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
941                 }
942                 let mut spend_tx = Transaction {
943                         version: 2,
944                         lock_time: 0,
945                         input,
946                         output: outputs,
947                 };
948                 transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
949
950                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
951                 let mut input_idx = 0;
952                 for outp in descriptors {
953                         match outp {
954                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
955                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
956                                                 keys_cache = Some((
957                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
958                                                         descriptor.channel_keys_id));
959                                         }
960                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
961                                 },
962                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
963                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
964                                                 keys_cache = Some((
965                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
966                                                         descriptor.channel_keys_id));
967                                         }
968                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
969                                 },
970                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
971                                         let derivation_idx = if output.script_pubkey == self.destination_script {
972                                                 1
973                                         } else {
974                                                 2
975                                         };
976                                         let secret = {
977                                                 // Note that when we aren't serializing the key, network doesn't matter
978                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
979                                                         Ok(master_key) => {
980                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
981                                                                         Ok(key) => key,
982                                                                         Err(_) => panic!("Your RNG is busted"),
983                                                                 }
984                                                         }
985                                                         Err(_) => panic!("Your rng is busted"),
986                                                 }
987                                         };
988                                         let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key;
989                                         if derivation_idx == 2 {
990                                                 assert_eq!(pubkey.key, self.shutdown_pubkey);
991                                         }
992                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
993                                         let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
994                                         let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
995                                         spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
996                                         spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8);
997                                         spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec());
998                                 },
999                         }
1000                         input_idx += 1;
1001                 }
1002                 Ok(spend_tx)
1003         }
1004 }
1005
1006 impl KeysInterface for KeysManager {
1007         type Signer = InMemorySigner;
1008
1009         fn get_node_secret(&self) -> SecretKey {
1010                 self.node_secret.clone()
1011         }
1012
1013         fn get_destination_script(&self) -> Script {
1014                 self.destination_script.clone()
1015         }
1016
1017         fn get_shutdown_pubkey(&self) -> PublicKey {
1018                 self.shutdown_pubkey.clone()
1019         }
1020
1021         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1022                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1023                 assert!(child_ix <= core::u32::MAX as usize);
1024                 let mut id = [0; 32];
1025                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1026                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1027                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1028                 self.derive_channel_keys(channel_value_satoshis, &id)
1029         }
1030
1031         fn get_secure_random_bytes(&self) -> [u8; 32] {
1032                 let mut sha = self.rand_bytes_unique_start.clone();
1033
1034                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1035                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1036                 sha.input(&child_privkey.private_key.key[..]);
1037
1038                 sha.input(b"Unique Secure Random Bytes Salt");
1039                 Sha256::from_engine(sha).into_inner()
1040         }
1041
1042         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1043                 InMemorySigner::read(&mut std::io::Cursor::new(reader))
1044         }
1045
1046         fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()> {
1047                 Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&invoice_preimage)), &self.get_node_secret()))
1048         }
1049 }
1050
1051 // Ensure that BaseSign can have a vtable
1052 #[test]
1053 pub fn dyn_sign() {
1054         let _signer: Box<dyn BaseSign>;
1055 }